
State Machines and Equivalence CheckingState Machines and Equivalence CheckingState Machines and Equivalence Checking

Pallab Pallab DasguptaDasgupta
Professor, Dept. of Computer Science & Professor, Dept. of Computer Science & EnggEngg.,.,
ProfessorProfessor--inin--charge, AVLSI Design Lab,charge, AVLSI Design Lab,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Testing & Verification
Dept. of Computer Science & Engg, IIT Kharagpur
Testing & VerificationTesting & Verification
Dept. of Computer Science & Dept. of Computer Science & EnggEngg, IIT Kharagpur, IIT Kharagpur

2© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

AgendaAgenda

Finite AutomataFinite Automata

Equivalence of Finite AutomataEquivalence of Finite Automata

Product of Finite AutomataProduct of Finite Automata

Acceptors for Finite SequencesAcceptors for Finite Sequences

BBüüchichi Automata and acceptance of infinite sequencesAutomata and acceptance of infinite sequences

CNF CNF SatisfiabilitySatisfiability

Equivalence CheckingEquivalence Checking
■■ Combinational Equivalence CheckingCombinational Equivalence Checking

●● Register CorrespondenceRegister Correspondence
●● Equivalence Checking of Retimed CircuitsEquivalence Checking of Retimed Circuits

■■ Sequential Equivalence CheckingSequential Equivalence Checking
■■ Equivalence and Minimization AlgorithmsEquivalence and Minimization Algorithms

3© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Finite AutomatonFinite Automaton

A finite deterministic automaton M (transducer, Mealy machine, A finite deterministic automaton M (transducer, Mealy machine,
finite state machine FSM) is a 6finite state machine FSM) is a 6--tuple:tuple:

M = (Q, M = (Q, ΣΣ, , ΔΔ, , δδ, , λλ, q, q00))

where:where:

Q Q is the finite set of statesis the finite set of states

ΣΣ is the input alphabetis the input alphabet

ΔΔ is the output alphabetis the output alphabet

δδ: Q X : Q X ΣΣ Q Q is the transition functionis the transition function

λλ: Q X : Q X ΣΣ ΔΔ is the output functionis the output function

qq00 is the start state (initial state)is the start state (initial state)

If If λλ is of the formis of the form λλ: Q : Q ΔΔ, , then we have a Moore machine.then we have a Moore machine.

4© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

State and Output SequencesState and Output Sequences

Path function:Path function: δδ*: Q X (N *: Q X (N ΣΣ)) QQ

Given an input sequence Given an input sequence ã, we have:ã, we have:

δδ*(q, ã) := q*(q, ã) := q′′ with qwith q00 := q, q:= q, qi+1i+1 = = δδ((qqii, , aaii), and q), and q′′ := := qq|ã|ã||

Path output sequence:Path output sequence: λλ*: Q X (N *: Q X (N ΣΣ)) (N (N ΔΔ))

Given an input sequence Given an input sequence ã, we have:ã, we have:

λλ*(q, ã) := *(q, ã) := ũũ with qwith q00 := q, q:= q, qi+1i+1 = = δδ((qqii, , aaii), and), and uuii = = λλ((qqii, , aaii))

5© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Automata EquivalenceAutomata Equivalence

Two automata M and MTwo automata M and M′′ are called equivalent, if for an arbitrary are called equivalent, if for an arbitrary
input sequence applied at both automata, the same output input sequence applied at both automata, the same output
sequence results:sequence results:

∀∀ã . ã . λλ*(q*(q00, ã) = , ã) = λ′λ′*(q*(q00, ã), ã)

6© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

State EquivalenceState Equivalence

Given two Mealy machines with the same input and output Given two Mealy machines with the same input and output
alphabet, alphabet, M = (Q, M = (Q, ΣΣ, , ΔΔ, , δδ, , λλ, q, q00)) and and MM′′ = (Q= (Q′′, , ΣΣ, , ΔΔ, , δ′δ′, , λ′λ′, q, q′′00).).

The state equivalence relation The state equivalence relation ∼∼ ⊆⊆ Q X QQ X Q′′ is the largest relation is the largest relation
which satisfies the following:which satisfies the following:

q q ∼∼ qq′′: : ⇔⇔ ∀∀a, aa, a∈Σ∈Σ . . λλ(q, a) = (q, a) = λ′λ′(q(q′′, a) and , a) and δδ(q, a) (q, a) ∼∼ δ′δ′(q(q′′, a), a)

Two states q and qTwo states q and q′′ are said to be equivalent, if q are said to be equivalent, if q ∼∼ qq′′ holds.holds.

Results:Results:

It holds that It holds that ∀∀ã, ã ã, ã ∈∈ (N (N ΣΣ) . q) . q ∼∼ qq′′ ⇒⇒ δδ*(q, ã) *(q, ã) ∼∼ δ′δ′*(q*(q′′, ã), ã)

Two Mealy machines M and MTwo Mealy machines M and M′′ are equivalent, written as M are equivalent, written as M ≈≈ MM′′, , iffiff their initial their initial
states are equivalent: qstates are equivalent: q00 ∼∼ qq′′00..

7© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

State MinimizationState Minimization

Necessary and sufficient condition for two states to be Necessary and sufficient condition for two states to be
equivalent:equivalent:

qq11 ∼∼ qq2 2 ⇔⇔ ∀∀a, aa, a∈Σ∈Σ . . λλ(q(q11, a) = , a) = λλ(q(q22, a) and , a) and δδ(q(q11, a) , a) ∼∼ δδ(q(q22, a), a)

Equivalent states can be mergedEquivalent states can be merged

8© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Product AutomatonProduct Automaton

The product automaton of two automata The product automaton of two automata M = (Q, M = (Q, ΣΣ, , ΔΔ, , δδ, , λλ, q, q00)) and and

MM′′ = (Q= (Q′′, , ΣΣ, , ΔΔ, , δ′δ′, , λ′λ′, q, q′′00)) is defined as:is defined as:

MMPP = (Q X Q= (Q X Q′′, , ΣΣ, B, , B, δδPP, , λλPP, (q0, q, (q0, q′′00))))

with with δδPP: (QXQ: (QXQ′′) X) X ΣΣ (QXQ(QXQ′′)) and and λλPP: (QXQ: (QXQ′′) X) X ΣΣ B, B, defined by:defined by:

δδPP((q((q, q, q′′), a) := (), a) := (δδ(q, a), (q, a), δ′δ′(q(q′′, a)), a))

λλPP((q((q, q, q′′), a) := (), a) := (λλ(q, a) = (q, a) = λ′λ′(q(q′′, a)), a))

The product delivers only a value B which indicates whether for The product delivers only a value B which indicates whether for a a

given input the outputs of both automata are equal given input the outputs of both automata are equal (T) (T) or not or not (F).(F).

9© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

AcceptorsAcceptors

A deterministic finite acceptor (called DFA) MA deterministic finite acceptor (called DFA) Maa is a 5is a 5--tuple: tuple:

MMaa = (Q, = (Q, ΣΣ, , δδ, q, q00, F) , F)

where:where:

Q is the finite set of statesQ is the finite set of states

ΣΣ is the input alphabetis the input alphabet

δδ: Q X : Q X ΣΣ Q is the transition functionQ is the transition function

qq00 is the start state (initial state)is the start state (initial state)

F F ⊆⊆ Q is the set of final states (accepting states)Q is the set of final states (accepting states)

A finite sequence A finite sequence ã is said to be accepted by Mã is said to be accepted by Maa = (Q, = (Q, ΣΣ, , δδ, q, q00, F), , F),
if if δδ*(q*(q00, ã) , ã) ∈∈ F.F.

10© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Acceptance of Infinite SequencesAcceptance of Infinite Sequences

BBüüchichi automaton:automaton:

An accepting An accepting BuchiBuchi automaton automaton MMaBaB is a 5is a 5--tuple, tuple,

MMaBaB = = (Q, (Q, ΣΣ, , δδ, q, q00, F), F)

where Q is the finite set of states, where Q is the finite set of states, ΣΣ is the input alphabet,is the input alphabet,

δδ: Q X : Q X ΣΣ Q Q is the transition function, is the transition function, qq00 is the start state is the start state
(initial state). (initial state). F F ⊆⊆ Q Q is the set of final states (accepting is the set of final states (accepting
states).states).

BBüüchichi acceptance:acceptance:

An infinite sequence ã is accepted by the An infinite sequence ã is accepted by the BuchiBuchi automaton automaton
MMaBaB = (Q, = (Q, ΣΣ, , δδ, q, q00, F),, F), if if ∀∀t t ∃∃tt′′, t, t′′ > t . > t . δδ*(q*(qtt, , ããtt ……tt′′)) ∈∈ FF..

In other words, an infinite sequence is accepted if the final In other words, an infinite sequence is accepted if the final
set is visited infinitely often.set is visited infinitely often.

11© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Equivalence Checking ProblemEquivalence Checking Problem

Two designs are defined to be functionally equivalent if they Two designs are defined to be functionally equivalent if they
produce identical output sequences for all valid input sequencesproduce identical output sequences for all valid input sequences

δδ11

λλ11

DD11

δδ22

λλ22

DD22

II

OO11

OO22

12© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Equivalence Checking ParadigmsEquivalence Checking Paradigms

Sequential Equivalence CheckingSequential Equivalence Checking

■■ Compare state machinesCompare state machines

Combinational Equivalence CheckingCombinational Equivalence Checking

■■ Compare combinational Boolean functionsCompare combinational Boolean functions

If a oneIf a one--toto--one correspondence between the registers is given, one correspondence between the registers is given,
then sequential equivalence checking can be solved using then sequential equivalence checking can be solved using
combinational equivalence checkingcombinational equivalence checking

■■ This is a popular approach This is a popular approach –– very useful in practicevery useful in practice

13© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Combinational Equivalence CheckingCombinational Equivalence Checking

δδ11

λλ11

DD11

δδ22

λλ22

DD22

II

OO11

OO22

•• Compare Compare o/po/p functionfunction
•• Compare transition functionCompare transition function

14© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Basic ApproachBasic Approach

StepStep--1: Register Correspondence1: Register Correspondence

■■ The register correspondence is either guessed using simple The register correspondence is either guessed using simple

heuristics or computed exactlyheuristics or computed exactly

StepStep--2: Functional Comparison2: Functional Comparison

■■ This step involves the actual functional comparison of the This step involves the actual functional comparison of the

individual circuitsindividual circuits

■■ This can be done using a variety of methods, including This can be done using a variety of methods, including

BDDsBDDs, SAT and ATPG, SAT and ATPG

15© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

RegsiterRegsiter CorrespondenceCorrespondence

In many practical design flows, a candidate register In many practical design flows, a candidate register

correspondence is derived from naming conventionscorrespondence is derived from naming conventions

Otherwise, register correspondence can be computed Otherwise, register correspondence can be computed

automatically as a greatest fixed point (to be explained)automatically as a greatest fixed point (to be explained)

■■ The algorithm starts with one equivalence class (bucket) containThe algorithm starts with one equivalence class (bucket) containing ing

all the registersall the registers

■■ During each iteration:During each iteration:

●● A unique variable is introduced for the outputs of all registersA unique variable is introduced for the outputs of all registers of of

each bucketeach bucket

●● All next state functions are computed based on these variablesAll next state functions are computed based on these variables

●● Next the buckets are partitioned into pieces that have identicalNext the buckets are partitioned into pieces that have identical

nextnext--state functionsstate functions

16© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Register Correspondence AlgorithmRegister Correspondence Algorithm

REGISTER CORRESPONDENCE() {REGISTER CORRESPONDENCE() {
put all registers r into bucket[0]put all registers r into bucket[0]
do {do {

forallforall buckets buckets i i do {do {
initialize output of all registers initialize output of all registers rr∈∈ i i with variable with variable v[v[ii]]

}}
forallforall registers registers rr do {do {

compute next state function compute next state function δδ[r] based on inputs v[r] based on inputs v
}}
if if ∀∀ buckets i: rbuckets i: r11, r, r2 2 ∈∈ ii ⇔⇔ δδ[r[r11] =] = δδ[r[r22] return] return
split all buckets split all buckets ii into multiple buckets into multiple buckets iijj s.ts.t. r. r11, r, r22 ∈∈ iijj ⇔⇔ δδ[r[r11] =] = δδ[r[r22]]

}}
}}

17© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Equivalence Checking with CNFEquivalence Checking with CNF--SATSAT

aa

bb

xx

yy

ff

aa gg

Clauses:Clauses:

(a (a ∨∨ ¬¬y), (b y), (b ∨∨ ¬¬y), (y), (¬¬a a ∨∨ ¬¬b b ∨∨ y),y),
(a (a ∨∨ ¬¬x), (x), (¬¬b b ∨∨ ¬¬x), (x), (¬¬a a ∨∨ b b ∨∨ x),x),
((¬¬x x ∨∨ ¬¬f), (f), (¬¬y y ∨∨ ¬¬f), (x f), (x ∨∨ y y ∨∨ f)f)

Clauses:Clauses:

(a (a ∨∨ g), (g), (¬¬a a ∨∨ ¬¬g)g)

To check equivalence between To check equivalence between f f and and gg, we add the following clauses:, we add the following clauses:
(f (f ∨∨ g), (g), (¬¬f f ∨∨ ¬¬g)g)

which is the EXOR between f and g. If the set of clauses is which is the EXOR between f and g. If the set of clauses is satisfiablesatisfiable,,
then we have a valuation of then we have a valuation of a a and and bb such that such that f f and and gg receive conflictingreceive conflicting
values. Otherwise (as in this case), values. Otherwise (as in this case), f f and and gg are equivalent.are equivalent.

18© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Retiming and Equivalence CheckingRetiming and Equivalence Checking

Before retimingBefore retiming

After retimingAfter retiming

19© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Equivalence Checking of Retimed LogicEquivalence Checking of Retimed Logic

In case of retiming, the nextIn case of retiming, the next--state functions are not comparablestate functions are not comparable

■■ However, by preserving the retime logic from the synthesis However, by preserving the retime logic from the synthesis

flow and applying it to make both designs comparable, the flow and applying it to make both designs comparable, the

equivalence checking problem can be reduced to a equivalence checking problem can be reduced to a

combinational problemcombinational problem

■■ Both machines are patched with pieces of the retime logic to Both machines are patched with pieces of the retime logic to

make the interfaces comparablemake the interfaces comparable

20© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Sequential Equivalence CheckingSequential Equivalence Checking

When register correspondence cannot be found easily or it does When register correspondence cannot be found easily or it does
not exist, we may compare the state machinesnot exist, we may compare the state machines

Basic approachBasic approach

■■ Core problem: Core problem: Partition the state space into sets of Partition the state space into sets of
equivalent statesequivalent states

■■ Equivalence can be defined in terms of input/output behaviorEquivalence can be defined in terms of input/output behavior

●● BisimulationBisimulation equivalenceequivalence

●● Stuttering equivalenceStuttering equivalence

21© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

AC B

1/1

0/1

1/0

0/0

A or C is redundant state

1/1

1/0

A

B

C

0/1

0/1

1/0

0/0

Ma Mb

Redundant States and MinimizationRedundant States and Minimization

22© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

If an input sequence X takes a If an input sequence X takes a
machine from a state Si to machine from a state Si to SjSj, then , then SjSj
is said to be the is said to be the XX--successorsuccessor of Si.of Si.

B is 110B is 110--succesor of Asuccesor of A

Two states Si and Two states Si and SjSj are are distinguishabledistinguishable iffiff there exists at least there exists at least
one finite one finite inputinput sequencesequence which when applied to M, causes which when applied to M, causes
different different outputoutput sequencessequences, depending on whether Si or , depending on whether Si or SjSj is is
the initial state.the initial state.

A and B are distinguishable. Consider input sequence 0. A and B are distinguishable. Consider input sequence 0.

DefinitionsDefinitions

1/1

1/0

A

B

C

0/1

0/1

1/0

0/0

Ma

23© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

If there exists for pair (If there exists for pair (Si,SjSi,Sj), a), a distinguishingdistinguishing
sequencesequence of length k, the states in (of length k, the states in (Si,SjSi,Sj) are) are
said to be said to be kk--distinguishabledistinguishable..

States that are not kStates that are not k--distinguishable are distinguishable are
called called kk--equivalentequivalent..

A, B are 1A, B are 1--distinguishabledistinguishable
A, C are not 2A, C are not 2--distinguishable and hence are distinguishable and hence are
22--equivalentequivalent

States Si and States Si and SjSj are said to be are said to be equivalentequivalent iffiff for every for every
possible input sequence, the same output sequence is possible input sequence, the same output sequence is
produced regardless of whether Si or produced regardless of whether Si or SjSj is the initial state.is the initial state.

A, C are equivalentA, C are equivalent

kk--distinguishable statesdistinguishable states

1/1

1/0

A

B

C

0/1

0/1

1/0

0/0

Ma

24© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Input : state machine MInput : state machine M

Output : minimize (M), Output : minimize (M), thethe state machine with the fewest state machine with the fewest
states that is equivalent to Mstates that is equivalent to M

Two machines Mi and Two machines Mi and MjMj are equivalent are equivalent iffiff, for every state , for every state
in Mi, there is a corresponding equivalent state in in Mi, there is a corresponding equivalent state in MjMj and and
vice versa.vice versa.

The State Minimization ProblemThe State Minimization Problem

25© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

1. Partitions states of M into subsets such that all states
in the same subset are 1-equivalent: P1

2. Partitions states of M into subsets such that all states
in the same subset are 2-equivalent: P2

…

Until for some k, Pk+1 = Pk

The Minimization ProcedureThe Minimization Procedure

26© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

States

The Minimization ProcedureThe Minimization Procedure

27© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

1/0 1/1

1/0

1/0

1/0

1/1

1/11/1

1/1

The Minimization AlgorithmThe Minimization Algorithm

28© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

1/0 1/1

1/0

1/0

1/0

1/1

1/11/1

1/1

The Minimization AlgorithmThe Minimization Algorithm

29© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

The Minimization AlgorithmThe Minimization Algorithm

30© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

1/01/0

1/0 1/0

The Minimization AlgorithmThe Minimization Algorithm

31© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

1/01/0

1/0 1/0

The Minimization AlgorithmThe Minimization Algorithm

32© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

The Minimization AlgorithmThe Minimization Algorithm

33© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

0/1

0/1

0/1

The Minimization AlgorithmThe Minimization Algorithm

34© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

0/1

0/1

0/1

The Minimization AlgorithmThe Minimization Algorithm

35© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

The Minimization AlgorithmThe Minimization Algorithm

36© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

1. Let Q be set of all reachable states of M. 1. Let Q be set of all reachable states of M.

2. Maintain a set P of state sets:2. Maintain a set P of state sets:

Initially let P = { Q }. Initially let P = { Q }.

2a. Repeat until no longer possible: 2a. Repeat until no longer possible: output split Poutput split P..

2b. Repeat until no longer possible: 2b. Repeat until no longer possible: nextnext--state split Pstate split P..

3. When done, every state set in P represents a single state of3. When done, every state set in P represents a single state of the the
smallest state machine equivalent to M.smallest state machine equivalent to M.

The Minimization AlgorithmThe Minimization Algorithm

37© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

If there existIf there exist

a state set R a state set R ∈∈ PP
two states r1 two states r1 ∈∈ R and r2 R and r2 ∈∈ R R
an input x an input x ∈∈ InputsInputs

such that such that

output (r1, x) output (r1, x) ≠ ≠ output (r2, x)output (r2, x)

thenthen

let R1 = { r let R1 = { r ∈∈ R | output (r,x) = output (r1,x) } ;R | output (r,x) = output (r1,x) } ;
let R2 = R let R2 = R \\ R1 ;R1 ;
let P = (P let P = (P \\ { R }) { R }) ∪∪ { R1, R2 } .{ R1, R2 } .

Output split POutput split P

38© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

R

x / zx / yr1

r2

Output split Output split

39© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

R1

x / zx / yr1

r2

R2

Output split Output split

40© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

If there existIf there exist

two state sets R two state sets R ∈∈ P and P and R’ R’ ∈∈ P P
two states r1 two states r1 ∈∈ R and r2 R and r2 ∈∈ R R
an input x an input x ∈∈ InputsInputs

such that such that

nextStatenextState (r1, x) (r1, x) ∈∈ RR’’ and and nextStatenextState (r2, x) (r2, x) ∉∉ RR’’

thenthen

let R1 = { r let R1 = { r ∈∈ R | R | nextStatenextState (r,x) (r,x) ∈∈ RR’’ } ;} ;
let R2 = R let R2 = R \\ R1 ;R1 ;
let P = (P let P = (P \\ { R }) { R }) ∪∪ { R1, R2 } .{ R1, R2 } .

NextNext--state split Pstate split P

41© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

R’
R

x / y

x / y

r1

r2

NextNext--state split state split

42© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

R’
R1

x / y

x / y

r1

r2

R2

NextNext--state split state split

43© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

1/1

a

g

f

e

d

c

b
0/1

0/1

0/1
1/0

1/0

1/0

0/0

0/0

0/0

1/1

1/1

1/1
0/0

Q = { a, b, c, d, e, f, g }

ExampleExample

44© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

1/1

a

g

f

e

d

c

b
0/1

0/1

0/1
1/0

1/0

1/0

0/0

0/0

0/0

1/1

1/1

1/1

0/0

P = { { a, b, c, d, e, f, g } }

45© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

a

g

f

e

d

c

b
0/1

0/1

0/1
1/0

1/0

1/0

0/0

0/0

0/0

1/1

1/1

1/1

1/1
0/0

Output split

P = { { a, b, c }, { d, e, f, g } }

46© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

1/1Next-state split

a

g

f

e

d

c

b
0/1

0/1

0/1
1/0

1/0

1/0

0/0

0/0

0/0

1/1

1/1

1/1

0/0

P = { { a }, { b, c }, { d, e, f, g } }

47© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

a

g

f

e

d

c

b
0/1

0/1

0/1
1/0

1/0

1/0

0/0

0/0

0/0

1/1

1/1

1/1

1/1
0/0

Next-state split

P = { { a }, { b, c }, { d, e }, { f, g } }

48© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

0/1

0/1

1/0

1/0

0/0

0/0

1/1

1/1

Minimal bisimilar state machine

{ a } { b, c } { d, e } { f, g }

49© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

0/1 0/1
1/0 1/0

0/0

0/0

1/1

1/1

4 instead of 7 states

{ a } { b, c } { d, e } { f, g }

50© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

1.1. Minimize M1 and call the resultMinimize M1 and call the result N1N1

2.2. Minimize M2 and call the result Minimize M2 and call the result N2N2

3.3. Check if the states of N1 can be renamed so that N1 and N2 Check if the states of N1 can be renamed so that N1 and N2
are identicalare identical

How to check if M1 and M2 are equivalent

	Agenda
	Finite Automaton
	State and Output Sequences
	Automata Equivalence
	State Equivalence
	State Minimization
	Product Automaton
	Acceptors
	Acceptance of Infinite Sequences
	Equivalence Checking Problem
	Equivalence Checking Paradigms
	Combinational Equivalence Checking
	Basic Approach
	Regsiter Correspondence
	Register Correspondence Algorithm
	Equivalence Checking with CNF-SAT
	Retiming and Equivalence Checking
	Equivalence Checking of Retimed Logic
	Sequential Equivalence Checking
	Redundant States and Minimization
	Definitions
	 k-distinguishable states
	The State Minimization Problem
	The Minimization Procedure
	The Minimization Procedure
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	Output split P
	Output split
	Output split
	Next-state split P
	Next-state split
	Next-state split
	Example
	How to check if M1 and M2 are equivalent

