Test Scenarios and Coverage

Testing & Verification
Dept. of Computer Science & Engg, IIT Kharagpur

Pallab Dasgupta

Professor, Dept. of Computer Science & Engg.,
Professor-in-charge, AVLSI Design Lab,

Indian Institute of Technology Kharagpur

L
m
-

- T HEEEEER T
F saEmanny 7 =

. —
i F ansnapa R N
. NEENE
Y. - o~ e B

Agenda

L Hierarchical Verification

L Test Plan

1 Pseudorandom Test Generator

4 Verification Coverage

Reference: Hardware Design Verification, William K Lam
Prentice Hall Modern Semiconductor Design Series

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 2

Exhaustive Simulation Is Infeasible

Consider a sequential circuit having N FFs and M inputs

O Exhaustive verification by simulation
m Reach each state from the initial state
m At each state verify the behavior for each input vector

0 Upper-bound:
m Number of states: S = O(2V)
m Number of input vectors at a state: R = O(2M)
m Toreach a state we may have to pass through O(S) states,
where each transition requires an input vector
m Total number of input vectors = O(S X R) = O(2M*N)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

What's the Alternative?

Q The design must be simulated using a well selected subset of
Input patterns

0 Well selected?
m Test plans and test scenarios
m Coverage

O What do we observe?

m Detecting errors by comparing a design’s primary outputs
with the desired responses may not be the most efficient

e Internal error may take many cycles to propagate to a
primary output to be detected

e It may not always propagate to the primary output
m We must carefully choose the signals to be observed

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

Example

observation
point

Instruction Data
Memory Memory
data Y » data
addr addr

* | MUX
PC [cont_ro]
. logic
register
file
(o)
|Ogic v v
. v A
7y site of error —»\ ALU /
\

F

internal bus

An error of the ALU may be observed many cycles after it is simulated

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

Bug Hunting: Main Tasks

O Enumerating input possibilities with test plans

O Enhancing output observability with assertions

Q Bridging the gap between exhaustive search and practical
execution with coverage measures

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 6

Hierarchical Verification

architecture specifications

system
specifications

O
fe
om0 specifications
/ \ | ‘
//_____\) //
=
'O ak module
L___ﬁ_/ g \ specifications
|
|

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

System Level

O Problem-1

m Verifying interconnections of the subsystems that make up
the system

e Units are assumed to be verified
e Often replaced by abstract functional models
= Example: Instruction Set Simulators for CPUs

Q Problem-2
m Verifying the complete system at the level of implementation
e Very expensive — high complexity and slow runtime
e Hardware acceleration preferred
e Post silicon debug — emerging strategy

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

Unit and Module Levels

O A unit can be a large functional unit
m Could also be a CPU core

L Each unit can have several modules
m Possibility of using formal

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 9

Test Plan

Steps in creating a test plan:

m Extract functionality from architectural specifications
m Prioritize functionality
m Create test cases

m Track progress

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 10

Some Notations

Q, :valid initial states Q', :invalid initial states
S :valid states S'" :invalid states

| :valid inputs I" :invalid inputs

O :valid outputs O’ :invalid outputs

X =2 Y|, :transition from state X to state Y under input |

X=Y|, :sequence of transitions from state X leading
to state Y under input sequence |

Q :don’t care or wild card

Q -2 Q|, Is the set of all possible input and behavior of the design

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 11

Categories of Test Scenarios

1. Q-2 Q. Inthis case the design receives an input not specified in the
specification. May happen if the design is used in an unintended environment.

2. S'2>Q|, Thedesignisinan invalid state. Verify how the design recovers.

3. S =2 S|, Thedesignisin a valid state, receives a valid input, and yet
reaches an invalid state. This is a bug!!

4. S > S|, Alliswell!

5. Q= Q, Power-on tests. Start from an arbitrary state and reach a valid initial
state.

6. Q= Q', The design reaches an invalid state after power-on. This is a bug!!

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 12

Does this cover everything?

1. Q= Q,and Q= Q', together verify Q = Q,

2. S=2 95|, andS 2> S|, together verify S = Q],
3. Combining S = Q|, with S" = Q| covers Q = Q],

4. Combining Q =2 Q|, with Q = Q|,. covers the entire transition space,
namely Q =2 Q|,

Hence, if each of the six categories are thoroughly verified, the design in
thoroughly verified.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 13

Example: Disk Controller

O A disk is partitioned into concentric circular strips called tracks
and each track is partitioned into blocks called sectors.

O Six types of registers
m Command - contains the command being performed on disk
m Track —track number
m Sector — sector number
m Data-out — data to be written
m Data-in — data read
m Status — shows the state of disk and status of the operation

O Commands

m RESTORE, SEEK, STEP-IN, STEP-OUT, READ SECTOR, WRITE SECTOR,
READ ADDRESS, READ TRACK, WRITE TRACK, FORCE INTERRUPT

m The RESTORE command determines the head position when the
disk drive is first turned on.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 14

Disk Controller

disk controller

CS —
RW —{ | command register status register
Rd — _ 7654 3210
Dreq —| | track register
Ecocs5S0 @
address _ c2gLoRaY
data sector register Qo0 g 2o
track00 +— EQEOBQE
data-out register ST E~-g
Irq +— TLE S
. . s @
motoron <—1 | data-in register S ©
step < L
direction «—

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 15

Test Scenarios

1. Q-2 Q|,. Testcases send illegal inputs into the controller.

Example: address in a forbidden range

2. S'2>Q|, Setthe controller in an illegal state, such as illegal opcode in

command register, out-of-range data in track and sector registers. Observe
whether the controller detects the problem and recovers from it.

3. S =25’ Trytodrive itto invalid states. Bug hunting.

Example: Given the head position, are there track values that would
produce a wrong value from signal direction?

4. S -2 S|, Tryto establish that it reaches only valid states from a valid state.

Example: For given values in the track and sector registers, are the
outputs from step and direction correct?

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 16

Test Scenarios

5. Q=Q,
O What are the values of the registers when the controller is first powered
on? Are these values correct or expected?

O Immediately after power-on, do registers track and sector contain the
correct track and sector number of the head position if the RESTORE
command is executed?

6. Q=Q

O Under what conditions will the controller enter an illegal state on power-
on?

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 17

Pseudo-random Test Generation

program Test (input clk);

class Bus:
rand bit [15:0] addr;
endclass

Bus Bl=new;
initial begin
Bl.randomize() with {addr <= 128;};
@(posedge clk);
Bl.randomize () with {addr > 128 && addr <= 1024;};
end
endprogram

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 18

Coverage Driven Random Verification

Simulation Platform

Coverage defs

Constraints

4 L

J L

I [tan maniidr] [Test generation engine]
Property Specs
(user—defined)) (REGpEIY Chaskarm)
— 1 =
- :: T
i Master-1
{bridge 10
- FF == 1 =5 periphoral bus)
4 ‘ T B Memory
l clk = [clk—generaturj H
= =
} = FF = g2 Master—2
| o = {(processor) '-.I—L"'I'I
Device under Test (DUT) T
Test environmemMymodeled by t est—Bench

b .
DUT Interface

N/

models developed
at the behavioral level

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

19

Layered Random Test Architecture

_creates |
interesting
---------------------- conditions Jb--------oooomoe e
creates Test Bench
random Tests :
transactions checks ——
e i --| COITectness J----------------------- [identifies]
7 Generators Verlflcatlon trarllsactlons
executes | Environment / o
transactions | : o
‘ -J' 1 :
_l Transactor | Self-Check F— Checker =
: \
supplies data | t t t
tothe DUT |ir—— _
~ \JJ Driver Assertions Monitor

a2

| observes data
L from the DUT

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

20

Directed versus Constrained Random

Coverage-driven
methodology

% Testcases

-‘_‘_‘_I Directed
‘_‘_‘_‘_r methodology

Y Time
self checking random
environment development time

v

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 21

Coverage Metrics

O Code Coverage

m Checks how thoroughly the code of a design is exercised by
a suite of simulations
e For example, the percentage of RTL code of a FIFO
simulated by a simulation suite

0 Parameter Coverage

m Checks the extent that dimensions and parameters in
functional units are stressed

e For example, the range of depth that a FIFO encounters
during a simulation

O Functional Coverage

m Accounts for the amount of operational features or functions
In a design that are exercised
e For example, did we check all the operations (push, pop)
and all the conditions (full, empty)?

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 22

Code Coverage: Statement Coverage

[Collects statistics about statements that are executed

always @(posedge clock)

begin
a=b +c;
X =(y << 4);
If (a > Xx)
begin
y=b&a: Code covered when a>x
X = (X >> 2); andx=y
end
else
b = b”c;
If (X ==vy)
cC=Y,
else
y =a,
end

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 23

Code Coverage: Block Coverage

always @(posedge clock)

begin
a=b +c;
X = (y << 4);
If (a>x)
begin
y=b & a;
X =(X>>2);
end
else
b = b”c;
If (X ==vy)
cC =Y,
else
y =&,
end

[Collects statistics about blocks that are executed

« A statement in a block is executed
If and only if all other statements are
executed

* Block coverage is typically
preferred over statement coverage

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

24

Code Coverage: Path Coverage

O Collects statistics about paths that are executed

always @(posedge clock)
\ a=b +c;
x=(y <<4);
If (&> Xx)

—

y=Db & a; b = b”c;

x:(x<23;/

l Limitation:
number of paths grows

path P1
25% path coverage

If (x ==y) : :
exponentially with the number
/\3;— N of conditional statements
\/

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 25

Code Coverage: Expression Coverage

L Collects statistics about parts of expressions evaluated

m For example, (x,X, + X;X,) evaluates to 1 can be broken down to
whether x,X, or X;x, or bot evaluate to 1

O A minimum input table is used
m A minimum input determining an expression is the fewest number of
Input variables that must be assigned in order for the expression to
have a Boolean value

Examples:
f=x,&X, | X; | X, f=W?2x,:%) | ¥y | X | X,
0 0 X 1 1 1 | X
0 X 0 0 1 0 | X
1 1 1 1 0 X 11
0 0 X |0

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 26

Code Coverage: Expression Coverage

O For complex expressions we decompose into layers
m For example, f=((x>y)|| (a & b)), may be decomposed into
a top layer having the expression, f = (f, || f,), and a bottom
layer consisting of f, = (x>y) and f, = (a & b)

 Suppose simulation covers the following two cases:
x,y,a,b)={(3,4,1,1),(2,51,0)}
m Coverage of f =66.67%
m Coverage of f, = 50%, Coverage of f, = 66.67%

f,=x>y | x>y f,=a&bDb a b f=11f, f, f,
0 0 0 0 X 0 0 0

1 1 0 X 0 1 1 X

1 1 1 1 X 1

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 27

State Coverage

 State coverage calculates the fraction of states visited during
simulation

m The states are extracted from the RTL code

O Example:

initial present_state = "S1;
always @(posedge clock)
case ({present_state, in})
{"S1, a} : next_state = S3;
{°S2, a} : next_state = S1;

{'S3, a} : next_state = S2; a
{"S1, b}:

next state = "S2; '
. . b
{'S3, b} : next_state = S3;

endcase

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 28

Other state-based coverage metrics

O Transition coverage

m Percentage of transitions of the state machine covered
during simulation

@ Sequence coverage

m Percentage of user-defined state sequences that are
traversed during simulation

O Toggle coverage

m Measures whether and how many times nets, nodes,
significant variables, ports, and buses toggle.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

29

Code Instrumentation I

J The RTL code is instrumented to detect statement execution and
collect coverage data

m This is done by adding user-defined PLI tasks to the RTL
code

e \Whenever a statement is executed, a PLI task is called to
record the activity
m Simulators support specific types of callbacks at specific
simulation points

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 30

Instrumented RTL Code !

Instrumented PLI:

always @(posedge clock) void C1()
begin {
$C1();

a=b+c, time = $tf_gettime(): //get sim time
X =(y <<4), C1_call_frequency[time].freq++;
if (@ > x)
begin }
$C2(),

$C _exp(y, b, a); //y=b&a;

X = (X >>2);
end

else begin Instrumented PLI for computing
$C3(); expression coverage
b = b”c;
end
end

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 31

Functional Coverage Example

cache status signals
g

processor A |:

processor B

I snoop signals

[cache A]

cache B

main
memory

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

32

Functional Cov

cache status signals

processor A

[
»

snoop signals

| processor B

main
memory

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

System bus
Processor Cache Action Result
1. Processor Areads D Cache A: Read from main memory and mark | Cache A:D
Cache B: it exclusive (exclusive)
Cache B:
2. Processor B reads D Cache A:D Copy D to cache B and make both | Cache A:D
(exclusive) copies shared (shared)
Cache B: Cache B:D
(shared)
3. Processor AwritesD | Cache A:D Invalidate all copies of D, update | Cache A:D
(shared) cache A, and mark it modified (modified)
Cache B:D Cache B:
(shared) noD
4. Processor B reads D Cache A:D Deposit D of cache A to memory, | Cache A:D
(modified) copy D to cache B, mark both (shared)
Cache B: shared Cache B:D
(shared)

33

	Agenda
	Exhaustive Simulation is Infeasible
	What’s the Alternative?
	Example
	Bug Hunting: Main Tasks
	Hierarchical Verification
	System Level
	Unit and Module Levels
	Test Plan
	Some Notations
	Categories of Test Scenarios
	Does this cover everything?
	Example: Disk Controller
	Disk Controller
	Test Scenarios
	Test Scenarios
	Pseudo-random Test Generation
	Coverage Driven Random Verification
	Layered Random Test Architecture
	Directed versus Constrained Random
	Coverage Metrics
	Code Coverage: Statement Coverage
	Code Coverage: Block Coverage
	Code Coverage: Path Coverage
	Code Coverage: Expression Coverage
	Code Coverage: Expression Coverage
	State Coverage
	Other state-based coverage metrics
	Code Instrumentation
	Instrumented RTL Code
	Functional Coverage Example
	Functional Cov

