State Machines and Equivalence Checking

Testing & Verification
Dept. of Computer Science & Engg, IIT Kharagpur

Pallab Dasgupta

Professor, Dept. of Computer Science & Engg.,
Professor-in-charge, AVLSI Design Lab,

Indian Institute of Technology Kharagpur

- T HEEEEER T
F saEmanny 7 =

. —
i F ansnapa R N
. NEENE
Y. - o~ e B

Agenda

O Finite Automata

Q0 Equivalence of Finite Automata

Q Product of Finite Automata

O Acceptors for Finite Sequences

O Buchi Automata and acceptance of infinite sequences
O CNF Satisfiability

Q0 Equivalence Checking
m Combinational Equivalence Checking
e Register Correspondence
e Equivalence Checking of Retimed Circuits
m Sequential Equivalence Checking
m Equivalence and Minimization Algorithms

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 2

Finite Automaton

A finite deterministic automaton M (transducer, Mealy machine,
finite state machine FSM) is a 6-tuple:

M= (Qs Zs As 85 ;\'! qO)

where:
Q is the finite set of states
2 is the input alphabet
A is the output alphabet
d: Q X X 2Qiis the transition function
A: Q X X 2Ais the output function

q° is the start state (initial state)

If A is of the form A: Q 2A, then we have a Moore machine.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 3

State and Output Sequences

Path function: 6*: QX (N2> X)=2> Q

Given an input sequence a, we have:

8*(q, @) := q' with q° :=q, q"*' = §(q}, a'), and g’ := qlal

Path output sequence: A*: QX (N =2) 2 (N =2 A)

Given an input sequence a, we have:

A*(q, d@) =0 with q°:=q, q*" =5(q, @), and u' = A(q}, @)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 4

Automata Equivalence

Two automata M and M’are called equivalent, if for an arbitrary
Input sequence applied at both automata, the same output
sequence results:

va.A*(q% a) =1"(q°% a)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 5

State Equivalence

Given two Mealy machines with the same input and output
alphabet, M=(Q, Z, A, §, A, q°) and M’ = (Q', I, A, &', A/, q'°).

The state equivalence relation ~c Q X Q' is the largest relation
which satisfies the following:

q~q':< Va,aeX .A(q,a)=2'(q',a) and §(q, a) ~d'(q’, a)

Two states g and g’are said to be equivalent, if g ~q“holds.
Results:
O Itholdsthatva,d e (N=2X). q~q" = &*%q,a)~d6'%(q', d)

O Two Mealy machines M and M’ are equivalent, written as M ~ M, iff their initial
states are equivalent: q° ~ q"°.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 6

State Minimization

O Necessary and sufficient condition for two states to be

equivalent:

q, ~q, < Va, aeX .Aq,, @) =A(qy, a) and &(q, a) ~ &(q,, a)

0 Equivalent states can be merged

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 7

Product Automaton

The product automaton of two automata M = (Q, I, A, §, A, q°) and
M =(Q', I, A, 8, A, q'% is defined as:

MP=(QXQ,Z, B, 3" AP, (q0, q'9)

with 8°: (QXQ') X = (QAXQ') and AP: (QXQ') X = B, defined by:
°((a, '), a) := (3(q, a), 8'(q’, a))
AP((a, 9'), @) :=(M(q, @) = A'(q', Q))

The product delivers only a value B which indicates whether for a

given input the outputs of both automata are equal (T) or not (F).

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

Acceptors

A deterministic finite acceptor (called DFA) M2 is a 5-tuple:
M2=(Q, Z, 5, q° F)

where:

Q is the finite set of states

> is the input alphabet

d: Q X X 2 Qiis the transition function
q° is the start state (initial state)

F — Qs the set of final states (accepting states)

A finite sequence i is said to be accepted by M2 = (Q, %, §, q° F),
if 8*(q° a) e F.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 9

Acceptance of Infinite Sequences

O Buchi automaton:

An accepting Buchi automaton M238 is a 5-tuple,
MaB =(Q, %, §, q°, F)
where Q is the finite set of states, X is the input alphabet,

d: QX X = Qis the transition function, q° is the start state

(initial state). F c Q is the set of final states (accepting
states).

O Buchi acceptance:

An infinite sequence a is accepted by the Buchi automaton
MaB = (Q, %, 5, q°, F), if vt3t,t' >t.5*(qt at-¥) e F.

In other words, an infinite sequence is accepted if the final
set is visited infinitely often.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 10

Equivalence Checking Problem

0 Two designs are defined to be functionally equivalent if they
produce identical output sequences for all valid input sequences

—\Z
i 1 0,
| O
| 3
I D, ‘DR

| o)

I, ?

> 82

D, [

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 11

Equivalence Checking Paradigms

0 Sequential Equivalence Checking

m Compare state machines

O Combinational Equivalence Checking

m Compare combinational Boolean functions

Q If a one-to-one correspondence between the registers is given,
then sequential equivalence checking can be solved using

combinational equivalence checking

m This is a popular approach — very useful in practice

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 12

Combinational Equivalence Checking

y v/

— I\ i D
I 61 !

\ 4

O
y v/

>

A 4
>’
N

v

. « Compare o/p function
| | « Compare transition function

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 13

Basic Approach

O Step-1: Register Correspondence
m The register correspondence is either guessed using simple
heuristics or computed exactly
O Step-2: Functional Comparison

m This step involves the actual functional comparison of the

individual circuits

m This can be done using a variety of methods, including
BDDs, SAT and ATPG

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 14

Regsiter Correspondence

O In many practical design flows, a candidate register

correspondence is derived from naming conventions

O Otherwise, register correspondence can be computed
automatically as a greatest fixed point (to be explained)
m The algorithm starts with one equivalence class (bucket) containing
all the registers
m During each iteration:
e A unique variable is introduced for the outputs of all registers of
each bucket
e All next state functions are computed based on these variables
e Next the buckets are partitioned into pieces that have identical

next-state functions

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 15

Register Correspondence Algorithm

REGISTER CORRESPONDENCE() {
put all registers r into bucket[0]
do {
forall buckets i do {
Initialize output of all registers r € 1 with variable V[i]
}
forall registers r do {
compute next state function 3[r] based on inputs v
}
If V buckets i: r,, r, € 1 & 9][r,] = 8][r,] return
split all buckets I into multiple buckets i; s.t. r;, r, € I; < 8[r,] = 8[r,]

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 16

Equivalence Checking with CNF-SAT

Clauses:

a 0 —037)((@av —y), (b v —y), (—av—bvy),
B

f
®o— (a v =x), (=b v —x), (—a v b v x),

(ﬁx \Y ﬁf), (ﬁy \Y ﬁf), (X vyYvVv f)

y

Clauses:

[: g
a —
(avg), (—-av-—g)

To check equivalence between f and g, we add the following clauses:
(fva), (—fv—g)

which is the EXOR between f and g. If the set of clauses is satisfiable,

then we have a valuation of a and b such that f and g receive conflicting

values. Otherwise (as in this case), f and g are equivalent.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 17

Retiming and Equivalence Checking

M =De

g

j) I

Q&

T
U

e

Before retiming

!

>

D
By

:

mlpe o
Jo—r

After retiming

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 18

Equivalence Checking of Retimed Logic

O In case of retiming, the next-state functions are not comparable
m However, by preserving the retime logic from the synthesis
flow and applying it to make both designs comparable, the
equivalence checking problem can be reduced to a
combinational problem
m Both machines are patched with pieces of the retime logic to

make the interfaces comparable

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 19

Sequential Equivalence Checking

0 When register correspondence cannot be found easily or it does

not exist, we may compare the state machines

1 Basic approach

m Core problem: Partition the state space into sets of
equivalent states

m Equivalence can be defined in terms of input/output behavior
e Bisimulation equivalence

e Stuttering equivalence

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 20

Redundant States and Minimization

Ma Mb

1/0

A or C is redundant state

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 21

Definitions

If an input sequence X takes a
machine from a state Si to Sj, then Sj
is said to be the X-successor of Si.

B is 110-succesor of A

Two states Si and Sj are distinguishable iff there exists at least
one finite input sequence which when applied to M, causes
different output sequences, depending on whether Si or Sj is
the initial state.

A and B are distinguishable. Consider input sequence 0.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 22

k-distinguishable states

If there exists for pair (Si,Sj), a distinguishing
sequence of length k, the states in (Si,Sj) are
said to be k-distinguishable.

States that are not k-distinguishable are
called k-equivalent.

A, B are 1-distinguishable

A, C are not 2-distinguishable and hence are
2-equivalent

States Si and Sj are said to be equivalent iff for every
possible input sequence, the same output sequence is
produced regardless of whether Si or Sj is the initial state.

A, C are equivalent

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 23

The State Minimization Problem

Input : state machine M

Output : minimize (M), the state machine with the fewest
states that is equivalent to M

Two machines Mi and Mj are equivalent iff, for every state
in Mi, there is a corresponding equivalent state in Mj and
vice versa.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 24

The Minimization Procedure

1. Partitions states of M into subsets such that all states
in the same subset are 1-equivalent: P,

2. Partitions states of M into subsets such that all states
in the same subset are 2-equivalent: P,

Until for some k, P,,, = P,

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 25

The Minimization Procedure

/States \

. i /

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 26

The Minimization Algorithm

4 N

10 04
o—> '3)1/1
1/oi o
1/1
0{/07 1/1\ \0
O
1/0 o
N\ p

.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 27

The Minimization Algorithm

4 N

1/0 1/1
o—> '&1/1

1/0I C\
1/1
04/07 1/1

N o

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 28

The Minimization Algorithm

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 29

The Minimization Algorithm

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 30

The Minimization Algorithm

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 31

The Minimization Algorithm

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 32

The Minimization Algorithm

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 33

The Minimization Algorithm

4 A I / \
o O
01 | |y
o1\) o)
. O
/ \
<"LO/'l (@)
(@)
0/1\ (o)
N Y \ /

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 34

The Minimization Algorithm

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 35

The Minimization Algorithm

1. Let Q be set of all reachable states of M.

2. Maintain a set P of state sets:
Initially let P={Q}.
2a. Repeat until no longer possible: output split P.
2b. Repeat until no longer possible: next-state split P.

3. When done, every state set in P represents a single state of the
smallest state machine equivalent to M.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 36

Output split P

If there exist

astateset ReP

two states r1 e R and r2 e R
an input x € Inputs

such that
output (r1, x) # output (r2, x)

then
let R1={r e R| output (r,x) = output (r1,x) } ;
let R2 = R\R1;

let P = (P\{R})U{R1,R2}.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 37

Output split

& N\
r10//7

X1y x/z

r2

\ /

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 38

Output split

-

R1

r1

™~
0//7

X1y

_

x/lz

r2

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

39

Next-state split P

If there exist

two state sets Re P and R’ P

two states M1 R and r2eR
an input x € Inputs

such that

nextState (r1, x) e R’ and nextState (r2,x) ¢ R’
then

let R1={r € R| nextState (r,x) e R’ };

let R2 = R\R1;

let P = (P\{R})U{R1,R2}.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 40

Next-state split

xly

k / x/ly \

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 41

Next-state split

- ™ e)
R1
Xy
1 O _ Y,
N /
e I
r2
R2
X/y \

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 42

Example

0/0
Q={a,b,c,d, e, f, g} 111
0/1 0/0
0/1
1/0 1/1
0/1 0/0
1/0
0/0
1/1

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 43

A

P={{a,b,c,d!e’f’g}}

0/0
0/1 0/0
0/1
1/0 1M
0/1 0/0

1/0

0..

0/0
11

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 44

| 0/0
Output split 1/1

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 45

P={{a},{b,c}, {d,e f,g}} 2);(1)

\d .

lllllllllllllllllllllllllllllll

/1 0/0
0215 n n

' 10N 1/1

% o 7/ : 0/0
1‘0 P

*
llllllllllllllll

0/0
Next-state split 1/1

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 46

P={{a},{b,c}{d, e} {fig}}

llllllllllllllllllllllllllllllllll
lllllllllllllllllll

T\ i

Y

' 10N 1
01 /' 0/0

10

| 0/0
Next-state split 111

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 47

171

0/0
/ N 4 A
0/1 0yd
om > >
P4
//
—> {a} {b,c} {d, e} {f,9}
N
N
1/0 ™N
> >
1/0 11
N J J AN

Minimal bisimilar state machine

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

48

171
0/0

4 instead of 7 states

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 49

How to check if M1 and M2 are equivalent

1. Minimize M1 and call the result N1
2. Minimize M2 and call the result N2

3. Check if the states of N1 can be renamed so that N1 and N2

are identical

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 50

	Agenda
	Finite Automaton
	State and Output Sequences
	Automata Equivalence
	State Equivalence
	State Minimization
	Product Automaton
	Acceptors
	Acceptance of Infinite Sequences
	Equivalence Checking Problem
	Equivalence Checking Paradigms
	Combinational Equivalence Checking
	Basic Approach
	Regsiter Correspondence
	Register Correspondence Algorithm
	Equivalence Checking with CNF-SAT
	Retiming and Equivalence Checking
	Equivalence Checking of Retimed Logic
	Sequential Equivalence Checking
	Redundant States and Minimization
	Definitions
	 k-distinguishable states
	The State Minimization Problem
	The Minimization Procedure
	The Minimization Procedure
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	Output split P
	Output split
	Output split
	Next-state split P
	Next-state split
	Next-state split
	Example
	How to check if M1 and M2 are equivalent

