
SimulatorsSimulatorsSimulators

Pallab Pallab DasguptaDasgupta
Professor, Dept. of Computer Science & Professor, Dept. of Computer Science & EnggEngg.,.,
ProfessorProfessor--inin--charge, AVLSI Design Lab,charge, AVLSI Design Lab,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Testing & Verification
Dept. of Computer Science & Engg, IIT Kharagpur
Testing & VerificationTesting & Verification
Dept. of Computer Science & Dept. of Computer Science & EnggEngg, IIT Kharagpur, IIT Kharagpur

2© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

AgendaAgenda

The CompilersThe Compilers

The SimulatorsThe Simulators

Simulator TaxonomySimulator Taxonomy

Simulator OperationsSimulator Operations

Reference:Reference: Hardware Design Verification, Hardware Design Verification, William K LamWilliam K Lam
Prentice Hall Modern Semiconductor Design SeriesPrentice Hall Modern Semiconductor Design Series

3© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Major Components of a SimulatorMajor Components of a Simulator

Front-End
parser, elaborator

FrontFront--EndEnd
parser, elaboratorparser, elaborator

Back-End
analysis, optimization,

code generation

BackBack--EndEnd
analysis, optimization,analysis, optimization,

code generationcode generation

Simulation EngineSimulation Engine Simulation ControlSimulation Control

Input circuitInput circuit

UserUser

CompilerCompiler

SimulatorSimulator

4© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Parser and ElaboratorParser and Elaborator

The frontThe front--end portion of a compiler processes the input circuit and end portion of a compiler processes the input circuit and
builds an internal representation of the circuitbuilds an internal representation of the circuit
■■ ParserParser: :

●● Interprets the input according to the languageInterprets the input according to the language’’s grammar s grammar
and creates corresponding internal components / data and creates corresponding internal components / data
structuresstructures

■■ ElaboratorElaborator::
●● Substitutes module instantiations with their definitions and Substitutes module instantiations with their definitions and

connects the internal objectsconnects the internal objects
The end result is a complete description of the input The end result is a complete description of the input
circuitcircuit

5© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Compiler BackCompiler Back--EndEnd

Functionality depends on the type of simulator:Functionality depends on the type of simulator:

■■ Compiled code simulatorCompiled code simulator
●● HighHigh--level codelevel code
●● Native codeNative code
●● Emulation codeEmulation code

■■ Interpreted simulatorInterpreted simulator
●● The input circuit is compiled into an intermediate languageThe input circuit is compiled into an intermediate language
●● Can be regarded as a virtual machineCan be regarded as a virtual machine

6© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Interpreted SimulationInterpreted Simulation

fetchfetchfetch

decodedecodedecode

executeexecuteexecute

Write registers/memoryWrite registers/memoryWrite registers/memory

exception/interruptexception/interruptexception/interrupt interfaceinterfaceinterface

Interpreted codeInterpreted code

UserUser

7© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Interpreted CodeInterpreted Code
//circuit being simulated//circuit being simulated
initialinitial
beginbegin
clkclk = 1= 1’’b0;b0;
#1 #1 clkclk = ~= ~clkclk;;
#1 #1 clkclk = ~= ~clkclk;;
#1 finish;#1 finish;

endend

always @(always @(clkclk))
beginbegin
a = b & c;a = b & c;
if (a == 1if (a == 1’’b0)b0)
p = q <<3;p = q <<3;

endend

//generated interpreted code//generated interpreted code
assign(clkassign(clk, 0);, 0);
invert(clkinvert(clk););
evaluate(b1);evaluate(b1);
invert(clkinvert(clk););
evaluate(b1);evaluate(b1);
exit();exit();

b1: //definition of routine b1b1: //definition of routine b1
{{
and(aand(a, b, c);, b, c);
if (a, 0) if (a, 0) left_shift(pleft_shift(p, q, 3);, q, 3);

}}

8© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Compiled CodeCompiled Code
//circuit being simulated//circuit being simulated
initialinitial
beginbegin
clkclk = 1= 1’’b0;b0;
#1 #1 clkclk = ~= ~clkclk;;
#1 #1 clkclk = ~= ~clkclk;;
#1 finish;#1 finish;

endend

always @(always @(clkclk))
beginbegin
a = b & c;a = b & c;
if (a == 1if (a == 1’’b0)b0)
p = q <<3;p = q <<3;

endend

main()main()
{{

intint clkclk;;
intint i;i;
intint a, b, c, p, q;a, b, c, p, q;
clkclk=0 ;=0 ;
for (i=0; i<2; i++) {for (i=0; i<2; i++) {

clkclk = (= (clkclk==0) ? 1:0 ;==0) ? 1:0 ;
a = a = b&cb&c;;
if (a==0)if (a==0)

p = q<<3;p = q<<3;
}}

}}

9© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Simulator TypesSimulator Types

Intermediate codeIntermediate codeIntermediate code

C/C++C/C++C/C++ C/C++ compilerC/C++ compilerC/C++ compiler

Host machine codeHost machine codeHost machine code

Hardware executableHardware executableHardware executable

Interpreted simulatorInterpreted simulator

Host machineHost machine

Host machineHost machine

Hardware simulatorHardware simulator

inputinput
circuitcircuit

SimulatorSimulator
typetype

interpretedinterpreted

high high -- levellevel

host machinehost machine

hardwarehardware

10© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Compiled Simulation System StructureCompiled Simulation System Structure

Circuit structure:Circuit structure:
connectivityconnectivity
component functionalitycomponent functionality

Node / variableNode / variable
valuesvalues

Instruction memoryInstruction memory Data memoryData memory

SchedulingScheduling
Component EvaluationComponent Evaluation
Time AdvanceTime Advance

SimulationSimulation
ControlControl

Simulation engineSimulation engine

Compiled CodeCompiled Code

UserUser

11© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Simulator ArchitecturesSimulator Architectures

■■ Event driven simulationEvent driven simulation
●● Evaluates a component only when there is an event at an Evaluates a component only when there is an event at an

inputinput
This event ripples throughout the circuit until it This event ripples throughout the circuit until it
causes no more events, at which time evaluation causes no more events, at which time evaluation
stopsstops

■■ Cycle based simulationCycle based simulation
●● Simulation performed only on cycle boundariesSimulation performed only on cycle boundaries

The circuit must have clearly defined clocksThe circuit must have clearly defined clocks
Asynchronous circuits and circuits with Asynchronous circuits and circuits with
combinational loops cannot be simulated combinational loops cannot be simulated

12© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Event Driven SimulationEvent Driven Simulation

Timing wheel / Event ManagerTiming wheel / Event Manager

Scheduling semanticsScheduling semantics

Update and Evaluation EventsUpdate and Evaluation Events

Event propagationEvent propagation

Time advancement and oscillation detectionTime advancement and oscillation detection

EventEvent--driven scheduling algorithmdriven scheduling algorithm

13© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Timing Wheel / Event ManagerTiming Wheel / Event Manager

Events are stored in an event manager, which sorts them on timeEvents are stored in an event manager, which sorts them on time
■■ Events occurring at the same time have an arbitrary order of Events occurring at the same time have an arbitrary order of

occurrenceoccurrence

The event queue may be implemented as a circular queue or a The event queue may be implemented as a circular queue or a
timing wheeltiming wheel

TT00

TT11

TT−−11

event1 event2 event1 event2 event1 event2

event1 event2 event1 event2 event1 event2

event1 event2 event1 event2 event1 event2

currentcurrent
simulationsimulation
timetime

14© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

ExampleExample

15© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Scheduling SemanticsScheduling Semantics

In In VerilogVerilog, events at a simulation time are stratified into five , events at a simulation time are stratified into five
layers of events in the following order of processing:layers of events in the following order of processing:
■■ ActiveActive

●● The processing of all active events is called a The processing of all active events is called a simulation cyclesimulation cycle
■■ InactiveInactive

●● Example: (#0 x=y) Example: (#0 x=y) –– occurs at the current simulation time, but occurs at the current simulation time, but
after all active event timesafter all active event times

■■ NonNon--blocking assign updateblocking assign update
●● First it samples the values of the rightFirst it samples the values of the right--side variables. Then it side variables. Then it

updates the leftupdates the left--side variablesside variables
■■ MonitorMonitor

●● Executed as the last events at the current simulation time to Executed as the last events at the current simulation time to
capture steady state values of variables capture steady state values of variables

■■ Future eventsFuture events
●● Future eventsFuture events

For each time slot, in reality four subFor each time slot, in reality four sub--queues are maintained for the four queues are maintained for the four
groups of events.groups of events.

16© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

ExampleExample

always @(always @(posedgeposedge clock)clock)
beginbegin

x = a;x = a;
endend

always @(always @(posedgeposedge clock)clock)
beginbegin

x = b;x = b;
y <= x;y <= x;
y = c;y = c;

endend

x=a and x=b are active events, and their order of execution is ax=a and x=b are active events, and their order of execution is arbitraryrbitrary
The value of y is either a or b, but never c, since y <= x is exThe value of y is either a or b, but never c, since y <= x is executed after y=cecuted after y=c

17© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Update and Evaluation EventsUpdate and Evaluation Events

When an event is placed in a queue, it only means that the eventWhen an event is placed in a queue, it only means that the event
may happen. Whether it actually will happen has to be evaluatedmay happen. Whether it actually will happen has to be evaluated

■■ An An update eventupdate event occurs when a variable or a node changes occurs when a variable or a node changes
its valueits value

■■ When an update event has occurred, all processes sensitive When an update event has occurred, all processes sensitive
to the variable or node are triggered and must be evaluated.to the variable or node are triggered and must be evaluated.

●● This evaluation process is called an This evaluation process is called an evaluation eventevaluation event

●● If an evaluation event changes the values of some If an evaluation event changes the values of some
variables, then update events are generated for the variables, then update events are generated for the
affected variablesaffected variables

■■ Update events simply replace the existing value of a variable Update events simply replace the existing value of a variable
or node with the new valueor node with the new value

18© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

ExampleExample

At time 1, input b=1 and input a has a rising transition (updateAt time 1, input b=1 and input a has a rising transition (update event)event)
■■ This triggers an evaluation event for the AND gateThis triggers an evaluation event for the AND gate
■■ Since delay from a to c is 3, a future event, E1, for output c aSince delay from a to c is 3, a future event, E1, for output c at t

time 4 is scheduled time 4 is scheduled –– it appears a rising transition may occur at c it appears a rising transition may occur at c
at time 4.at time 4.

At time 2, a fall transition occurs at input bAt time 2, a fall transition occurs at input b
■■ Since delay from b to c is 1, a future event, E2, for output c aSince delay from b to c is 1, a future event, E2, for output c at t

time 3 is scheduledtime 3 is scheduled
■■ When time advances to 3, we evaluate E2 and conclude that When time advances to 3, we evaluate E2 and conclude that

output c is 0. At time 4, output c is 0. At time 4, evaluatingevaluating E1 shows that c remains at 0. E1 shows that c remains at 0.
Hence event E1 is suppressed / cancelled.Hence event E1 is suppressed / cancelled.

3ns3ns

1ns1ns

aa

bb
cc

19© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Event Validation AlgorithmEvent Validation Algorithm

AlgorithmAlgorithm

1.1. Let the present time be Let the present time be TT, , gg have have nn inputs, and the functionality inputs, and the functionality
of the gate of the gate gg be be f f ().().

2.2. For each input For each input xxii of of gg, let the value of , let the value of xxii at time at time T T –– ddii be be yyii , ,
where where ddii is the delay from is the delay from xxii to the output of to the output of gg..

3.3. The output value of The output value of gg is is f f ((yy11, , ……, , yynn).).

3ns3ns

1ns1ns

aa

bb
cc How did we validate and cancel E1 in theHow did we validate and cancel E1 in the

previous example?previous example?

20© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Event PropagationEvent Propagation

When an event has been confirmed to happen, all When an event has been confirmed to happen, all fanoutfanout gates gates
or blocks sensitive to the event must be examined for event or blocks sensitive to the event must be examined for event
propagationpropagation
■■ It is dangerous to delete a future event at the current It is dangerous to delete a future event at the current

simulation time when it appears not to happen in the futuresimulation time when it appears not to happen in the future
■■ It is interesting to note that It is interesting to note that fanoutsfanouts can change during can change during

simulationsimulation
●● ExampleExample::

gate gate A(.out(xA(.out(x),), ……) ;) ;
gate gate B(.out(yB(.out(y),), ……) ;) ;
alwaysalways
beginbegin

@x@x a=b; a=b; // // Here this block is in the Here this block is in the fanoutfanout of Aof A
@y@y b=c; b=c; // // Here it is not in the Here it is not in the fanoutfanout of Aof A

endend

21© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Time AdvancementTime Advancement

When no event for the current simulation time remains, the When no event for the current simulation time remains, the
simulation time is advancedsimulation time is advanced
■■ If a maximum number of iterations is exceeded without time If a maximum number of iterations is exceeded without time

advancement, the simulator declares that an oscillation has advancement, the simulator declares that an oscillation has
occurredoccurred

22© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

EventEvent--driven Scheduling Algorithmdriven Scheduling Algorithm

A simulation cycle for eventA simulation cycle for event--driven simulatordriven simulator
while (there are events) {while (there are events) {

if (no events for current time) advance simulation time.if (no events for current time) advance simulation time.
for each (event at the current time) {for each (event at the current time) {

// // remove the event and process as follows:remove the event and process as follows:
if (if (event is updateevent is update))

update the variables or nodesupdate the variables or nodes
schedule evaluation events for the affected processesschedule evaluation events for the affected processes

else else // // event is evaluationevent is evaluation
evaluate the processesevaluate the processes
schedule update events for outputs that changeschedule update events for outputs that change

}}
}}

23© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

CycleCycle--Based SimulatorsBased Simulators

In a sequential circuit, every time the In a sequential circuit, every time the FFsFFs change:change:
■■ many events are generated in the combinational logic,many events are generated in the combinational logic,
■■ but only the steady state is latched at the next clock edgebut only the steady state is latched at the next clock edge
■■ Evaluations of all intermediate events are wastedEvaluations of all intermediate events are wasted

CycleCycle--based simulators evaluate the combinational logic at each based simulators evaluate the combinational logic at each
clock boundaryclock boundary
■■ each gate is evaluated once in each cycleeach gate is evaluated once in each cycle

Requirement: Requirement: The circuit must have clearly defined clocks and The circuit must have clearly defined clocks and
their associated boundariestheir associated boundaries

24© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

LevelizationLevelization for gate evaluationfor gate evaluation

FFFFFF

FFFFFF

In1In1
In2In2

11 11
00 11

00 11

11 00

AA

BB

CC

DD

Q1Q1

Q2Q2

bb
cc

dd

25© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Topological Sort for Topological Sort for LevelizationLevelization

FFFFFF

FFFFFF

In1In1
In2In2

11 11
00 11

00 11

11 00

AA

BB

CC

DD

Q1Q1

Q2Q2

bb
cc

dd

Q1Q1

In1In1

In2In2

Q2Q2

AA

BB

CC

DD

13,1413,14

9,129,12

1,81,8

15,1615,16

10, 1110, 11 5,65,6

2,72,7
3,43,4

Q2Q2 Q1Q1 In1In1 AA In2In2 BB CC DD

FrontFront ListList

26© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Topological Sort Algorithm and DFSTopological Sort Algorithm and DFS
Input:Input: G(V, E)G(V, E)
Output:Output: A queue of ordered nodes called ListA queue of ordered nodes called List
Initialization:Initialization: N=1N=1

TopologicalSort(GTopologicalSort(G) {) {
while (node while (node vv in in VV is not marked visited) is not marked visited) Visit(Visit(vv););

}}

Visit(Visit(vv) {) {
mark mark vv visited;visited;
v.entryv.entry = N; N = N+1; = N; N = N+1; // // Record node entry timeRecord node entry time
for_eachfor_each ((u u = = fanoutfanout of vof v))

if (if (u is not marked visitedu is not marked visited)) Visit(Visit(uu););
v.exitv.exit = N; N = N+1;= N; N = N+1;
insert insert uu in in front front of of ListList; ; //// This line is only for topological sortThis line is only for topological sort

}}

27© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

RTL Code Scheduling for CycleRTL Code Scheduling for Cycle--based based SimSim
RTL Code:RTL Code:
always @(always @(posedgeposedge clkclk))
beginbegin

a = b;a = b;
c <= a;c <= a;
$$myPLI(amyPLI(a, b, d); , b, d); ////d is an outputd is an output
$$strobe(strobe(““aa=%d, b=%d, c=%d=%d, b=%d, c=%d””, a, b, c);, a, b, c);
e = d;e = d;

endend
assign x = a << 2;assign x = a << 2;
assign y = c;assign y = c;
gate gate1(.in1(x), .in2(y), gate gate1(.in1(x), .in2(y), ……););

Order of execution:Order of execution:
1.1. a = b;a = b;
2.2. $$myPLI(amyPLI(a, b, d);, b, d);
3.3. e = d;e = d;
4.4. assign x = a<<2; assign y = c;assign x = a<<2; assign y = c;
5.5. gate gate1(.in1(x), .in2(y), gate gate1(.in1(x), .in2(y), ……););
6.6. c <= a;c <= a;
7.7. $$strobe(strobe(““aa=%d, b=%d, c=%d=%d, b=%d, c=%d””, a, b, c);, a, b, c);

always blockalways block

assign x = a<<2;assign x = a<<2; assign y = c;assign y = c;

gate m1(.in1(x), .in2(y), …);gate m1(.in1(x), .in2(y), …);

28© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Clock Domain AnalysisClock Domain Analysis

When a circuit has multiple clocksWhen a circuit has multiple clocks

■■ Not all logic has to be evaluated at every clock transitionNot all logic has to be evaluated at every clock transition

■■ We have to determine the part of the circuit that requires We have to determine the part of the circuit that requires
evaluation at each clockevaluation at each clock’’s transitions transition

●● This task is called This task is called clock domain analysisclock domain analysis

A clock can potentially have two clock domains A clock can potentially have two clock domains –– one for a one for a
rising transition and one for a falling transitionrising transition and one for a falling transition

■■ This is because This is because FFsFFs and latches may be sensitive to and latches may be sensitive to
rising/falling transitions of the clockrising/falling transitions of the clock

A latch (levelA latch (level--sensitive) can be sensitive) can be opaque opaque or or transparent transparent depending depending
on the current level of the clock (high/low)on the current level of the clock (high/low)

29© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Clock Domain Partitioning AlgorithmClock Domain Partitioning Algorithm

1.1. Identify all Identify all FFsFFs and latches triggered by Cand latches triggered by C

2.2. For an FF or latch, back trace from its input until it arrives aFor an FF or latch, back trace from its input until it arrives at a t a

primary input, an FF, or an opaque latch. The traversed logic isprimary input, an FF, or an opaque latch. The traversed logic is

part of a clock domainpart of a clock domain

3.3. Repeat Step 2 for each of the Repeat Step 2 for each of the FFsFFs and latchesand latches

4.4. The union of all traversed logic of positiveThe union of all traversed logic of positive--triggered triggered FFsFFs and and

low transparent latches is the rising transition clock domain. low transparent latches is the rising transition clock domain.

The domain for the falling transition of the clock is similarly The domain for the falling transition of the clock is similarly

defined.defined.

30© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Clock Domain Partitioning Clock Domain Partitioning –– Multiple clocksMultiple clocks

FF
G5
FFFF
G5G5

G7G7

G2G2

C1C1

G3
D Q

G3G3
D QD Q

C2C2

G4G4

FF
G8
FFFF
G8G8

C1C1

FF
G1
FFFF
G1G1

C1C1

G6
D Q

G6G6
D QD Q

C1C1C1C1
C2C2

rising transition domainrising transition domain
of clock C1 for G1of clock C1 for G1

this latch is transparent in this domain this latch is transparent in this domain
because C2 is low when C1 rises because C2 is low when C1 rises

input of G6 should be evaluatedinput of G6 should be evaluated
just before a falling transitionjust before a falling transition
of C1. At that time G3 is opaque.of C1. At that time G3 is opaque.

31© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Hybrid SimulatorsHybrid Simulators

Compiled Event Driven SimulatorsCompiled Event Driven Simulators
■■ Components of the circuit are compiled codeComponents of the circuit are compiled code
■■ Triggering the evaluation of a component is dictated by the Triggering the evaluation of a component is dictated by the

events among the componentsevents among the components

Leveled Event Processing for ZeroLeveled Event Processing for Zero--Delay SimulationDelay Simulation
■■ Resembles cycleResembles cycle--based simulationbased simulation
■■ Main difference:Main difference:

●● CycleCycle--based simulation evaluates all circuit componentsbased simulation evaluates all circuit components
●● LevelizedLevelized eveneven--driven simulation evaluates only the ones driven simulation evaluates only the ones

with input eventswith input events

32© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Handling Combinational LoopsHandling Combinational Loops

A cycleA cycle--based simulator cannot handle combinational loops. based simulator cannot handle combinational loops.
Why?Why?

Solution: Solution: Encapsulate combinational loops in macro modelsEncapsulate combinational loops in macro models
■■ The macro models are simulated with an event driven The macro models are simulated with an event driven

simulatorsimulator
■■ The circuit with the macro models is simulated with a cycle The circuit with the macro models is simulated with a cycle

based simulatorbased simulator

Challenge: Challenge: To find and isolate all combinational loopsTo find and isolate all combinational loops

33© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Algorithm for Finding Algorithm for Finding SCCsSCCs

Input: Graph GInput: Graph G

Output: A collection of Output: A collection of SCCsSCCs in Gin G

1.1. Execute DFS on G and record the exit times for the nodesExecute DFS on G and record the exit times for the nodes
2.2. Reverse the edges of G and apply DFS to this graph, Reverse the edges of G and apply DFS to this graph,

selecting nodes in the order of decreasing exit number selecting nodes in the order of decreasing exit number
during the while loop stepduring the while loop step

3.3. The vertices of a DFS tree from Step2 form an SCC The vertices of a DFS tree from Step2 form an SCC

34© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

ExampleExample

35© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Simulator TaxonomySimulator Taxonomy

TwoTwo--State and FourState and Four--State SimulatorsState Simulators

ZeroZero-- versus Unitversus Unit--Delay SimulatorsDelay Simulators

EventEvent--Driven versus CycleDriven versus Cycle--Based SimulatorsBased Simulators

Interpreted versus Compiled SimulatorsInterpreted versus Compiled Simulators

	Agenda
	Major Components of a Simulator
	Parser and Elaborator
	Compiler Back-End
	Interpreted Simulation
	Interpreted Code
	Compiled Code
	Simulator Types
	Compiled Simulation System Structure
	Simulator Architectures
	Event Driven Simulation
	Timing Wheel / Event Manager
	Example
	Scheduling Semantics
	Example
	Update and Evaluation Events
	Example
	Event Validation Algorithm
	Event Propagation
	Time Advancement
	Event-driven Scheduling Algorithm
	Cycle-Based Simulators
	Levelization for gate evaluation
	Topological Sort for Levelization
	Topological Sort Algorithm and DFS
	RTL Code Scheduling for Cycle-based Sim
	Clock Domain Analysis
	Clock Domain Partitioning Algorithm
	Clock Domain Partitioning – Multiple clocks
	Hybrid Simulators
	Handling Combinational Loops
	Algorithm for Finding SCCs
	Example
	Simulator Taxonomy

