Assertions

Testing & Verification
Dept. of Computer Science & Engg, lIT Kharagpur

Pallab Dasgupta

Professor, Dept. of Computer Science & Engg.,
Professor-in-charge, AVLSI Design Lab,

Indian Institute of Technology Kharagpur

g

- " WENEEEN T
™ F WleEmnnn
T F _2an REDL i

¥ § & - -2 =

Agenda

O The Basic Temporal Operators

O Logics for Temporal Specification

0 SystemVerilog Assertions

O Architectural Styles for Assertion IPs

Reference: A Roadmap for Formal Property Verification,
Pallab Dasgupta
Springer

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

Why do we need “temporal” logic?

O Propositional Logic — Boolean formulas

al—

Half

a2—

_>S

Adder

0 Temporal Logic
m Properties span across cycle boundaries

m Consider a property of a two way round-robin arbiter

e If the request bit r1 is true in a cycle then the grant bit g1

has to be true within the next two cycles

— > cout

cout < a1 A a2

s < al ® a2

r1—

r2 —

RR
Arbiter

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

What does “temporal” mean?

11— — g1

RR

r2 — Arbiter — g2 If r1 is true in a cycle then g1 has to be
true within the next two cycles

Temporal worlds

r1(0) ri(1) r1(2)

r2(0) r2(1) r2(2)

g1(0) ‘ g1(1) ‘ g1(2) ‘

g2(0) g2(1) g2(2)

time:0 time:1 time:2 vt ri(t) = g1(t+1) v g1(t+2)]

In propositional temporal logic, the time variable t is implicit.
* For example, we may write:

always r1 -2 (next g1) or (next next g1)

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

Implementations may not be logically equivalent

Specification:

1 — — g1

RR
r2 = Arbiter [92

Design an arbiter with the following
properties:

1. Whenever r, is raised, the arbiter
must assert g, within the next two

cycles

2. Whenever r, is raised, the arbiter
must eventually assert g,

3. The grantlines g, and g, are
never asserted together

4)
r11—r > 91
r2— ?

> g2
N /

Implementation-1
(neither reads r, norr, !!)

4 I
r1 > > g1
r2 —
—> 92
N /

Implementation-2
(reads r, but not r, !!)

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

Kripke Structure

K=(APR, S, S, T,L)
m AP is a set of atomic propositions
m S is aset of states
m S, is a set of initial states
mTcSXS,is atotal transition relation

m L: S 22AP s a labeling function

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

Path

A path = = n0, n1, ... in a Kripke structure, K= (AP, S, S,, T, L), is
a sequence of states such that vk, (n, n,,4) €T

n* - suffix of n in «t

p A
r N\
n=n0, n1, ..., N, Ny, ...
Sample paths: ———
s0, s1, s4, s4, s4, ... prefix of n, in &t

s0, s2, s3, s0, s2, s3, ...
s0, s2, s3, s1, s3, s0, ...

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

Temporal Operators

0 Two fundamental path operators:
m Next operator
e Xp — property p holds in the next state
m Until operator

e p U q- property p holds in all states up to the state where
property q holds

O Several derived (and commonly used operators)
m Eventual operator
e Fp — property p holds eventually (at some future state)
m Always operator
e Gp — property p holds always (at all states)

O All these operators are interpreted over paths of the underlying
Kripke structure

O Temporal logics also support all the Boolean operators

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

The Next Operator

O p holds in the next state of the path

Formally:

n |= XF iff ot |=f

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

The Until Operator I

@ p holds
O qholds

O q holds eventually and p holds until g holds
Formally:

n |=fU g iff 3k such that 7 |=gand Vj,0<j<kwe have i |=f

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 10

The eventual Operator

A 4

Fp O

0
;
0

O p holds eventually (in future)
alternatively

0 —p does not hold always

Formally:
n |= Fg iff 3k such that n* |= g

... Which has the same meaning as true U g

v
@)
O

@ p holds

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

11

The always Operator I

» » » »
p > > > >

O p holds always (globally)
alternatively

O —p does not hold eventually

Formally:
n |= Gf iff Vj we have il |=f

... which has the same meaning as — (F —f) or — (true U — f)

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 12

Duality between Always and Eventual Operators

eventually f
=f v (next f) v (next next f) v (next next nextf) ...
= —(— f A (next —f) A (next next —f) A (next next next —f) ...)
= —(always —f)

... this is a variant of DeMorgan’s Laws!!

Thus:
— Fp = G(—p)
— Gp = F(—p)

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

13

Nesting of Temporal Operators I

FGp O D O 1@ > @ o o

Along the path there exists a state from which p will hold forever

GFp O O @ O - e O o

Along the path for all states there will eventually be some
state where p holds

alternatively

Along the path p will hold infinitely often

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 14

Linear Temporal Logic (LTL) I

0 Syntax:
m Given a set, AP, of atomic propositions:
e All Boolean formulas over AP are LTL properties, and

e If fand g are LTL properties, then so are —f, Xf, and fUg

0 Semantics:
m A Kripke structure K models a LTL property g (denoted as K |= g) iff for
every path &, which starts at some initial state of K, = |= ¢
m This means that the property does not hold on K if there is any path in K
which refutes the property

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 15

Examples

O The property pUq holds

O The property Fq holds

O The property GFq does not hold
m Counterexample trace: s0, s1, s4, s4*

O The property pU(qUr) does not hold
m Counterexample trace: s0, s2, s3, s0, (s2, s3, s0)*

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

16

Path Quantifiers

ad A

“ for all paths ... ”

Q E

“ there exists a path ... ”

Jen e

Used to specify that all of the paths or
some of the paths starting at a particular
state have some property

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

17

Branching Time Logic I

O Branching time paradigm:
m Interpreted over computation trees, not linear traces

d Computation tree:

AP

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 18

Universal Path Quatification

AX p AG p
Q% }5
_ ® ® @ @
In all the next states p holds Along all the paths p holds forever

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

19

Universal Path Quantification I

AF p A(p U q)

Along all the paths p holds eventually Along all paths p holds until g holds

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 20

Existential Path Quantification I

@

There exists a next state There exists a path along which
where p holds p holds forever

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 21

Existential Path Quantification

EF p E(pU q)
%@
O @
There exists a path along There exists a path along
which p holds eventually which p holds until g holds

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

22

Computation Tree Logic (CTL)

O Syntax:

m Given a set, AP, of atomic propositions:
e All Boolean formulas over AP are CTL properties, and

e If fand g are LTL properties, then so are —f, AXf, EXf,
A[fUg] and E[fUg]
m We also have derived properties like EFg, AFg, EGf, and AGf

O Semantics:

m The property Af is true at a state s of the Kripke structure, iff the path
property f holds on all paths starting at s

m The property Ef is true at a state s of the Kripke structure, iff the path
property f holds on some path starting at s

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 23

Nested Properties in CTL I

0 AXAGDp

“ from all the next states p holds forever along all paths ”

QO EXEF g

“ there exists a next state from which there exists a path to a
state where q holds ”

d AGEFr

“ from any state there exists a path to a state where r holds ”

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 24

Example: Analyzing Request and Grants I

From s the system always makes a request in future: AFreq

All requests are eventually granted:AG(req — AFqr)

Sometimes requests are immediately granted: EF(req — EXgr)
Requests are not always immediately granted: — AG(req — AXgr)
Requests are held till grant is received: AG(req — AF(req U gr))

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 25

LTL versus CTL

Q CTL has more operators than LTL — which allows us to specify
branching time properties (not supported in LTL).

O Can all LTL properties be expressed in CTL?
m No.
m For example, FGp cannot be expressed in CTL
m Note that FGp is not equivalent to AFAGp

Satifies FGp
but not AFAGp

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

26

Simple Case Study: A Memory Arbiter I

1
M= Mem [¢

mem-arbiter(input r1, r2, clk, output g1, g2) r2 —! Arbiter — g2

Properties:

1. Request line r1 has higher priority than request line r2. Whenever r1 goes
high, the grant line g1 must be asserted for the next two cycles

G[r1 = Xg1 A XXg1]

2. When none of the request lines are high, the arbiter parks the grant on g2 in
the next cycle

G[—r1 A-r2= Xg2]
3. The grant lines g1 and g2 are mutually exclusive

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 27

Memory Arbiter: Is the Specification Correct?

meme-arbiter(input r1, r2, clk, output g1, g2)

1. G
2. G
3. G

[r11 = Xg1 A XXg1]
[—r1 A —r2 = Xg2]

rM—

r2—

Mem
Arbiter

—>g1

O Consider the case when r1 is high at time t and low at time t+1,

and r2 is low at both time steps.

The first property forces g1 to be high at time t+2
The second property forces g2 to be high at time t+2
The third property says g1 and g2 cannot be high together

We have a conflict !!
Lets go back to the specification

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

28

Memory Arbiter: Revised Specs I

1
M= Mem [¢

mem-arbiter(input r1, r2, clk, output g1, g2) r2 —! Arbiter — g2

Properties:

1. Request line r1 has higher priority than request line r2. Whenever r1 goes
high, the grant line g1 must be asserted for the next two cycles

G[r1 = Xg1 A XXg1]

2. When none of the request lines are high, the arbiter parks the grant on g2 in
the next cycle

G[—r g2] revisedto G[-g1=92]

3. The grant lines g1 and g2 are mutually exclusive

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 29

Memory Arbiter: Is the Specification Complete? I

mem-arbiter(input r1, r2, clk, output g1, g2) 1 —l g1
Mem

1. G[r1 = Xg1 A XXg1] r2 —! Arbiter g2
2. G[9g1=092]

O Observation: We can satisfy the specification by designing an
arbiter which always asserts g1 and never asserts g2!!
m We need to add either of the following types of properties:
e Ones which specify when g2 should be high, or
e Ones which specify when g1 should be low
m Lets go back to the specification

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 30

Memory Arbiter: Revised Specs I

1
M= Mem [¢

meme-arbiter(input r1, r2, clk, output g1, g2) r2 —! Arbiter — g2

Properties:

1. Request line r1 has higher priority than request line r2. Whenever r1 goes
high, the grant line g1 must be asserted for the next two cycles

G[r1 = Xg1 A XXg1]

2. When none of the request lines are high, the arbiter parks the grant on g2 in
the next cycle

G[g1 =092]
3. When r1is low for consecutive cycles, then g1 should be low in the next cycle
G[-r1M1 AX—r1 = XX-9g1]
4. The grant lines g1 and g2 are mutually exclusive
G[—-g1v—g2]

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 31

Memory Arbiter: Is the Specs Complete Now? I

mem-arbiter(input r1, r2, clk, output g1, g2) 1 —l g1
Mem

1. G[r1 = Xg1 A XXg1] r2 —! Arbiter g2

2. G[9g1=092]
4. G

O Observation: We cannot satisfy the specs without reading the
value of r1, but we can satisfy the specs without reading r2!!
m Consider the following implementation strategy:
e Assert g1 for two cycles whenever we get r1
e Assert g2 otherwise
m Lets us live with this specification

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 32

Real-Time Properties

O Real-time systems
m Predictable response times are essential for correctness

m Example: controllers for aircraft, industrial machinery,
robots, etc

O It is difficult to express complex timing properties
m Simple: “event p will happen in the future”
e Fp
m Complex: “event p will happen within at most n time units”
epvXpvXXpvVv...v[XX...(ntimes)] p

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

33

Bounded Temporal Operators I

Q Specify real-time constraints

m over bounded traces

O Various bounded temporal operators

m G, P p always holds between the mt" and nt"
time step

m Fion P p eventually holds between mt" and nt"
time step

m X p p holds at the mth time step

m pUp, .9 g eventually holds between mt" and nth

time step and p holds until that point of time

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 34

Examples
Time step 0 1 2 3 4
Gpq P ®e—e®
@ p holds

p holds always between 2"d and 4t time step

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

35

Examples
Time step 0 1 2 3 4
Fio4 P O—0O O—O—@

@ p holds

p holds eventually between 2"d and 4t time step

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

36

Examples
Time step 0 1 2 3 4
O—O——mO—@ O
X; p
@ p holds

p holds in the 3" time step

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

37

Examples I

Time step 0 1 2 3 4

p U[2,4] q . :. =.—’O—’o
@ p holds
O g holds

g holds eventually between 2"d and 4th time step
and p holds until q holds

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 38

Timing Properties I

0 Whenever a hpreq is recorded, the hpgrant should take place
within 4 units of time.

AG(posedge(hpreq) — AF, 4 posedge(hpgrant)))

O The arbiter will provide exactly 64 units of time to high-priority
users in each grant.

AG(posedge(hpusing) —
A(—negedge(hpusing) U, ¢, Negedge(hpusing)))

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 39

Assertion Based Verfication (ABV) Methodology I

Integrated Design
(collection of blocks)

~
= \
Simulation/Dynami

Block ' ¢
(collection of modules)

Static Analysis
Dynamic Analysis

DESIGN HIERARCHY

Formal/Static Analysis

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 40

Assertions: Industry Standards I

L Predecessors
m Sugar from IBM Haifa

m Forspec from Intel

m Open Vera Assertions (OVA) from Synopsys

0 Three main standards today
m Property Specification Language (PSL)
e Supports both branching time and linear time properties
m SystemVerilog Assertions (SVA)
e An integral part of SystemVerilog
m Open Verification Library (OVL)

e A collection of simple monitor libraries that can be stitched
together to monitor more complex behaviors

m Developed by Accellera. PSL has become IEEE 1850 PSL and SVA is
a part of IEEE 1800 SystemVerilog

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 41

SystemVerilog Scheduling Semantics

—_—

Preponed
Pre-active
Active
Inactive
Pre-NBA
NBA
Post-NBA

Observed

© © N o o » DN

Post-observed
10. Reactive

11. Postponed

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

42

SystemVerilog Scheduling Semantics

d Preponed

m It allows for user code to access data at the current time slot

before any net or variable has changed state

1 Observed

m Evaluates property expressions if they are triggered

] Reactive

m Evaluates pass/fail code of the properties

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

43

Signal Sampling I

Signal driven here

———————>

Signal sampled here

&

\

Input Skew
Output Skew

Implicitly negative

Implicitly positive

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 44

Example

simulation ticks| | [[[| || [[[[[[[]]]]]

Clock ticks i i

i
|
req ! |
1 2 3 4 5 6 7 8 9 10 11 12
1. Value of req at clock tick 5is 1 not 0
2. Value of req at clock tick 9 is 0 not 1
© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 45

SVA: A Quick Overview

O The Memory Arbiter Example:

mem-arbiter(input r1, r2, clk, output g1, g2)

Properties:
P1: G[r1 = Xg1 A XXg1]
P2: G[91 =092]
P3: Gl r11 AX—r1 = XX-9g1]
P4: G[-g1v—-92]

0 We will first code these properties in SVA.

d We will then see how to bind these properties with the interface
of the DUT

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

46

SVA: A Quick Overview I

property P1; property P2;
@(posedge clk) @(posedge clk)
r1 |2 ##1 g1 ##1 g1; l91]-2 g2;
endproperty endproperty

!I‘ L Properties:
P1: G[r11 = Xg1 A XXg1]

P2: G[-g1 = g2]

property P3; property P4;
@(posedge clk) @(posedge clk)
Ir1 ##1 Ir1 | > ##1 191; 91| '92;
endproperty endproperty

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 47

Interfaces and Binding

modulerarbiter: :
(DU

Interface

Test Bench

Simulator + Assertion Checker

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 48

Interface: Memory Arbiter

interface ArbChecker(input g1, g2, r1, r2, clk) ;
property P1;

@(posedge clk) r1 | 2> ##1 g1 ##1 g1,
endproperty
property P2;

@(posedge clk) 'g1 |2 g2;
endproperty

GrantWhenRequest:

assert property(P1)

else $display(“Property P1 has failed”);
OneGrantHigh:

assert property(P2)

else $display(“Property P2 has failed”);

endinterface

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

49

Test Bench: Memory Arbiter

module Top;
wire r1, r2, g1, g2;
reg clk;

arbiter A(r1, r2, g1, g2, clk); // It RERT70-T o6 w0 GO =7

initial begin
clk =1;
forever begin
#1 clk = ~clk;
end
end

Il Rest of the test bench code ...

endmodule

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

50

Binding

 We need to bind the interface, ArbChecker, with the test bench
m This can be done using the following statement:

bind Top ArbChecker ArbC(g1, g2, r1, r2, clk)

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

51

SVA: Sequence Expressions I

0 Sequence expressions are the basic building blocks of SVA

0 Examples:
##0 r1 Il r1 is true in this cycle
##1 r1 Il r1 is true in the next cycle
##5 r1 Il r1 is true exactly after 5 cycles
##[5:9]1 r1 Il r1is true sometime between the 5" and 9 cycle

d Comparison with Timed LTL

m #H1r1 is the same as Xr1
m #H5r1 is the same as F; 5, 1
m H#[5:9] 1 is the same as F; 4 11

O What is the meaning of the following sequence expression?

a ##[1:5] (b||c) ##3 d

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 52

SVA: Sequence Expressions

O Sequence expressions can be given a name

O For example, we may rewrite a ##[1:5] (b||c) ##3 d as:

sequence s1;
(bl|c) ##3 d;
endsequence

sequence s2;
a ##[1:5] s1;

endsequence \

Note the use of s1 here

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

53

Sequence Operations: Repetition I

O Consecutive Repetition
m p[*9] matches when 5 consecutive states satisfy p
m p[*3:5]##1 g k (3<k<5) consecutive matches followed by q
m p[*3:$]##1q At least 3 consecutive matches followed by q

m The request r must remain high until the grant g is asserted
r|=>r*1:$] ##1 g

m The LTL property, p U q, is equivalent to:
p[*0:$] ##1 q

Note the 0 here

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 54

Consecutive Repetitions (contd..)

sequence s1;

@(posedge clk) a ##1 b [*3] ##1 c;

endsequence
e
simutation | | | | | || [[[[[TTTHELTTTTEEEERAEETTEEFFEEELT
ICkS | | | | | | | | | | | |
dowiers T T
2 — | T
I R == .
o TTe———4 | | | |
1 2 3 4 5 6 7 8 9 10 11 1

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

55

Sequence Operations: Repetition I

O Goto Repetition
m p[*2>5]1##1q the match of g at some time t is preceded by 5
matches (not necessarily consecutive) of p,

including one at time t - 1.

m The transfer must be aborted if the transfer is “split” more than
once

split[* 22] ##1 abort

m p[*>3:5] #1 q the match of g at some time t is preceded by 3
to 5 matches (not necessarily consecutive) of

p, including one at time t — 1.

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 56

Goto Repetitions

sequence s1;
@(posedge clk) a ##1 b [*->3] ##1 c;

endsequence
simutation | || | ||| | [[[[[TTTIHHEITTTTTEEEREETTETEFEEELT
| | I I ' | | | | I | :
Clock ticks | | | | | | | | i |
a T T - —_——
' ' [' l | | | | | | |
i l l | | l i | | | | |
i SN S SRS AN S N A A R R A
c T 1 00 | A i i
1 2 3 4 5 6 7 8 9 0 1 12

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

Sequence Operations: Repetition I

O Non-consecutive Repetition
m split[*=2] ##1 abort
e The transfer is aborted if it is split more than once, but it is
not necessary that the abort takes place immediately after
the second split.

m p[*=3:5]##1 q matches at time t, if g matches at time t and

p matches 3 to 5 times before time t.

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 58

Non- consecutive Repetitions

sequence s1:
@(posedge clk) a ##1 b [*=3] ##1 c;
endsequence

simutation | [|| | ||| [[|/LTETEHETEERCTEERREETERREET T
S TR e R R S S B B
Clock ticks | | | | | | | | | |
a | | | ! ! | | ! | | | |
| | | | | | | | | | | |
| | | I I | | I | | | |
S
o i | |
1 2 3 4 5 6 7 8 9 10 11 12

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

AND - operation

Q The binary operator “and” is used when both the operand

expressions are expected to succeed

0 End time of the operands can be different

Example:

(a ##1 b) and (a ##1 b ##2 c)

Simulation ‘ ‘ ‘
ticks

Clock ticks

b

[

|

|

|

|

|

a |
|

|

|

!

|

C |
|

|

[}

1
.

!
|
|
|
|
|
|
|
|
|
i
|
|
|
2

1 3

|

|

|

|

|

|

|

e
5

|
|
|
i
|
|
|
|
|
|
|
i
8

A
A

|
|
|
|
|
|
|
|
|
i
|
6

10

| |
I I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I I
1

1 12

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

60

Intersection

O The binary operator intersect is used when both operand
expressions are expected to succeed

0 End times of the operand expressions must be the same

0 Length of the two operand sequences must be same

Example:

(a ##1 b) intersect (a ##1 b ##2 c)

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 61

N
({=]

I I | N

I R i o

—_— ey — — —]l — — 9

. B . I IS ————— 8
- | -
— S
||||| Au‘.‘; ~ m
—_— _ :
> l S
o -} o =
3 — 5
* — | |)
. -« S T _.m_
o +: — 5
= ++ I N I Y ...w
c s — T g
(@ = — :
o | 8 = 1 3
_ = s i o 5
— o
= 2 2
2 — L (o]
o s T N 3
—) — ;
c — E
Q €y == ol 1T 1 h §
" - S 8 :
D 3+ S % :
- 213 EX 8 S

- —

S ln|a\ nws O ® < © .Iba
E
a

OR - operation

O The binary operator and is used when at least one of the

operand expressions is expected to match

0 End timed of the operand can be different

Example:

(a ##1 b) or (a ##1 b ##2 c)

Simulation ‘ ‘ ‘
ticks

Clock ticks

b

[

|

|

|

|

|

a |
|

|

|

!

|

C |
|

|

1

2 3

I
A

o -t

v

A
A

8

10

I I
I I
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I I
1

1 12

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

63

Local Variables I

Q FX oY ae oy two dEsWems sm‘c’t%Xwas
;q‘uﬂc?'iﬁ'e Y, {%6wzX WiWEGme owdan-T Torara

&0rcY
property FIFO_check; Get QFull
int x; Put
inty;
@(posedge clk)

Dataln DataOut

((Put && !QFull, x = Dataln) ##[1,9]
(Put && !QFull, y = Dataln)) | >
##1,9] ((Get && x == DataOut) ##[1,$]
(Get && y == DataOut)) ;
endproperty

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 64

The property definition

O A property defines a behavior of the design.

O A property can be used
m As an assumption
m As a checker
m As a coverage specification

property p;
@(posedge clk) seq1;
endproperty;

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

65

Properties and Implication

O Use of if-then-else:
property P;
@(posedge clk)
if (r1) then ##1 (g1 && Ir1) else ##1 g2;
endproperty

d The condition of if cannot be a sequence expression:
property ThislsNotOkay ;
@(posedge clk)
if (r2 ##1 (192 && r2) ##1 1g2) then ##1 Ir2;
endproperty

m Can be written as:
property ThislsOkay ;
@(posedge clk)
r2 ##1 (192 && r2) ##1 192 | > ##1 1r2;
endproperty

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

66

Two types of implication I

L Overlapped Implication Operator:

m In the property, s1 |2 s2, the match of s2 starts from the
same cycle as the one in which we complete a match for s1.

J Non-overlapped Implication Operator:

m In the property, s1 |=> s2, the match of s2 starts from the
cycle after the one in which we complete a match for s1.

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 67

Use of Disablelff

O y must be asserted within 16 cycles of x, unless reset is
asserted in between

property DisableOnReset;

@(posedge clk)

disable iff (reset) x | 2> ##[1:16] y;
endproperty

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

68

Immediate and Concurrent Assertions

0 Immediate Assertions
m Immediate assertions follow simulation event semantics for
their execution
m Immediate assertions are executed like a statement in a
procedural block

assert (expression) Action_block
Action_block ::= statement_or_null | [statement] else statement

O Concurrent Assertions
m Describe behavior that spans over time
m Evaluation model is based on a clock

m The values of variables used are the sampled values in the
specified clock edge

prop_p1: assert property (p1) pass_stat else fail_stat

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

69

Property Usage

A property can be used
m As an assertion (guarantee)
e We call them assert properties
m As an assumption
e We call them assume properties
m As a coverage specification

e We call them cover properties

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

70

What are assume properties? I

O Example: Every low priority request, r2, is

B — g1
eventually granted by the arbiter r Me_m 9
property NoStarvation; r2 — Arbiter [— 92
@(posedge clk) r2 | > ##[1:$] 92 ;
end property

d This requirement conflicts with our earlier property P1:
property P1;
@(posedge clk) r1 | 2> ##1 g1 ##1 g1;
endproperty

0 Suppose we are now given that whenever g1 is asserted, r1
remains low for the next 4 cycles

property FairnessOfr1;
@(posedge clk) g1 | =>(!r1) [*4] ;
endproperty

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 71

Assume properties I

property FairnessOfr1;) L g

@(posedge clk) g1 |>(Ir1) [*4] ; r Mem
endproperty r2 — Arbiter [— g2
AssumeR1IsFair: assume property (FairnessOfr1);

property NoStarvation;
@(posedge clk) r2 | 2> ##[1:$] g2 ;
endproperty
AssertNoStarvation: assert property (NoStarvation);

d Under assumption AssumeR1IsFair, there is no conflict between

the properties GrantWhenRequest and AssertNoStarvation
property P1;
@(posedge clk) r1 | 2> ##1 g1 ##1 g1,
endproperty
GrantWhenRequest: assert property (P1);

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 72

Assume versus Assert I

O Both assume and assert properties may use input and output
variables of the DUT

O The assume properties are not related to any specific assert
property — they are generic assumptions about behaviors

O In dynamic assertion verification, both the assume and assert
properties are checked over the simulation run
m If one or more assume properties fail, then the monitoring of
the assert properties become redundant

O In formal property verification, assume properties may be used
to prune the state space before checking the assert propeties

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 73

Cover properties

property P4;
@(posedge clk) Ir1 ##1 Ir1 | 2> ##1 191,
endproperty

O The property is interpreted non-vacuously only when r1 is low in
two consecutive cycles

O Cover property:
property P4;
@(posedge clk) Ir1 ##1 Ir1 | =2 ##1 191,
endproperty

cover property (P4)

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

74

Coverage Results

O Coverage Results are divided into

m Coverage for properties

m Coverage for sequences

O The results of coverage statement for a property contain:

Number of times attempted

Number of times succeeded

Number of times failed

Number of times succeeded for vacuity

Each attempt with an attemptIlD and time

Each success/failure with an attemptID and time

O Vacuity rules are applied only to the implication operator

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

75

Multiple clock support

O Multiple clock is allowed in
m Concatenation of two sequences, where each sequence can
have a different clock
sequence s1;

@(posedge clk0) sig0 ## @(posedge clk1) sig1;
endsequence

m The antecedent of an implication on one clock, while the
consequent is on another clock
property s2;
@(posedge clk0) sig0 |=> @(posedge clk1) sig1;
endproperty

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

76

Architectural Styles for Assertion IPs

0 Event-based Specifications

m Only properties defined over interface signals

O State-based Specifications
m Auxiliary state machines (ASM)

m Properties specified using state-bits of ASM and interface
signals

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

77

The MyBus Protocol I

O Address and data multiplexed

 Master asserts req, waits for gnt
re
gnO: O Address Cycle: Then it floats the
Master rdy address and waits for rdy from slave
Interface DADDR Q Data Cycle: On receiving rdy, it expects
(dataladdress) data in next cycle (if READ), or floats
RIW data in next cycle (if WRITE)

J R/W indicates intent: read/write

O After each data cycle, the master may
start another address cycle by floating
the next address

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 78

A Sample Transfer

™M T2 T3 T4 15 T6 T7 T8 T9
clk
req —Z/ A\N
gnt /4 N
Data/Addr X A1 X D1 X A2 XD2 X
rdy J N_// \
Master state ™ X1DLE XWAITYX INIT XADDRXDATAXADDRXDATAXIDLE X

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

79

Properties I

O The protocol is non-preemptive. Once granted, the master owns
the Bus until it lowers its req line

O If the master is in the ADDRESS cycle, it should not change the
address floated in the Bus until it receives the rdy signal from
the slave

 Each DATA cycle is of unit cycle duration

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 80

Event-based Coding I

O The protocol is non-preemptive. Once granted, the master owns
the Bus until it lowers its req line

property NoPreemption;
@(posedge clk) $rose(gnt) | 2> ##1 gnt [*1:$] ##0 'req ;
endproperty

m $rose(gnt) is true in a cycle if the signal gnt rose in that cycle

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 81

Event-based Coding I

O If the master is in the ADDRESS cycle, it should not change the
address floated in the Bus until it receives the rdy signal from

the slave

property IncorrectAddressStable;
int x;
@(posedge clk) (req && gnt && !rdy, x = DADDR)
|2 ##1 (x == DADDR) ;
endproperty

O This coding is not correct, since (req && gnt && !rdy) may be
true at other places also.

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 82

The problem

™M T2 T3 T4 T5 T6 T7 T8 T9
clk
req v A\
gnt /4 N
Data/Addr X M Y1 X A2 X2 X
rdy J N_/ N\
Master state ___ X_IDLE X WAITX_INIT XADD};XDATA ADDR X DATAX IDLE ¥

property IncorrectAddressStable;

int x;

@(posedge clk) (req && gnt && !rdy,

endproperty

x = DADDR) | > ##1 (x == DADDR) :

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

83

The context is important

0 What’s the problem with this property?
property IncorrectAddressStable;
int x;
@(posedge clk) (req && gnt && !rdy, x = DADDR)
| > ##1 (x == DADDR) ;
endproperty

m We want to check this property only in the ADDRESS cycles,
not in the DATA cycles

m How should be distinguish between an ADDRESS cycle and a
data cycle?
property AddressStable;
int x;
@(posedge clk) (req && gnt && !Irdy && !$fell(rdy), x = DADDR)
| > ##1 (x == DADDR) ;
endproperty

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 84

Event-based Coding

 Each DATA cycle is of unit cycle duration

property SingleCycleDataTransfer;
@(posedge clk)
(gnt && $feli(rdy)) | =2 ##1 (Ignt || '$fell(rdy)) ;
endproperty

m The expression (gnt && $fell(rdy)) characterizes a DATA
cycle. Not obvious!!

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

85

State-based Coding I

 Characterizing the context is a major problem in event-based
coding
O In state-based coding we use an auxiliary state machine to
capture the contexts and the transitions between them
m We use the state labels for coding the actual properties
m Improves readability

m Reduces coding errors

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur 86

Auxiliary State Machine Example

Ireq
req && !gnt
req && !gnt
" WAIT
req 8& gnt req && gnt

Ireq |NF]

Ireq| !req req
re —
| DA'm!] { ADDR
req && Irdy
req && rdy

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

87

State-based Coding

Ireq

Ireq

req && gnt
Ireq

req

re —
DATA —2 = ADDR}:

req && rdy

property SingleCycleDataTransfer;
@(posedge clk)

endproperty

(state == ‘DATA) | 2> ##1 |(state == ‘DATA) ;

req && !gnt
e req && !gnt
IDLE * WAIT

|req && gnt

NIT |

req && Irdy

property AddressStable;
int X;
@(posedge clk)
(state == ‘ADDR, x = DADDR)
| > ##1 (x == DADDR) ;
endproperty

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

Encoding the Auxiliary State Machine

interface Masterinterface(input req, gnt, rdy, clk, int DADDR) ;

logic [2:0] state;
‘define IDLE 3'b000)
‘define WAIT 3’001
‘define INIT 3'b010 > State encoding
‘define ADDR 3’b011
‘define DATA 3'b100 J
always @(posedge clk)
case (state)
‘IDLE: state <=req? (gnt? ‘INIT : ‘WAIT) : IDLE;
‘WAIT: state <=req? (gnt? ‘INIT : ‘WAIT) : ‘IDLE;
‘INIT: state <=req? ‘ADDR : ‘IDLE;
‘ADDR: state <=req? (rdy? ‘DATA : ‘ ADDR) : ‘IDLE;
‘DATA: state <=req? ‘ADDR : ‘IDLE;
endcase
initial begin state = ‘IDLE; end

>

State transition
relation

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

89

Factored State Machines

Ireq Ireq

req && !gnt

req && !gnt

IDLE * WAIT

rdy

Ireq req && gnt -
- oATA J-—{ADDR
req ®SFER} INIT rdy
property AddressStable;
int x;

| > ##1 (x == DADDR) ;
endproperty

@(posedge clk) (state1 == ‘TRANSFER && state2 == ‘ADDR,

x = DADDR)

property SingleCycleDataTransfer;
@(posedge clk)
(state1 == ‘TRANSFER && state2 == ‘DATA) | > ##1 |(state2

endproperty

== ‘DATA) ;

© Pallab Dasgupta, Dept. of Computer Sc & Engg, lIT Kharagpur

90

