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Finite AutomatonFinite Automaton

A finite deterministic automaton M (transducer, Mealy machine, A finite deterministic automaton M (transducer, Mealy machine, 
finite state machine FSM) is a 6finite state machine FSM) is a 6--tuple:tuple:

M = (Q, M = (Q, ΣΣ, , ΔΔ, , δδ, , λλ, q, q00) ) 

where:where:

Q Q is the finite set of statesis the finite set of states

ΣΣ is the input alphabetis the input alphabet

ΔΔ is the output alphabetis the output alphabet

δδ: Q X : Q X ΣΣ Q Q is the transition functionis the transition function

λλ: Q X : Q X ΣΣ ΔΔ is the output functionis the output function

qq00 is the start state (initial state)is the start state (initial state)

If If λλ is of the formis of the form λλ: Q : Q ΔΔ, , then we have a Moore machine.then we have a Moore machine.



4© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

State and Output SequencesState and Output Sequences

Path function:Path function: δδ*: Q X (N *: Q X (N ΣΣ) ) QQ

Given an input sequence Given an input sequence ã, we have:ã, we have:

δδ*(q, ã) := q*(q, ã) := q′′ with qwith q00 := q, q:= q, qi+1i+1 = = δδ((qqii, , aaii), and q), and q′′ := := qq|ã|ã||

Path output sequence:Path output sequence: λλ*: Q X (N *: Q X (N ΣΣ) ) (N (N ΔΔ))

Given an input sequence Given an input sequence ã, we have:ã, we have:

λλ*(q, ã) := *(q, ã) := ũũ with qwith q00 := q, q:= q, qi+1i+1 = = δδ((qqii, , aaii), and ), and uuii = = λλ((qqii, , aaii))
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Automata EquivalenceAutomata Equivalence

Two automata M and MTwo automata M and M′′ are called equivalent, if for an arbitrary are called equivalent, if for an arbitrary 
input sequence applied at both automata, the same output input sequence applied at both automata, the same output 
sequence results:sequence results:

∀∀ã . ã . λλ*(q*(q00, ã) = , ã) = λ′λ′*(q*(q00, ã), ã)
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State EquivalenceState Equivalence

Given two Mealy machines with the same input and output Given two Mealy machines with the same input and output 
alphabet, alphabet, M = (Q, M = (Q, ΣΣ, , ΔΔ, , δδ, , λλ, q, q00) ) and and MM′′ = (Q= (Q′′, , ΣΣ, , ΔΔ, , δ′δ′, , λ′λ′, q, q′′00). ). 

The state equivalence relation The state equivalence relation ∼∼ ⊆⊆ Q X QQ X Q′′ is the largest relation is the largest relation 
which satisfies the following:which satisfies the following:

q q ∼∼ qq′′: : ⇔⇔ ∀∀a, aa, a∈Σ∈Σ . . λλ(q, a) = (q, a) = λ′λ′(q(q′′, a)  and  , a)  and  δδ(q, a) (q, a) ∼∼ δ′δ′(q(q′′, a), a)

Two states q and qTwo states q and q′′ are said to be equivalent, if q are said to be equivalent, if q ∼∼ qq′′ holds.holds.

Results:Results:

It holds that It holds that ∀∀ã, ã ã, ã ∈∈ (N (N ΣΣ) .   q ) .   q ∼∼ qq′′ ⇒⇒ δδ*(q, ã) *(q, ã) ∼∼ δ′δ′*(q*(q′′, ã), ã)

Two Mealy machines M and MTwo Mealy machines M and M′′ are equivalent, written as M are equivalent, written as M ≈≈ MM′′, , iffiff their initial their initial 
states are equivalent: qstates are equivalent: q00 ∼∼ qq′′00..
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State MinimizationState Minimization

Necessary and sufficient condition for two states to be Necessary and sufficient condition for two states to be 
equivalent:equivalent:

qq11 ∼∼ qq2 2 ⇔⇔ ∀∀a, aa, a∈Σ∈Σ . . λλ(q(q11, a) = , a) = λλ(q(q22, a)  and  , a)  and  δδ(q(q11, a) , a) ∼∼ δδ(q(q22, a), a)

Equivalent states can be mergedEquivalent states can be merged
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Product AutomatonProduct Automaton

The product automaton of two automata The product automaton of two automata M = (Q, M = (Q, ΣΣ, , ΔΔ, , δδ, , λλ, q, q00) ) and  and  

MM′′ = (Q= (Q′′, , ΣΣ, , ΔΔ, , δ′δ′, , λ′λ′, q, q′′00) ) is defined as:is defined as:

MMPP = (Q X Q= (Q X Q′′, , ΣΣ, B, , B, δδPP, , λλPP, (q0, q, (q0, q′′00))))

with with δδPP: (QXQ: (QXQ′′) X ) X ΣΣ (QXQ(QXQ′′) ) and and λλPP: (QXQ: (QXQ′′) X ) X ΣΣ B, B, defined by:defined by:

δδPP((q((q, q, q′′), a) := (), a) := (δδ(q, a), (q, a), δ′δ′(q(q′′, a)), a))

λλPP((q((q, q, q′′), a) := (), a) := (λλ(q, a) = (q, a) = λ′λ′(q(q′′, a)), a))

The product delivers only a value B which indicates whether for The product delivers only a value B which indicates whether for a a 

given input the outputs of both automata are equal given input the outputs of both automata are equal (T) (T) or not or not (F).(F).
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AcceptorsAcceptors

A deterministic finite acceptor (called DFA) MA deterministic finite acceptor (called DFA) Maa is a 5is a 5--tuple: tuple: 

MMaa = (Q, = (Q, ΣΣ, , δδ, q, q00, F) , F) 

where:where:

Q is the finite set of statesQ is the finite set of states

ΣΣ is the input alphabetis the input alphabet

δδ: Q X : Q X ΣΣ Q is the transition functionQ is the transition function

qq00 is the start state (initial state)is the start state (initial state)

F F ⊆⊆ Q is the set of final states (accepting states)Q is the set of final states (accepting states)

A finite sequence A finite sequence ã is said to be accepted by Mã is said to be accepted by Maa = (Q, = (Q, ΣΣ, , δδ, q, q00, F), , F), 
if  if  δδ*(q*(q00,  ã) ,  ã) ∈∈ F.F.
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Acceptance of Infinite SequencesAcceptance of Infinite Sequences

BBüüchichi automaton:automaton:

An accepting An accepting BuchiBuchi automaton automaton MMaBaB is a 5is a 5--tuple, tuple, 

MMaBaB = = (Q, (Q, ΣΣ, , δδ, q, q00, F), F)

where Q is the finite set of states, where Q is the finite set of states, ΣΣ is the input alphabet,is the input alphabet,

δδ: Q X : Q X ΣΣ Q Q is the transition function, is the transition function, qq00 is the start state is the start state 
(initial state). (initial state). F F ⊆⊆ Q Q is the set of final states (accepting is the set of final states (accepting 
states).states).

BBüüchichi acceptance:acceptance:

An infinite sequence ã is accepted by the An infinite sequence ã is accepted by the BuchiBuchi automaton automaton 
MMaBaB = (Q, = (Q, ΣΣ, , δδ, q, q00, F),, F), if  if  ∀∀t t ∃∃tt′′, t, t′′ > t . > t . δδ*(q*(qtt, , ããtt ……tt′′) ) ∈∈ FF..

In other words, an infinite sequence is accepted if the final In other words, an infinite sequence is accepted if the final 
set is visited infinitely often.set is visited infinitely often.
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Equivalence Checking ProblemEquivalence Checking Problem

Two designs are defined to be functionally equivalent if they Two designs are defined to be functionally equivalent if they 
produce identical output sequences for all valid input sequencesproduce identical output sequences for all valid input sequences

δδ11

λλ11

DD11

δδ22

λλ22

DD22

II

OO11

OO22
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Equivalence Checking ParadigmsEquivalence Checking Paradigms

Sequential Equivalence CheckingSequential Equivalence Checking

■■ Compare state machinesCompare state machines

Combinational Equivalence CheckingCombinational Equivalence Checking

■■ Compare combinational Boolean functionsCompare combinational Boolean functions

If a oneIf a one--toto--one correspondence between the registers is given, one correspondence between the registers is given, 
then sequential equivalence checking can be solved using then sequential equivalence checking can be solved using 
combinational equivalence checkingcombinational equivalence checking

■■ This is a popular approach This is a popular approach –– very useful in practicevery useful in practice
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Combinational Equivalence CheckingCombinational Equivalence Checking

δδ11

λλ11

DD11

δδ22

λλ22

DD22

II

OO11

OO22

•• Compare Compare o/po/p functionfunction
•• Compare transition functionCompare transition function
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Basic ApproachBasic Approach

StepStep--1: Register Correspondence1: Register Correspondence

■■ The register correspondence is either guessed using simple The register correspondence is either guessed using simple 

heuristics or computed exactlyheuristics or computed exactly

StepStep--2: Functional Comparison2: Functional Comparison

■■ This step involves the actual functional comparison of the This step involves the actual functional comparison of the 

individual circuitsindividual circuits

■■ This can be done using a variety of methods, including This can be done using a variety of methods, including 

BDDsBDDs, SAT and ATPG, SAT and ATPG
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RegsiterRegsiter CorrespondenceCorrespondence

In many practical design flows, a candidate register In many practical design flows, a candidate register 

correspondence is derived from naming conventionscorrespondence is derived from naming conventions

Otherwise, register correspondence can be computed Otherwise, register correspondence can be computed 

automatically as a greatest fixed point (to be explained)automatically as a greatest fixed point (to be explained)

■■ The algorithm starts with one equivalence class (bucket) containThe algorithm starts with one equivalence class (bucket) containing ing 

all the registersall the registers

■■ During each iteration:During each iteration:

●● A unique variable is introduced for the outputs of all registersA unique variable is introduced for the outputs of all registers of of 

each bucketeach bucket

●● All next state functions are computed based on these variablesAll next state functions are computed based on these variables

●● Next the buckets are partitioned into pieces that have identicalNext the buckets are partitioned into pieces that have identical

nextnext--state functionsstate functions
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Register Correspondence AlgorithmRegister Correspondence Algorithm

REGISTER CORRESPONDENCE( ) {REGISTER CORRESPONDENCE( ) {
put all registers r into bucket[0]put all registers r into bucket[0]
do {do {

forallforall buckets buckets i i do {do {
initialize output of all registers initialize output of all registers rr∈∈ i i with variable with variable v[v[ii]]

}}
forallforall registers registers rr do {do {

compute next state function compute next state function δδ[r] based on inputs v[r] based on inputs v
}}
if if ∀∀ buckets i: rbuckets i: r11, r, r2 2 ∈∈ ii ⇔⇔ δδ[r[r11] = ] = δδ[r[r22] return] return
split all buckets split all buckets ii into multiple buckets into multiple buckets iijj s.ts.t. r. r11, r, r22 ∈∈ iijj ⇔⇔ δδ[r[r11] = ] = δδ[r[r22]]

}}
}}
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Equivalence Checking with CNFEquivalence Checking with CNF--SATSAT

aa

bb

xx

yy

ff

aa gg

Clauses:Clauses:

(a (a ∨∨ ¬¬y), (b y), (b ∨∨ ¬¬y), (y), (¬¬a a ∨∨ ¬¬b b ∨∨ y),y),
(a (a ∨∨ ¬¬x), (x), (¬¬b b ∨∨ ¬¬x), (x), (¬¬a a ∨∨ b b ∨∨ x),x),
((¬¬x x ∨∨ ¬¬f), (f), (¬¬y y ∨∨ ¬¬f), (x f), (x ∨∨ y y ∨∨ f)f)

Clauses:Clauses:

(a (a ∨∨ g), (g), (¬¬a a ∨∨ ¬¬g)g)

To check equivalence between To check equivalence between f f and and gg, we add the following clauses:, we add the following clauses:
(f (f ∨∨ g), (g), (¬¬f f ∨∨ ¬¬g)g)

which is the EXOR between f and g. If the set of clauses is which is the EXOR between f and g. If the set of clauses is satisfiablesatisfiable,,
then we have a valuation of then we have a valuation of a a and and bb such that such that f f and and gg receive conflictingreceive conflicting
values. Otherwise (as in this case), values. Otherwise (as in this case), f f and and gg are equivalent.are equivalent.
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Retiming and Equivalence CheckingRetiming and Equivalence Checking

Before retimingBefore retiming

After retimingAfter retiming
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Equivalence Checking of Retimed LogicEquivalence Checking of Retimed Logic

In case of retiming, the nextIn case of retiming, the next--state functions are not comparablestate functions are not comparable

■■ However, by preserving the retime logic from the synthesis However, by preserving the retime logic from the synthesis 

flow and applying it to make both designs comparable, the flow and applying it to make both designs comparable, the 

equivalence checking problem can be reduced to a equivalence checking problem can be reduced to a 

combinational problemcombinational problem

■■ Both machines are patched with pieces of the retime logic to Both machines are patched with pieces of the retime logic to 

make the interfaces comparablemake the interfaces comparable
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Sequential Equivalence CheckingSequential Equivalence Checking

When register correspondence cannot be found easily or it does When register correspondence cannot be found easily or it does 
not exist, we may compare the state machinesnot exist, we may compare the state machines

Basic approachBasic approach

■■ Core problem: Core problem: Partition the state space into sets of Partition the state space into sets of 
equivalent statesequivalent states

■■ Equivalence can be defined in terms of input/output behaviorEquivalence can be defined in terms of input/output behavior

●● BisimulationBisimulation equivalenceequivalence

●● Stuttering equivalenceStuttering equivalence
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B
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1/0

0/0

Ma Mb

Redundant States and MinimizationRedundant States and Minimization
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If an input sequence X takes a If an input sequence X takes a 
machine from a state Si to machine from a state Si to SjSj, then , then SjSj
is said to be the is said to be the XX--successorsuccessor of Si.of Si.

B is 110B is 110--succesor of Asuccesor of A

Two states Si and Two states Si and SjSj are are distinguishabledistinguishable iffiff there exists at least there exists at least 
one finite one finite inputinput sequencesequence which when applied to M, causes which when applied to M, causes 
different different outputoutput sequencessequences, depending on whether Si or , depending on whether Si or SjSj is is 
the initial state.the initial state.

A and B are distinguishable. Consider input sequence 0. A and B are distinguishable. Consider input sequence 0. 

DefinitionsDefinitions

1/1

1/0

A

B

C

0/1

0/1

1/0

0/0

Ma
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If there exists for pair (If there exists for pair (Si,SjSi,Sj), a ), a distinguishingdistinguishing
sequencesequence of length k, the states in (of length k, the states in (Si,SjSi,Sj) are ) are 
said to be said to be kk--distinguishabledistinguishable..

States that are not kStates that are not k--distinguishable are distinguishable are 
called called kk--equivalentequivalent..

A, B are 1A, B are 1--distinguishabledistinguishable
A, C are not 2A, C are not 2--distinguishable and hence are distinguishable and hence are 
22--equivalentequivalent

States Si and States Si and SjSj are said to be are said to be equivalentequivalent iffiff for every for every 
possible input sequence, the same output sequence is possible input sequence, the same output sequence is 
produced regardless of whether Si or produced regardless of whether Si or SjSj is the initial state.is the initial state.

A, C are equivalentA, C are equivalent

kk--distinguishable statesdistinguishable states

1/1

1/0

A

B

C

0/1

0/1

1/0

0/0

Ma
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Input :   state machine MInput :   state machine M

Output : minimize (M), Output : minimize (M), thethe state machine with the fewest state machine with the fewest 
states that is equivalent to Mstates that is equivalent to M

Two machines Mi and Two machines Mi and MjMj are equivalent are equivalent iffiff, for every state , for every state 
in Mi, there is a corresponding equivalent state in in Mi, there is a corresponding equivalent state in MjMj and and 
vice versa.vice versa.

The State Minimization ProblemThe State Minimization Problem
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1. Partitions states of M into subsets such that all states 
in the same subset are 1-equivalent: P1

2. Partitions states of M into subsets such that all states 
in the same subset are 2-equivalent: P2

…

Until for some k, Pk+1 = Pk

The Minimization ProcedureThe Minimization Procedure
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States

The Minimization ProcedureThe Minimization Procedure
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The Minimization AlgorithmThe Minimization Algorithm
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The Minimization AlgorithmThe Minimization Algorithm
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The Minimization AlgorithmThe Minimization Algorithm
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1/01/0

1/0 1/0

The Minimization AlgorithmThe Minimization Algorithm
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1/01/0

1/0 1/0

The Minimization AlgorithmThe Minimization Algorithm
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The Minimization AlgorithmThe Minimization Algorithm
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0/1

0/1

0/1

The Minimization AlgorithmThe Minimization Algorithm
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0/1

0/1
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The Minimization AlgorithmThe Minimization Algorithm
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The Minimization AlgorithmThe Minimization Algorithm
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1.  Let  Q  be set of all reachable states of M. 1.  Let  Q  be set of all reachable states of M. 

2.  Maintain a set P of state sets:2.  Maintain a set P of state sets:

Initially let  P = { Q }. Initially let  P = { Q }. 

2a.   Repeat until no longer possible:  2a.   Repeat until no longer possible:  output split Poutput split P..

2b.   Repeat until no longer possible:  2b.   Repeat until no longer possible:  nextnext--state split Pstate split P..

3.  When done, every state set in P represents a single state of3.  When done, every state set in P represents a single state of the the 
smallest state machine equivalent to M.smallest state machine equivalent to M.

The Minimization AlgorithmThe Minimization Algorithm



37© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

If there existIf there exist

a state set  R a state set  R ∈∈ PP
two states  r1 two states  r1 ∈∈ R  and  r2 R  and  r2 ∈∈ R R 
an input  x an input  x ∈∈ InputsInputs

such that such that 

output ( r1, x ) output ( r1, x )  ≠ ≠ output ( r2, x )output ( r2, x )

thenthen

let  R1 = { r let  R1 = { r ∈∈ R | output (r,x) = output (r1,x) } ;R | output (r,x) = output (r1,x) } ;
let  R2  =  R let  R2  =  R \\ R1 ;R1 ;
let  P  =  ( P let  P  =  ( P \\ { R } ) { R } ) ∪∪ { R1, R2 } .{ R1, R2 } .

Output split POutput split P
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R

x / zx / yr1

r2

Output split Output split 
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R1

x / zx / yr1

r2

R2

Output split Output split 
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If there existIf there exist

two state sets  R two state sets  R ∈∈ P  and  P  and  R’ R’ ∈∈ P P 
two states  r1 two states  r1 ∈∈ R  and  r2 R  and  r2 ∈∈ R R 
an input  x an input  x ∈∈ InputsInputs

such that such that 

nextStatenextState ( r1, x ) ( r1, x ) ∈∈ RR’’ and  and  nextStatenextState ( r2, x ) ( r2, x ) ∉∉ RR’’

thenthen

let  R1 = { r let  R1 = { r ∈∈ R | R | nextStatenextState (r,x) (r,x) ∈∈ RR’’ } ;} ;
let  R2  =  R let  R2  =  R \\ R1 ;R1 ;
let  P  =  ( P let  P  =  ( P \\ { R } ) { R } ) ∪∪ { R1, R2 } .{ R1, R2 } .

NextNext--state split Pstate split P
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R’
R

x / y

x / y

r1

r2

NextNext--state split state split 
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R’
R1

x / y

x / y

r1

r2

R2

NextNext--state split state split 
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1/1

a

g

f

e

d

c

b
0/1

0/1

0/1
1/0

1/0

1/0

0/0

0/0

0/0

1/1

1/1

1/1
0/0

Q = { a, b, c, d, e, f, g }

ExampleExample
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1/1

a

g

f

e

d

c

b
0/1

0/1

0/1
1/0

1/0

1/0

0/0

0/0

0/0

1/1

1/1

1/1

0/0

P = { { a, b, c, d, e, f, g } }
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a

g

f

e

d

c

b
0/1

0/1

0/1
1/0

1/0

1/0

0/0

0/0

0/0

1/1

1/1

1/1

1/1
0/0

Output split

P = { { a, b, c }, { d, e, f, g } }
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1/1Next-state split

a

g

f

e

d

c

b
0/1

0/1

0/1
1/0

1/0

1/0

0/0

0/0

0/0

1/1

1/1

1/1

0/0

P = { { a }, { b, c }, { d, e, f, g } }
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a

g

f

e

d

c

b
0/1

0/1

0/1
1/0

1/0

1/0

0/0

0/0

0/0

1/1

1/1

1/1

1/1
0/0

Next-state split

P = { { a }, { b, c }, { d, e }, { f, g } }
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0/1

0/1

1/0

1/0

0/0

0/0

1/1

1/1

Minimal bisimilar state machine 

{ a } { b, c } { d, e } { f, g }
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0/1 0/1
1/0 1/0

0/0

0/0

1/1

1/1

4 instead of 7 states

{ a } { b, c } { d, e } { f, g }
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1.1. Minimize M1 and call the resultMinimize M1 and call the result N1N1

2.2. Minimize M2 and call the result Minimize M2 and call the result N2N2

3.3. Check if the states of N1 can be renamed so that N1 and N2 Check if the states of N1 can be renamed so that N1 and N2 
are identicalare identical

How to check if M1 and M2 are equivalent


	Agenda
	Finite Automaton
	State and Output Sequences
	Automata Equivalence
	State Equivalence
	State Minimization
	Product Automaton
	Acceptors
	Acceptance of Infinite Sequences
	Equivalence Checking Problem
	Equivalence Checking Paradigms
	Combinational Equivalence Checking
	Basic Approach
	Regsiter Correspondence
	Register Correspondence Algorithm
	Equivalence Checking with CNF-SAT
	Retiming and Equivalence Checking
	Equivalence Checking of Retimed Logic
	Sequential Equivalence Checking
	Redundant States and Minimization
	Definitions
	 k-distinguishable states
	The State Minimization Problem
	The Minimization Procedure
	The Minimization Procedure
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	The Minimization Algorithm
	Output split P
	Output split 
	Output split 
	Next-state split P
	Next-state split 
	Next-state split 
	Example
	How to check if M1 and M2 are equivalent

