Simulators

Testing & Verification
Dept. of Computer Science & Engg, IIT Kharagpur

Pallab Dasgupta

Professor, Dept. of Computer Science & Engg.,
Professor-in-charge, AVLSI Design Lab,

Indian Institute of Technology Kharagpur

T

BFEERR RN
EFRE R A 0N I &

Agenda

d The Compilers

d The Simulators
d Simulator Taxonomy

d Simulator Operations

Reference: Hardware Design Verification, William K Lam
Prentice Hall Modern Semiconductor Design Series

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 2

Major Components of a Simulator

Input circuit

Front-End
parser, elaborator

Compiler <
Back-End
analysis, optimization,
code generation User
\
Simulator Simulation Engine Simulation Control

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 3

Parser and Elaborator

d The front-end portion of a compiler processes the input circuit and
builds an internal representation of the circuit
m Parser:

e Interprets the input according to the language’s grammar
and creates corresponding internal components / data
structures

m Elaborator:

e Substitutes module instantiations with their definitions and

connects the internal objects

* The end result is a complete description of the input
circuit

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

Compiler Back-End

O Functionality depends on the type of simulator:

m Compiled code simulator
e High-level code
e Native code
e Emulation code

m Interpreted simulator
e The input circuit is compiled into an intermediate language
e Can be regarded as a virtual machine

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 5

Interpreted Simulation

Interpreted COde mmm——p
> fetch

v

decode

A 4

execute

v

Write registers/memory

v

exception/interrupt >

interface

<> User

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

Interpreted Code

/[circuit being simulated /lgenerated interpreted code
initial assign(clk, 0);
begin invert(clk);

clk =1'b0; evaluate(bl);

#1 clk = ~clk; invert(clk);

#1 clk = ~clk; evaluate(bl);

#1 finish; exit();
end

bl: //definition of routine bl

always @(clk) {
begin and(a, b, c);

a=b &c; if (a, 0) left_shift(p, q, 3);

If (a==1'b0) }

p=q <<3

end

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 7

Compiled Code

/[circuit being simulated
initial main()
begin {
clk =1'b0; Int clk;
#1 clk = ~clk; It i;
#1 clk = ~clk; inta, b, c, p,q;
#1 finish; clk=0;
end for (1=0; 1<2; i++) {
clk = (clk==0) ? 1:0;
always @(clk) a=Dbé&c;
begin If (a==0)
a=b &c; P =Qg<<3;
if (@a==1b0) }
P =q<<3 }
end

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 8

Simulator Types

v

Interpreted simulator

Intermediate code I

input /

CIC++ I—> CI/IC++ compiler I—'

Host machine

circuit \

v

Host machine

Host machine code I

Hardware executable '} Hardware simulator

Simulator

type

e —|
interpreted

high - level
host machine

hardware

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

Compiled Simulation System Structure

Compiled Code

Instruction memory

Data memory

Circuit structure:
connectivity ﬁ

component functionality

Node / variable
values

I Simulation engine I

Scheduling
Component Evaluation
Time Advance

User

]

A4

Simulation
Control

I

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

10

Simulator Architectures

m Event driven simulation
e Evaluates a component only when there is an event at an
iInput
* This event ripples throughout the circuit until it
causes no more events, at which time evaluation
stops

m Cycle based simulation
e Simulation performed only on cycle boundaries
* The circuit must have clearly defined clocks

= Asynchronous circuits and circuits with
combinational loops cannot be simulated

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 11

Event Driven Simulation

O Timing wheel / Event Manager

0 Scheduling semantics

O Update and Evaluation Events

O Event propagation

0 Time advancement and oscillation detection

O Event-driven scheduling algorithm

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 12

Timing Wheel / Event Manager

veni [evena | ==
T. ¥
current 1
curent 4 Ao evena] ===
tme T H—[cvenievena] ==

 Events are stored in an event manager, which sorts them on time

m Events occurring at the same time have an arbitrary order of
occurrence

 The event queue may be implemented as a circular queue or a
timing wheel

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 13

Example

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 14

Scheduling Semantics

Q In Verilog, events at a simulation time are stratified into five
layers of events in the following order of processing:
m Active
e The processing of all active events is called a simulation cycle

m Inhactive

e Example: (#0 x=y) — occurs at the current simulation time, but
after all active event times

m Non-blocking assign update

e First it samples the values of the right-side variables. Then it
updates the left-side variables

m Monitor

e Executed as the last events at the current simulation time to
capture steady state values of variables

m Future events
e Future events

For each time slot, in reality four sub-queues are maintained for the four
groups of events.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 15

Example

always @(posedge clock)
begin

X = @;
end

always @(posedge clock)
begin

X =Db;

y <=X,

y=¢,
end

O x=a and x=Db are active events, and their order of execution is arbitrary
O The value of y is either a or b, but never ¢, since y <= X Is executed after y=c

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 16

Update and Evaluation Events

O When an event is placed in a queue, it only means that the event

may happen. Whether it actually will happen has to be evaluated
m An update event occurs when a variable or a node changes
its value
m When an update event has occurred, all processes sensitive
to the variable or node are triggered and must be evaluated.
e This evaluation process is called an evaluation event
e If an evaluation event changes the values of some
variables, then update events are generated for the
affected variables

m Update events simply replace the existing value of a variable
or node with the new value

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

17

Example

O Attime 1, input b=1 and input a has a rising transition (update event)
m This triggers an evaluation event for the AND gate

m Since delay from ato cis 3, a future event, E1, for output c at
time 4 is scheduled — it appears a rising transition may occur at c
at time 4.

d At time 2, a fall transition occurs at input b
m Since delay from b to c is 1, a future event, E2, for output c at
time 3 is scheduled

m When time advances to 3, we evaluate E2 and conclude that
output c is 0. At time 4, evaluating E1 shows that c remains at 0.
Hence event E1 is suppressed / cancelled.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 18

Event Validation Algorithm

2 \ﬁ c How_did we valida’t)e and cancel E1 in the
b Tns previous example®
Algorithm

1. Letthe presenttime be T, g have n inputs, and the functionality
of the gate g be f ().

2. For each input x; of g, let the value of x, attime T —d; be y,,
where d, is the delay from Xx; to the output of g.

3. The output valueof gisf (y;, ..., ¥V)-

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 19

Event Propagation

0 When an event has been confirmed to happen, all fanout gates
or blocks sensitive to the event must be examined for event

propagation
m It is dangerous to delete a future event at the current
simulation time when it appears not to happen in the future
m It is interesting to note that fanouts can change during
simulation
e Example:
gate A(.out(x), ...);
gate B(.out(y), ...);
always
begin
@x a=b; // Here this block is in the fanout of A
@y b=c; //Hereitis notin the fanout of A

end

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

20

Time Advancement

O When no event for the current simulation time remains, the
simulation time is advanced

m If a maximum number of iterations is exceeded without time
advancement, the simulator declares that an oscillation has
occurred

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 21

Event-driven Scheduling Algorithm

A simulation cycle for event-driven simulator

while (there are events) {
If (no events for current time) advance simulation time.

for each (event at the current time) {
Il remove the event and process as follows:
If (event Is update)
update the variables or nodes
schedule evaluation events for the affected processes
else // event Is evaluation
evaluate the processes
schedule update events for outputs that change

}
}

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 22

Cycle-Based Simulators

O In a sequential circuit, every time the FFs change:
m many events are generated in the combinational logic,
m but only the steady state is latched at the next clock edge
m Evaluations of all intermediate events are wasted

O Cycle-based simulators evaluate the combinational logic at each

clock boundary
m each gate is evaluated once in each cycle

O Requirement: The circuit must have clearly defined clocks and
their associated boundaries

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

23

Levelization for gate evaluation

)

0>1
A)
FE | Q1)
=l [=r
B
q 121
1y 021
150
FE | Q2
AN

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

24

Topological Sort for Levelization

B
g =121 d
Ing 221 D
| 120
FF |Q2

Front List
Q2(Q1l|In1| A [In2| B C | D

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 25

Topological Sort Algorithm and DFS

Input: G(V, E)
Qutput: A queue of ordered nodes called List
Initialization: N=1

TopologicalSort(G) {
while (node v in V is not marked visited) Visit(v);

}
Visit(v) {
mark v visited,;
v.entry = N; N = N+1; /l Record node entry time

for_each (u = fanout of v)
If (uis not marked visited) Visit(u);
v.exit = N; N = N+1,
Insert u in front of List; /Il This line is only for topological sort

}

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 26

RTL Code Scheduling for Cycle-based Sim

RTL Code: Order of execution:

always @(posedge clk) 1. a=b:
begin 2. $myPLI(a, b, d);
a=b; 3. e=d,
c<=a 4, assign x = a<<2; assigny = c;
$myPLI(a, b, d); //d is an output 5. gate gatel(.inl(x), .in2(y), ...)
$strobe(“a=%d, b=%d, c=%d", a, b, ¢); & €&
e=d 7. $strobe(“a=%d, b=%d, c=%d”, a, b, c);
end

assign x =a<<2; always block

assigny =c; /\

gate gatel(.in1(x), .in2(y), ...); assign x = a<<2; assigny =c;

\/

gate m1(.in1(x), .in2(y), ...);

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 27

Clock Domain Analysis

0 When a circuit has multiple clocks

m Not all logic has to be evaluated at every clock transition

m We have to determine the part of the circuit that requires
evaluation at each clock’s transition

e This task is called clock domain analysis

O A clock can potentially have two clock domains — one for a
rising transition and one for a falling transition
m This is because FFs and latches may be sensitive to
rising/falling transitions of the clock

O A latch (level-sensitive) can be opaque or transparent depending
on the current level of the clock (high/low)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 28

Clock Domain Partitioning Algorithm

1. Identify all FFs and latches triggered by C

2. For an FF or latch, back trace from its input until it arrives at a
primary input, an FF, or an opaque latch. The traversed logic is

part of a clock domain
3. Repeat Step 2 for each of the FFs and latches

4. The union of all traversed logic of positive-triggered FFs and
low transparent latches is the rising transition clock domain.
The domain for the falling transition of the clock is similarly
defined.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 29

Clock Domain Partitioning — Multiple clocks I

this latch is transparent in this domain rising transition domain
because C2 is low when C1 rises . / of clock C1 for G1

| FF [>o— FF
G5 b Q) G2 c1 |
A
0 0 |
C1 C2 Cl

G6

FF G7 —— —
— o D Q
? / 4
o1 C1

input of G6 should be evaluated
C2 just before a falling transition
of C1. At that time G3 is opaque.

C1

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 30

Hybrid Simulators

O Compiled Event Driven Simulators
m Components of the circuit are compiled code

m Triggering the evaluation of a component is dictated by the
events among the components

O Leveled Event Processing for Zero-Delay Simulation
m Resembles cycle-based simulation
m Main difference:
e Cycle-based simulation evaluates all circuit components

e Levelized even-driven simulation evaluates only the ones
with input events

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 31

Handling Combinational Loops

Q A cycle-based simulator cannot handle combinational loops.
Why?

O Solution: Encapsulate combinational loops in macro models

m The macro models are simulated with an event driven
simulator

m The circuit with the macro models is simulated with a cycle
based simulator

O Challenge: To find and isolate all combinational loops

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 32

Algorithm for Finding SCCs

Input: Graph G

Qutput: A collection of SCCs in G

1. Execute DFS on G and record the exit times for the nodes

2. Reverse the edges of G and apply DFS to this graph,
selecting nodes in the order of decreasing exit number
during the while loop step

3. The vertices of a DFS tree from Step2 form an SCC

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 33

Example

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 34

Simulator Taxonomy

O Two-State and Four-State Simulators

O Zero- versus Unit-Delay Simulators
O Event-Driven versus Cycle-Based Simulators

Q Interpreted versus Compiled Simulators

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 35

	Agenda
	Major Components of a Simulator
	Parser and Elaborator
	Compiler Back-End
	Interpreted Simulation
	Interpreted Code
	Compiled Code
	Simulator Types
	Compiled Simulation System Structure
	Simulator Architectures
	Event Driven Simulation
	Timing Wheel / Event Manager
	Example
	Scheduling Semantics
	Example
	Update and Evaluation Events
	Example
	Event Validation Algorithm
	Event Propagation
	Time Advancement
	Event-driven Scheduling Algorithm
	Cycle-Based Simulators
	Levelization for gate evaluation
	Topological Sort for Levelization
	Topological Sort Algorithm and DFS
	RTL Code Scheduling for Cycle-based Sim
	Clock Domain Analysis
	Clock Domain Partitioning Algorithm
	Clock Domain Partitioning – Multiple clocks
	Hybrid Simulators
	Handling Combinational Loops
	Algorithm for Finding SCCs
	Example
	Simulator Taxonomy

