Agenda

- Finite Automata
- Equivalence of Finite Automata
- Product of Finite Automata
- Acceptors for Finite Sequences
- Büchi Automata and acceptance of infinite sequences
- CNF Satisfiability
- Equivalence Checking
 - Combinational Equivalence Checking
 - Register Correspondence
 - Equivalence Checking of Retimed Circuits
 - Sequential Equivalence Checking
 - Equivalence and Minimization Algorithms
Finite Automaton

A finite deterministic automaton M (transducer, Mealy machine, finite state machine FSM) is a 6-tuple:

$$M = (Q, \Sigma, \Delta, \delta, \lambda, q^0)$$

where:

- Q is the finite set of states
- Σ is the input alphabet
- Δ is the output alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function
- $\lambda: Q \times \Sigma \rightarrow \Delta$ is the output function
- q^0 is the start state (initial state)

If λ is of the form $\lambda: Q \rightarrow \Delta$, then we have a Moore machine.
State and Output Sequences

Path function: \(\delta^*: Q \times (N \rightarrow \Sigma) \rightarrow Q \)

Given an input sequence \(\tilde{a} \), we have:
\[
\delta^*(q, \tilde{a}) := q' \text{ with } q^0 := q, q^{i+1} = \delta(q^i, a^i), \text{ and } q' := q^{\mid \tilde{a} \mid}
\]

Path output sequence: \(\lambda^*: Q \times (N \rightarrow \Sigma) \rightarrow (N \rightarrow \Delta) \)

Given an input sequence \(\tilde{a} \), we have:
\[
\lambda^*(q, \tilde{a}) := \tilde{u} \text{ with } q^0 := q, q^{i+1} = \delta(q^i, a^i), \text{ and } u^i = \lambda(q^i, a^i)
\]
Automata Equivalence

Two automata M and M' are called equivalent, if for an arbitrary input sequence applied at both automata, the same output sequence results:

$$\forall \bar{a} \cdot \lambda^*(q^0, \bar{a}) = \lambda'^*(q^0, \bar{a})$$
State Equivalence

Given two Mealy machines with the same input and output alphabet, \(M = (Q, \Sigma, \Delta, \delta, \lambda, q^0) \) and \(M' = (Q', \Sigma, \Delta, \delta', \lambda', q'^0) \).

The state equivalence relation \(\sim \subseteq Q \times Q' \) is the largest relation which satisfies the following:

\[
q \sim q' : \iff \forall a, a \in \Sigma . \; \lambda(q, a) = \lambda'(q', a) \text{ and } \delta(q, a) \sim \delta'(q', a)
\]

Two states \(q \) and \(q' \) are said to be equivalent, if \(q \sim q' \) holds.

Results:

- It holds that \(\forall \bar{a}, \bar{a} \in (N \rightarrow \Sigma) . \; q \sim q' \Rightarrow \delta^*(q, \bar{a}) \sim \delta'^*(q', \bar{a}) \)

- Two Mealy machines \(M \) and \(M' \) are equivalent, written as \(M \approx M' \), iff their initial states are equivalent: \(q^0 \sim q'^0 \).
State Minimization

- **Necessary and sufficient condition for two states to be equivalent:**

 \[q_1 \sim q_2 \iff \forall a, a \in \Sigma \ . \ \lambda(q_1, a) = \lambda(q_2, a) \quad \text{and} \quad \delta(q_1, a) \sim \delta(q_2, a) \]

- **Equivalent states can be merged**
The product automaton of two automata \(M = (Q, \Sigma, \Delta, \delta, \lambda, q^0) \) and
\(M' = (Q', \Sigma, \Delta, \delta', \lambda', q'^0) \) is defined as:

\[
M^p = (Q \times Q', \Sigma, \Delta, \delta^p, \lambda^p, (q_0, q'^0))
\]

with \(\delta^p: (Q \times Q') \times \Sigma \rightarrow (Q \times Q') \) and \(\lambda^p: (Q \times Q') \times \Sigma \rightarrow B \), defined by:

\[
\delta^p((q, q'), a) := (\delta(q, a), \delta'(q', a))
\]
\[
\lambda^p((q, q'), a) := (\lambda(q, a) = \lambda'(q', a))
\]

The product delivers only a value \(B \) which indicates whether for a given input the outputs of both automata are equal (T) or not (F).
Acceptors

A deterministic finite acceptor (called DFA) \(M^a \) is a 5-tuple:

\[
M^a = (Q, \Sigma, \delta, q^0, F)
\]

where:

- \(Q \) is the finite set of states
- \(\Sigma \) is the input alphabet
- \(\delta: Q \times \Sigma \rightarrow Q \) is the transition function
- \(q^0 \) is the start state (initial state)
- \(F \subseteq Q \) is the set of final states (accepting states)

A finite sequence \(\bar{a} \) is said to be accepted by \(M^a = (Q, \Sigma, \delta, q^0, F) \), if \(\delta^*(q^0, \bar{a}) \in F \).
Acceptance of Infinite Sequences

- **Büchi automaton:**

 An accepting Büchi automaton M^B is a 5-tuple,

 $$M^B = (Q, \Sigma, \delta, q^0, F)$$

 where Q is the finite set of states, Σ is the input alphabet, $\delta: Q \times \Sigma \rightarrow Q$ is the transition function, q^0 is the start state (initial state). $F \subseteq Q$ is the set of final states (accepting states).

- **Büchi acceptance:**

 An infinite sequence \bar{a} is accepted by the Büchi automaton $M^B = (Q, \Sigma, \delta, q^0, F)$, if $\forall t \exists t', t' > t . \delta^*(q^t, \bar{a}^t \ldots t') \in F$.

 In other words, an infinite sequence is accepted if the final set is visited infinitely often.
Equivalence Checking Problem

- Two designs are defined to be functionally equivalent if they produce identical output sequences for all valid input sequences.
Equivalence Checking Paradigms

- **Sequential Equivalence Checking**
 - Compare state machines

- **Combinational Equivalence Checking**
 - Compare combinational Boolean functions

- If a one-to-one correspondence between the registers is given, then sequential equivalence checking can be solved using combinational equivalence checking
 - This is a popular approach – very useful in practice
Combinational Equivalence Checking

- Compare o/p function
- Compare transition function
Basic Approach

- **Step-1: Register Correspondence**
 - The register correspondence is either guessed using simple heuristics or computed exactly.

- **Step-2: Functional Comparison**
 - This step involves the actual functional comparison of the individual circuits.
 - This can be done using a variety of methods, including BDDs, SAT and ATPG.
In many practical design flows, a candidate register correspondence is derived from naming conventions.

Otherwise, register correspondence can be computed automatically as a greatest fixed point (to be explained)

- The algorithm starts with one equivalence class (bucket) containing all the registers
- During each iteration:
 - A unique variable is introduced for the outputs of all registers of each bucket
 - All next state functions are computed based on these variables
 - Next the buckets are partitioned into pieces that have identical next-state functions
REGISTER CORRESPONDENCE() {
 put all registers r into bucket[0]
 do {
 forall buckets i do {
 initialize output of all registers $r \in i$ with variable $v[i]$
 }
 forall registers r do {
 compute next state function $\delta[r]$ based on inputs v
 }
 if \forall buckets i: r_1, $r_2 \in i \Leftrightarrow \delta[r_1] = \delta[r_2]$ return
 split all buckets i into multiple buckets i_j s.t. r_1, $r_2 \in i_j \Leftrightarrow \delta[r_1] = \delta[r_2]$
 }
}
To check equivalence between \(f \) and \(g \), we add the following clauses:

\[
(f \lor g), (\neg f \lor \neg g)
\]

which is the EXOR between \(f \) and \(g \). If the set of clauses is satisfiable, then we have a valuation of \(a \) and \(b \) such that \(f \) and \(g \) receive conflicting values. Otherwise (as in this case), \(f \) and \(g \) are equivalent.
Retiming and Equivalence Checking

Before retiming

After retiming
Equivalence Checking of Retimed Logic

- In case of retiming, the next-state functions are not comparable
 - However, by preserving the retime logic from the synthesis flow and applying it to make both designs comparable, the equivalence checking problem can be reduced to a combinational problem
 - Both machines are patched with pieces of the retime logic to make the interfaces comparable
Sequential Equivalence Checking

- When register correspondence cannot be found easily or it does not exist, we may compare the state machines.

- Basic approach
 - Core problem: *Partition the state space into sets of equivalent states*
 - Equivalence can be defined in terms of input/output behavior
 - Bisimulation equivalence
 - Stuttering equivalence
A or C is redundant state
If an input sequence X takes a machine from a state S_i to S_j, then S_j is said to be the X-successor of S_i.

Two states S_i and S_j are distinguishable iff there exists at least one finite input sequence which when applied to M, causes different output sequences, depending on whether S_i or S_j is the initial state.

A and B are distinguishable. Consider input sequence 0.
If there exists for pair (S_i, S_j), a **distinguishing sequence** of length k, the states in (S_i, S_j) are said to be **k-distinguishable**.

States that are not k-distinguishable are called **k-equivalent**.

A, B are 1-distinguishable
A, C are not 2-distinguishable and hence are 2-equivalent

States S_i and S_j are said to be **equivalent** iff for every possible input sequence, the same output sequence is produced regardless of whether S_i or S_j is the initial state.

A, C are equivalent
The State Minimization Problem

Input: state machine M

Output: minimize (M), the state machine with the fewest states that is equivalent to M

Two machines M_i and M_j are equivalent iff, for every state in M_i, there is a corresponding equivalent state in M_j and vice versa.
The Minimization Procedure

1. Partitions states of M into subsets such that all states in the same subset are 1-equivalent: P_1

2. Partitions states of M into subsets such that all states in the same subset are 2-equivalent: P_2

...

Until for some k, $P_{k+1} = P_k$
The Minimization Procedure

States
The Minimization Algorithm

0/1

0/1

0/1
The Minimization Algorithm
The Minimization Algorithm

1. Let Q be set of all reachable states of M.

2. Maintain a set P of state sets:

 Initially let $P = \{ Q \}$.

 2a. Repeat until no longer possible: output split P.

 2b. Repeat until no longer possible: next-state split P.

3. When done, every state set in P represents a single state of the smallest state machine equivalent to M.
If there exist

- a state set $R \in P$
- two states $r_1 \in R$ and $r_2 \in R$
- an input $x \in \text{Inputs}$

such that

$$\text{output} \ (r_1, x) \neq \text{output} \ (r_2, x)$$

then

$$\text{let } R_1 = \{ \ r \in R \mid \text{output} \ (r, x) = \text{output} \ (r_1, x) \ \}\ ;$$

$$\text{let } R_2 = R \setminus R_1 ;$$

$$\text{let } P = (P \setminus \{ R \}) \cup \{ R_1, R_2 \} .$$
Output split
Next-state split P

If there exist

two state sets $R \in P$ and $R' \in P$
two states $r_1 \in R$ and $r_2 \in R$
an input $x \in \text{Inputs}$
such that

$$\text{nextState} (r_1, x) \in R' \text{ and } \text{nextState} (r_2, x) \notin R'$$

then

let $R_1 = \{ r \in R \mid \text{nextState} (r,x) \in R' \}$
let $R_2 = R \setminus R_1$
let $P = (P \setminus \{ R \}) \cup \{ R_1, R_2 \}$.
Next-state split

\[R \]
\[\text{r1} \]
\[\text{r2} \]
\[\text{x/y} \]

\[R' \]
\[\text{x/y} \]
Next-state split

R1

\[r1 \]

\[x / y \]

R1

\[r2 \]

\[R2 \]

\[x / y \]

R’
Example

\[Q = \{ a, b, c, d, e, f, g \} \]
\[P = \{ \{ a, b, c, d, e, f, g \} \} \]
P = \{ \{ a, b, c \}, \{ d, e, f, g \} \}

Output split
$P = \{ \{ a \}, \{ b, c \}, \{ d, e, f, g \} \}$

Next-state split
Next-state split

\[P = \{ \{ a \}, \{ b, c \}, \{ d, e \}, \{ f, g \} \} \]
Minimal bisimilar state machine

\{ a \} \rightarrow \{ b, c \} \rightarrow \{ d, e \} \rightarrow \{ f, g \}

\rightarrow 0/1 \rightarrow 1/0 \rightarrow 0/1 \rightarrow 0/0 \rightarrow 1/1

\rightarrow 1/1 \rightarrow 0/0 \rightarrow 0/0 \rightarrow
4 instead of 7 states
How to check if M_1 and M_2 are equivalent

1. Minimize M_1 and call the result N_1
2. Minimize M_2 and call the result N_2
3. Check if the states of N_1 can be renamed so that N_1 and N_2 are identical