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Q0 Equivalence of Finite Automata
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O CNF Satisfiability

Q0 Equivalence Checking
m Combinational Equivalence Checking
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e Equivalence Checking of Retimed Circuits
m Sequential Equivalence Checking
m Equivalence and Minimization Algorithms
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Finite Automaton

A finite deterministic automaton M (transducer, Mealy machine,
finite state machine FSM) is a 6-tuple:

M= (Qs Zs As 85 ;\'! qO)

where:
Q is the finite set of states
2 is the input alphabet
A is the output alphabet
d: Q X X 2Qiis the transition function
A: Q X X 2Ais the output function

q° is the start state (initial state)

If A is of the form A: Q 2A, then we have a Moore machine.
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State and Output Sequences

Path function: 6*: QX (N2> X)=2> Q

Given an input sequence a, we have:

8*(q, @) := q' with q° :=q, q"*' = §(q}, a'), and g’ := qlal

Path output sequence: A\*: QX (N =2 ) 2 (N =2 A)

Given an input sequence a, we have:

A*(q, d@) =0 with q°:=q, q*" =5(q, @), and u' = A(q}, @)
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Automata Equivalence

Two automata M and M’are called equivalent, if for an arbitrary
Input sequence applied at both automata, the same output
sequence results:

va.A*(q% a) =1"(q°% a)
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State Equivalence

Given two Mealy machines with the same input and output
alphabet, M=(Q, Z, A, §, A, q°) and M’ = (Q', I, A, &', A/, q'°).

The state equivalence relation ~c Q X Q' is the largest relation
which satisfies the following:

q~q':< Va,aeX .A(q,a)=2'(q',a) and §(q, a) ~d'(q’, a)

Two states g and g’are said to be equivalent, if g ~q“holds.
Results:
O Itholdsthatva,d e (N=2X). q~q" = &*%q,a)~d6'%(q', d)

O Two Mealy machines M and M’ are equivalent, written as M ~ M, iff their initial
states are equivalent: q° ~ q"°.
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State Minimization

O Necessary and sufficient condition for two states to be

equivalent:

q, ~q, < Va, aeX .Aq,, @) =A(qy, a) and &(q, a) ~ &(q,, a)

0 Equivalent states can be merged
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Product Automaton

The product automaton of two automata M = (Q, I, A, §, A, q°) and
M =(Q', I, A, 8, A, q'% is defined as:

MP=(QXQ,Z, B, 3" AP, (q0, q'9)

with 8°: (QXQ') X = (QAXQ') and AP: (QXQ') X = B, defined by:
°((a, '), a) := (3(q, a), 8'(q’, a))
AP((a, 9'), @) :=(M(q, @) = A'(q', Q))

The product delivers only a value B which indicates whether for a

given input the outputs of both automata are equal (T) or not (F).
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Acceptors

A deterministic finite acceptor (called DFA) M2 is a 5-tuple:
M2=(Q, Z, 5, q° F)

where:

Q is the finite set of states

> is the input alphabet

d: Q X X 2 Qiis the transition function
q° is the start state (initial state)

F — Qs the set of final states (accepting states)

A finite sequence i is said to be accepted by M2 = (Q, %, §, q° F),
if 8*(q° a) e F.
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Acceptance of Infinite Sequences

O Buchi automaton:

An accepting Buchi automaton M238 is a 5-tuple,
MaB =(Q, %, §, q°, F)
where Q is the finite set of states, X is the input alphabet,

d: QX X = Qis the transition function, q° is the start state

(initial state). F c Q is the set of final states (accepting
states).

O Buchi acceptance:

An infinite sequence a is accepted by the Buchi automaton
MaB = (Q, %, 5, q°, F), if vt3t,t' >t.5*(qt at-¥) e F.

In other words, an infinite sequence is accepted if the final
set is visited infinitely often.
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Equivalence Checking Problem

0 Two designs are defined to be functionally equivalent if they
produce identical output sequences for all valid input sequences

—\Z
i 1 0,
| O
| 3
I D, ‘DR

| o)

I, ?

> 82

D, [

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 11




Equivalence Checking Paradigms

0 Sequential Equivalence Checking

m Compare state machines

O Combinational Equivalence Checking

m Compare combinational Boolean functions

Q If a one-to-one correspondence between the registers is given,
then sequential equivalence checking can be solved using

combinational equivalence checking

m This is a popular approach — very useful in practice
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Combinational Equivalence Checking
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Basic Approach

O Step-1: Register Correspondence
m The register correspondence is either guessed using simple
heuristics or computed exactly
O Step-2: Functional Comparison

m This step involves the actual functional comparison of the

individual circuits

m This can be done using a variety of methods, including
BDDs, SAT and ATPG
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Regsiter Correspondence

O In many practical design flows, a candidate register

correspondence is derived from naming conventions

O Otherwise, register correspondence can be computed
automatically as a greatest fixed point (to be explained)
m The algorithm starts with one equivalence class (bucket) containing
all the registers
m During each iteration:
e A unique variable is introduced for the outputs of all registers of
each bucket
e All next state functions are computed based on these variables
e Next the buckets are partitioned into pieces that have identical

next-state functions
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Register Correspondence Algorithm

REGISTER CORRESPONDENCE() {
put all registers r into bucket[0]
do {
forall buckets i do {
Initialize output of all registers r € 1 with variable V[i]
}
forall registers r do {
compute next state function 3[r] based on inputs v
}
If V buckets i: r,, r, € 1 & 9][r,] = 8][r,] return
split all buckets I into multiple buckets i; s.t. r;, r, € I; < 8[r,] = 8[r,]

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 16




Equivalence Checking with CNF-SAT

Clauses:

a 0 —037)( (@av —y), (b v —y), (—av—bvy),
B

f
®o— (a v =x), (=b v —x), (—a v b v x),

(ﬁx \Y ﬁf), (ﬁy \Y ﬁf), (X vyYvVv f)

y

Clauses:

[: g
a —
(avg), (—-av-—g)

To check equivalence between f and g, we add the following clauses:
(fva), (—fv—g)

which is the EXOR between f and g. If the set of clauses is satisfiable,

then we have a valuation of a and b such that f and g receive conflicting

values. Otherwise (as in this case), f and g are equivalent.
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Retiming and Equivalence Checking
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Equivalence Checking of Retimed Logic

O In case of retiming, the next-state functions are not comparable
m However, by preserving the retime logic from the synthesis
flow and applying it to make both designs comparable, the
equivalence checking problem can be reduced to a
combinational problem
m Both machines are patched with pieces of the retime logic to

make the interfaces comparable
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Sequential Equivalence Checking

0 When register correspondence cannot be found easily or it does

not exist, we may compare the state machines

1 Basic approach

m Core problem: Partition the state space into sets of
equivalent states

m Equivalence can be defined in terms of input/output behavior
e Bisimulation equivalence

e Stuttering equivalence
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Redundant States and Minimization

Ma Mb

1/0

A or C is redundant state
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Definitions

If an input sequence X takes a
machine from a state Si to Sj, then Sj
is said to be the X-successor of Si.

B is 110-succesor of A

Two states Si and Sj are distinguishable iff there exists at least
one finite input sequence which when applied to M, causes
different output sequences, depending on whether Si or Sj is
the initial state.

A and B are distinguishable. Consider input sequence 0.
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k-distinguishable states

If there exists for pair (Si,Sj), a distinguishing
sequence of length k, the states in (Si,Sj) are
said to be k-distinguishable.

States that are not k-distinguishable are
called k-equivalent.

A, B are 1-distinguishable

A, C are not 2-distinguishable and hence are
2-equivalent

States Si and Sj are said to be equivalent iff for every
possible input sequence, the same output sequence is
produced regardless of whether Si or Sj is the initial state.

A, C are equivalent
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The State Minimization Problem

Input : state machine M

Output : minimize (M), the state machine with the fewest
states that is equivalent to M

Two machines Mi and Mj are equivalent iff, for every state
in Mi, there is a corresponding equivalent state in Mj and
vice versa.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 24




The Minimization Procedure

1. Partitions states of M into subsets such that all states
in the same subset are 1-equivalent: P,

2. Partitions states of M into subsets such that all states
in the same subset are 2-equivalent: P,

Until for some k, P,,, = P,
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The Minimization Procedure
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The Minimization Algorithm
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The Minimization Algorithm
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The Minimization Algorithm
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The Minimization Algorithm
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The Minimization Algorithm
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The Minimization Algorithm
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The Minimization Algorithm
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The Minimization Algorithm
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The Minimization Algorithm
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The Minimization Algorithm

1. Let Q be set of all reachable states of M.

2. Maintain a set P of state sets:
Initially let P={Q}.
2a. Repeat until no longer possible: output split P.
2b. Repeat until no longer possible: next-state split P.

3. When done, every state set in P represents a single state of the
smallest state machine equivalent to M.
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Output split P

If there exist

astateset ReP

two states r1 e R and r2 e R
an input x € Inputs

such that
output ( r1, x ) # output (r2, x)

then
let R1={r e R| output (r,x) = output (r1,x) } ;
let R2 = R\R1;

let P = (P\{R})U{R1,R2}.
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Output split
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Output split
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Next-state split P

If there exist

two state sets Re P and R’ P

two states M1 R and r2eR
an input x € Inputs

such that

nextState (r1, x) e R’ and nextState (r2,x) ¢ R’
then

let R1={r € R| nextState (r,x) e R’ };

let R2 = R\R1;

let P = (P\{R})U{R1,R2}.
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Next-state split
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Next-state split
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Example

0/0
Q={a,b,c,d, e, f, g} 111
0/1 0/0
0/1
1/0 1/1
0/1 0/0
1/0
0/0
1/1
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A

P={{a,b,c,d!e’f’g}}

0/0
0/1 0/0
0/1
1/0 1M
0/1 0/0

1/0

0..
--------------------------------

0/0
11
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| 0/0
Output split 1/1
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P={{a},{b,c}, {d,e f,g}} 2);(1)

----------------------------------
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© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 46




P={{a},{b,c}{d, e} {fig}}
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Minimal bisimilar state machine
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171
0/0

4 instead of 7 states
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How to check if M1 and M2 are equivalent

1. Minimize M1 and call the result N1
2. Minimize M2 and call the result N2

3. Check if the states of N1 can be renamed so that N1 and N2

are identical
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