
Test Scenarios and CoverageTest Scenarios and CoverageTest Scenarios and Coverage

Pallab Pallab DasguptaDasgupta
Professor, Dept. of Computer Science & Professor, Dept. of Computer Science & EnggEngg.,.,
ProfessorProfessor--inin--charge, AVLSI Design Lab,charge, AVLSI Design Lab,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Testing & Verification
Dept. of Computer Science & Engg, IIT Kharagpur
Testing & VerificationTesting & Verification
Dept. of Computer Science & Dept. of Computer Science & EnggEngg, IIT Kharagpur, IIT Kharagpur

2© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

AgendaAgenda

Hierarchical VerificationHierarchical Verification

Test PlanTest Plan

Pseudorandom Test GeneratorPseudorandom Test Generator

Verification CoverageVerification Coverage

Reference:Reference: Hardware Design Verification, Hardware Design Verification, William K LamWilliam K Lam
Prentice Hall Modern Semiconductor Design SeriesPrentice Hall Modern Semiconductor Design Series

3© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Exhaustive Simulation is InfeasibleExhaustive Simulation is Infeasible

Consider a sequential circuit having N Consider a sequential circuit having N FFsFFs and M inputsand M inputs

Exhaustive verification by simulationExhaustive verification by simulation
■■ Reach each state from the initial stateReach each state from the initial state
■■ At each state verify the behavior for each input vectorAt each state verify the behavior for each input vector

UpperUpper--bound:bound:
■■ Number of states: S = O(2Number of states: S = O(2NN))
■■ Number of input vectors at a state: R = O(2Number of input vectors at a state: R = O(2MM))
■■ To reach a state we may have to pass through O(S) states, To reach a state we may have to pass through O(S) states,

where each transition requires an input vectorwhere each transition requires an input vector
■■ Total number of input vectors = O(S X R) = O(2Total number of input vectors = O(S X R) = O(2M+NM+N))

4© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

What’s the Alternative?What’s the Alternative?

The design must be simulated using a well selected subset of The design must be simulated using a well selected subset of
input patternsinput patterns

Well selected?Well selected?
■■ Test plans and test scenariosTest plans and test scenarios
■■ CoverageCoverage

What do we observe?What do we observe?
■■ Detecting errors by comparing a designDetecting errors by comparing a design’’s primary outputs s primary outputs

with the desired responses may not be the most efficientwith the desired responses may not be the most efficient
●● Internal error may take many cycles to propagate to a Internal error may take many cycles to propagate to a

primary output to be detectedprimary output to be detected
●● It may not always propagate to the primary outputIt may not always propagate to the primary output

■■ We must carefully choose the signals to be observedWe must carefully choose the signals to be observed

5© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

ExampleExample

Instruction
Memory

data
addr

InstructionInstruction
MemoryMemory

datadata
addraddr

Data
Memory

data
addr

DataData
MemoryMemory

data data
addraddr

ALUALU

MUXMUXMUX

register
file

registerregister
filefile

PCPCPC

PC
logic
PCPC

logiclogic

control
logic

controlcontrol
logiclogic

I/OI/OI/O

observationobservation
pointpoint

site of errorsite of error

An error of the ALU may be observed many cycles after it is simuAn error of the ALU may be observed many cycles after it is simulatedlated

internal businternal bus

6© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Bug Hunting: Bug Hunting: Main TasksMain Tasks

Enumerating input possibilities with test plansEnumerating input possibilities with test plans

Enhancing output Enhancing output observabilityobservability with assertionswith assertions

Bridging the gap between exhaustive search and practical Bridging the gap between exhaustive search and practical
execution with coverage measuresexecution with coverage measures

7© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Hierarchical VerificationHierarchical Verification

architecturearchitecture specificationsspecifications

system system
specificationsspecifications

unit unit
specificationsspecifications

module module
specificationsspecifications

8© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

System LevelSystem Level

ProblemProblem--11
■■ Verifying interconnections of the subsystems that make up Verifying interconnections of the subsystems that make up

the systemthe system
●● Units are assumed to be verifiedUnits are assumed to be verified
●● Often replaced by abstract functional modelsOften replaced by abstract functional models

Example: Instruction Set Simulators for CPUsExample: Instruction Set Simulators for CPUs

ProblemProblem--22
■■ Verifying the complete system at the level of implementationVerifying the complete system at the level of implementation

●● Very expensive Very expensive –– high complexity and slow runtimehigh complexity and slow runtime
●● Hardware acceleration preferredHardware acceleration preferred
●● Post silicon debug Post silicon debug –– emerging strategyemerging strategy

9© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Unit and Module LevelsUnit and Module Levels

A unit can be a large functional unitA unit can be a large functional unit
■■ Could also be a CPU coreCould also be a CPU core

Each unit can have several modulesEach unit can have several modules
■■ Possibility of using formalPossibility of using formal

10© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Test PlanTest Plan

Steps in creating a test plan:Steps in creating a test plan:

■■ Extract functionality from architectural specificationsExtract functionality from architectural specifications

■■ Prioritize functionalityPrioritize functionality

■■ Create test casesCreate test cases

■■ Track progressTrack progress

11© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Some NotationsSome Notations

QQ00 : : valid initial statesvalid initial states

SS : : valid statesvalid states

II : : valid inputsvalid inputs

OO : : valid outputsvalid outputs

QQ′′00 : : invalid initial statesinvalid initial states

SS′′ : : invalid statesinvalid states

II′′ : : invalid inputsinvalid inputs

OO′′ : : invalid outputsinvalid outputs

X X Y|Y|II : : transition from state X to state Y under input transition from state X to state Y under input I I

X X ⇒⇒ Y|Y|II : : sequence of transitions from state X leading sequence of transitions from state X leading
to state Y under input sequence to state Y under input sequence I I

ΩΩ : : dondon’’t care or wild cardt care or wild card

ΩΩ ΩΩ||ΩΩ is the set of all possible input and behavior of the designis the set of all possible input and behavior of the design

12© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Categories of Test ScenariosCategories of Test Scenarios

1.1. ΩΩ ΩΩ||II′′ In this case the design receives an input not specified in the In this case the design receives an input not specified in the
specification. May happen if the design is used in an unintendedspecification. May happen if the design is used in an unintended environment.environment.

2.2. SS′′ ΩΩ||ΩΩ The design is in an invalid state. Verify how the design recoverThe design is in an invalid state. Verify how the design recovers.s.

3.3. S S SS′′||II The design is in a valid state, receives a valid input, and yet The design is in a valid state, receives a valid input, and yet
reaches an invalid state. This is a bug!!reaches an invalid state. This is a bug!!

4.4. S S S|S|II All is well!!All is well!!

5.5. ΩΩ ⇒⇒ QQ00 PowerPower--on tests. Start from an arbitrary state and reach a valid initiaon tests. Start from an arbitrary state and reach a valid initial l
state.state.

6.6. ΩΩ ⇒⇒ QQ′′00 The design reaches an invalid state after powerThe design reaches an invalid state after power--on. This is a bug!!on. This is a bug!!

13© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Does this cover everything?Does this cover everything?

1.1. ΩΩ ⇒⇒ QQ00 and and ΩΩ ⇒⇒ QQ′′00 together verify together verify ΩΩ ⇒⇒ ΩΩ00

2.2. S S SS′′||II and and S S S|S|II together verify together verify S S ΩΩ||II

3.3. Combining Combining S S ΩΩ||I I with with SS′′ ΩΩ||ΩΩ covers covers ΩΩ ΩΩ||II

4.4. Combining Combining ΩΩ ΩΩ||I I with with ΩΩ ΩΩ||II′′ covers the entire transition space, covers the entire transition space,
namely namely ΩΩ ΩΩ||ΩΩ

Hence, if each of the six categories are thoroughly verified, thHence, if each of the six categories are thoroughly verified, the design in e design in
thoroughly verified.thoroughly verified.

14© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Example: Example: Disk ControllerDisk Controller

A disk is partitioned into concentric circular strips called A disk is partitioned into concentric circular strips called tracks tracks
and each track is partitioned into blocks called and each track is partitioned into blocks called sectors.sectors.

Six types of registersSix types of registers
■■ Command Command –– contains the command being performed on diskcontains the command being performed on disk
■■ Track Track –– tracktrack numbernumber
■■ Sector Sector –– sectorsector numbernumber
■■ DataData--out out –– data to be writtendata to be written
■■ DataData--in in –– data readdata read
■■ Status Status –– shows the state of disk and status of the operationshows the state of disk and status of the operation

CommandsCommands
■■ RESTORE, SEEK, STEPRESTORE, SEEK, STEP--IN, STEPIN, STEP--OUT, READ SECTOR, WRITE SECTOR, OUT, READ SECTOR, WRITE SECTOR,

READ ADDRESS, READ TRACK, WRITE TRACK, FORCE INTERRUPTREAD ADDRESS, READ TRACK, WRITE TRACK, FORCE INTERRUPT
■■ The RESTORE command determines the head position when the The RESTORE command determines the head position when the

disk drive is first turned on.disk drive is first turned on.

15© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Disk ControllerDisk Controller

command registercommand register

track registertrack register

sector registersector register

datadata--out registerout register

datadata--in registerin register
re

co
rd

 n
ot

 fo
un

d
re

co
rd

 n
ot

 fo
un

d
de

let
ed

 se
ct

or
de

let
ed

 se
ct

or
wr

ite
 p

ro
te

ct
wr

ite
 p

ro
te

ct
CR

C
er

ro
r

CR
C

er
ro

r
m

ot
or

 o
n

m
ot

or
 o

n
lo

st
 d

at
a

lo
st

 d
at

a
da

ta
 re

qu
es

t
da

ta
 re

qu
es

t
bu

sy
bu

sy

status registerstatus register
7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

CSCS
RWRW
RdRd

DreqDreq
addressaddress

datadata
track00track00

IrqIrq
motor onmotor on

stepstep
directiondirection

disk controllerdisk controller

16© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Test ScenariosTest Scenarios

1.1. ΩΩ ΩΩ||II′′ Test cases send illegal inputs into the controller. Test cases send illegal inputs into the controller.
Example: Example: address in a forbidden range address in a forbidden range

2.2. SS′′ ΩΩ||ΩΩ Set the controller in an illegal state, such as Set the controller in an illegal state, such as illegal illegal opcodeopcode in in
command register, outcommand register, out--ofof--range data in track and sector registers.range data in track and sector registers. Observe Observe
whether the controller detects the problem and recovers from it.whether the controller detects the problem and recovers from it.

3.3. S S SS′′||II Try to drive it to invalid states. Bug hunting.Try to drive it to invalid states. Bug hunting.
Example: Example: Given the head position, are there track values that would Given the head position, are there track values that would
produce a wrong value from signal produce a wrong value from signal directiondirection? ?

4.4. S S S|S|II Try to establish that it reaches only valid states from a valid Try to establish that it reaches only valid states from a valid state.state.
Example: Example: For given values in the track and sector registers, are the For given values in the track and sector registers, are the
outputs from outputs from stepstep and and directiondirection correct?correct?

17© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Test ScenariosTest Scenarios

5.5. ΩΩ ⇒⇒ QQ00

What are the values of the registers when the controller is firsWhat are the values of the registers when the controller is first powered t powered
on? Are these values correct or expected?on? Are these values correct or expected?
Immediately after powerImmediately after power--on, do registers on, do registers track track and and sector sector contain the contain the
correct track and sector number of the head position if the correct track and sector number of the head position if the RESTORERESTORE
command is executed?command is executed?

6.6. ΩΩ ⇒⇒ QQ′′00
Under what conditions will the controller enter an illegal stateUnder what conditions will the controller enter an illegal state on poweron power--
on? on?

18© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

PseudoPseudo--random Test Generationrandom Test Generation

program Test (input clk);program Test (input clk);
class Bus; class Bus;

rand bit [15:0] addr; rand bit [15:0] addr;
endclassendclass

Bus B1=new;Bus B1=new;
initial begininitial begin

B1.randomize() with {addr <= 128;};B1.randomize() with {addr <= 128;};
…………
@(posedge clk);@(posedge clk);
B1.randomize () with {addr > 128 && addr <= 1024;};B1.randomize () with {addr > 128 && addr <= 1024;};
…………

endend
endprogramendprogram

19© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Coverage Driven Random VerificationCoverage Driven Random Verification

models developed models developed
at the behavioral level at the behavioral level

20© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Layered Random Test ArchitectureLayered Random Test Architecture

GeneratorsGeneratorsGenerators

TransactorTransactorTransactor

TestsTestsTests

DriverDriverDriver

Self-CheckSelfSelf--CheckCheck

AssertionsAssertionsAssertions

CheckerCheckerChecker

MonitorMonitorMonitor

DUTDUTDUT

Verification Verification
EnvironmentEnvironment

Test BenchTest Benchcreates
random

transactions

creates
random

transactions

executes
transactions

executes
transactions

supplies data
to the DUT

supplies data
to the DUT

creates
interesting
conditions

creates
interesting
conditions

identifies
transactions
identifies

transactions
checks

correctness
checks

correctness

observes data
from the DUT

observes data
from the DUT

21© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Directed versus Constrained RandomDirected versus Constrained Random

Coverage-driven
methodology

CoverageCoverage--drivendriven
methodologymethodology

goalgoal

Directed
methodology

DirectedDirected
methodologymethodology

productivity gainproductivity gain

self checking randomself checking random
environment development timeenvironment development time

TimeTime

%
 %
 Te

st
ca

se
s

Te
st

ca
se

s

22© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Coverage MetricsCoverage Metrics

Code CoverageCode Coverage
■■ Checks how thoroughly the code of a design is exercised by Checks how thoroughly the code of a design is exercised by

a suite of simulationsa suite of simulations
●● For example, For example, the percentage of RTL code of a FIFO the percentage of RTL code of a FIFO

simulated by a simulation suitesimulated by a simulation suite

Parameter CoverageParameter Coverage
■■ Checks the extent that dimensions and parameters in Checks the extent that dimensions and parameters in

functional units are stressedfunctional units are stressed
●● For example, For example, the range of depth that a FIFO encounters the range of depth that a FIFO encounters

during a simulationduring a simulation

Functional CoverageFunctional Coverage
■■ Accounts for the amount of operational features or functions Accounts for the amount of operational features or functions

in a design that are exercisedin a design that are exercised
●● For example, For example, did we check all the operations (push, pop) did we check all the operations (push, pop)

and all the conditions (full, empty)?and all the conditions (full, empty)?

23© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Code covered when a>xCode covered when a>x
and x = yand x = y

Code Coverage: Code Coverage: Statement CoverageStatement Coverage
Collects statistics about statements that are executedCollects statistics about statements that are executed

always @(always @(posedgeposedge clock)clock)
beginbegin

a = b + c;a = b + c;
x = (y << 4);x = (y << 4);
if (a > x)if (a > x)
beginbegin

y = b & a;y = b & a;
x = (x >> 2);x = (x >> 2);

endend
elseelse

b = b = b^cb^c;;
if (x == y)if (x == y)

c = y;c = y;
elseelse

y = a;y = a;
endend

24© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Code Coverage: Code Coverage: Block CoverageBlock Coverage
Collects statistics about blocks that are executedCollects statistics about blocks that are executed

always @(always @(posedgeposedge clock)clock)
beginbegin

a = b + c;a = b + c;
x = (y << 4);x = (y << 4);
if (a > x)if (a > x)
beginbegin

y = b & a;y = b & a;
x = (x >> 2);x = (x >> 2);

endend
elseelse

b = b = b^cb^c;;
if (x == y)if (x == y)

c = y;c = y;
elseelse

y = a;y = a;
endend

•• A statement in a block is executedA statement in a block is executed
if and only if all other statements areif and only if all other statements are
executedexecuted

•• Block coverage is typically Block coverage is typically
preferred over statement coveragepreferred over statement coverage

25© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Code Coverage: Code Coverage: Path CoveragePath Coverage
Collects statistics about paths that are executedCollects statistics about paths that are executed

always @(always @(posedgeposedge clock)clock)
a = b + c;a = b + c;
x = (y << 4);x = (y << 4);

if (a > x)if (a > x)

y = b & a;y = b & a; b = b = b^cb^c;;
x = (x >> 2);x = (x >> 2);

if (x == y)if (x == y)

c = y;c = y; y = a;y = a;

path P1path P1
25% path coverage25% path coverage

Limitation:Limitation:
number of paths growsnumber of paths grows
exponentially with the numberexponentially with the number
of conditional statementsof conditional statements

26© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Code Coverage: Code Coverage: Expression CoverageExpression Coverage

Collects statistics about parts of expressions evaluatedCollects statistics about parts of expressions evaluated
■■ For example, (xFor example, (x11xx22 + x+ x33xx44) evaluates to 1 can be broken down to) evaluates to 1 can be broken down to

whether xwhether x11xx22 or xor x33xx44 or or botbot evaluate to 1evaluate to 1

A A minimum input table minimum input table is usedis used
■■ A minimum input determining an expression is the fewest number oA minimum input determining an expression is the fewest number of f

input variables that must be assigned in order for the expressioinput variables that must be assigned in order for the expression to n to
have a Boolean valuehave a Boolean value

f = xf = x11 & x& x22 xx11 xx22

00 00 XX

00 XX 00

11 11 11

f = (y ? xf = (y ? x11 : x: x22)) yy xx11 xx22

11 11

11

00

00 00 X X 00

11 XX

00 00 X X

11 X X 11

Examples:Examples:

27© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Code Coverage: Code Coverage: Expression CoverageExpression Coverage

ff11 = x>y= x>y x>yx>y

00 00

11 11

For complex expressions we decompose into layersFor complex expressions we decompose into layers
■■ For example, f = ((x > y) || (a & b)), may be decomposed into For example, f = ((x > y) || (a & b)), may be decomposed into

a top layer having the expression, f = (fa top layer having the expression, f = (f11 || f|| f22), and a bottom), and a bottom
layer consisting of flayer consisting of f11 = (x>y) and f= (x>y) and f22 = (a & b)= (a & b)

Suppose simulation covers the following two cases:Suppose simulation covers the following two cases:
(x, y, a, b) = { (3, 4, 1, 1), (2, 5, 1, 0) }(x, y, a, b) = { (3, 4, 1, 1), (2, 5, 1, 0) }
■■ Coverage of f = 66.67%Coverage of f = 66.67%
■■ Coverage of fCoverage of f11 = 50%, Coverage of f= 50%, Coverage of f22 = 66.67%= 66.67%

ff22 = a & b= a & b aa bb

00 00 XX

00 XX 00

11 11 11

f = ff = f11 || f|| f22 ff11 ff22

00 00 00

11 11 X X

11 X X 11

28© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

State CoverageState Coverage

State coverage calculates the fraction of states visited during State coverage calculates the fraction of states visited during
simulationsimulation
■■ The states are extracted from the RTL codeThe states are extracted from the RTL code

Example:Example:
initial initial present_statepresent_state = = `̀S1;S1;
always @(always @(posedgeposedge clock)clock)

case ({case ({present_statepresent_state, in}), in})
{`S1, a} : {`S1, a} : next_statenext_state = `S3;= `S3;
{`S2, a} : {`S2, a} : next_statenext_state = `S1;= `S1;
{`S3, a} : {`S3, a} : next_statenext_state = `S2;= `S2;
{`S1, b} : {`S1, b} : next_statenext_state = `S2;= `S2;
{`S3, b} : {`S3, b} : next_statenext_state = `S3;= `S3;

endcaseendcase

SS11 SS22

SS33

aa

aa aa

bb

bb

SS44

29© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Other stateOther state--based coverage metricsbased coverage metrics

Transition coverageTransition coverage
■■ Percentage of transitions of the state machine covered Percentage of transitions of the state machine covered

during simulationduring simulation

Sequence coverageSequence coverage
■■ Percentage of Percentage of useruser--defineddefined state sequences that are state sequences that are

traversed during simulationtraversed during simulation

Toggle coverageToggle coverage
■■ Measures whether and how many times nets, nodes, Measures whether and how many times nets, nodes,

significant variables, ports, and buses toggle.significant variables, ports, and buses toggle.

30© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Code InstrumentationCode Instrumentation

The RTL code is instrumented to detect statement execution and The RTL code is instrumented to detect statement execution and
collect coverage datacollect coverage data
■■ This is done by adding userThis is done by adding user--defined PLI tasks to the RTL defined PLI tasks to the RTL

codecode
●● Whenever a statement is executed, a PLI task is called to Whenever a statement is executed, a PLI task is called to

record the activityrecord the activity
■■ Simulators support specific types of Simulators support specific types of callbackscallbacks at specific at specific

simulation pointssimulation points

31© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Instrumented RTL CodeInstrumented RTL Code
always @(always @(posedgeposedge clock)clock)
beginbegin

$C1();$C1();
a = b + c;a = b + c;
x = (y << 4);x = (y << 4);
if (a > x)if (a > x)
beginbegin

$C2();$C2();
$$C_exp(yC_exp(y, b, a); // y = , b, a); // y = b&ab&a;;
x = (x >> 2);x = (x >> 2);

endend
else beginelse begin

$C3();$C3();
b = b = b^cb^c;;

endend
endend

Instrumented PLI:Instrumented PLI:
void C1()void C1()
{{

time = $time = $tf_gettimetf_gettime(); //get (); //get simsim timetime
C1_call_frequency[time].freq++;C1_call_frequency[time].freq++;

}}

Instrumented PLI for computingInstrumented PLI for computing
expression coverageexpression coverage

32© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Functional Coverage ExampleFunctional Coverage Example

processor Aprocessor A processor Bprocessor B

cache Acache Acache A cache Bcache Bcache B

cache status signalscache status signals

snoop signalssnoop signals main
memory

main
memory

system bussystem bus

33© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Functional Functional CovCov processor Aprocessor A processor Bprocessor B

cache Acache Acache A cache Bcache Bcache B

cache status signalscache status signals

snoop signalssnoop signals
main

memory
main

memory

system bussystem bus

ProcessorProcessor CacheCache ActionAction ResultResult
1. Processor A reads D1. Processor A reads D Cache A:Cache A:

Cache B:Cache B:
Read from main memory and mark Read from main memory and mark
it exclusiveit exclusive

Cache A:D Cache A:D
(exclusive)(exclusive)
Cache B:Cache B:

2. Processor B reads D2. Processor B reads D Cache A:D Cache A:D
(exclusive)(exclusive)
Cache B:Cache B:

Copy D to cache B and make both Copy D to cache B and make both
copies sharedcopies shared

Cache A:D Cache A:D
(shared)(shared)
Cache B:D Cache B:D
(shared)(shared)

3. Processor A writes D3. Processor A writes D Cache A:D Cache A:D
(shared)(shared)
Cache B:D Cache B:D
(shared)(shared)

Invalidate all copies of D, update Invalidate all copies of D, update
cache A, and mark it modifiedcache A, and mark it modified

Cache A:D Cache A:D
(modified)(modified)
Cache B: Cache B:
no Dno D

4. Processor B reads D4. Processor B reads D Cache A:D Cache A:D
(modified)(modified)
Cache B:Cache B:

Deposit D of cache A to memory, Deposit D of cache A to memory,
copy D to cache B, mark both copy D to cache B, mark both
sharedshared

Cache A:D Cache A:D
(shared)(shared)
Cache B:D Cache B:D
(shared)(shared)

	Agenda
	Exhaustive Simulation is Infeasible
	What’s the Alternative?
	Example
	Bug Hunting: Main Tasks
	Hierarchical Verification
	System Level
	Unit and Module Levels
	Test Plan
	Some Notations
	Categories of Test Scenarios
	Does this cover everything?
	Example: Disk Controller
	Disk Controller
	Test Scenarios
	Test Scenarios
	Pseudo-random Test Generation
	Coverage Driven Random Verification
	Layered Random Test Architecture
	Directed versus Constrained Random
	Coverage Metrics
	Code Coverage: Statement Coverage
	Code Coverage: Block Coverage
	Code Coverage: Path Coverage
	Code Coverage: Expression Coverage
	Code Coverage: Expression Coverage
	State Coverage
	Other state-based coverage metrics
	Code Instrumentation
	Instrumented RTL Code
	Functional Coverage Example
	Functional Cov

