Verilog HDL

Testing & Verification
Dept. of Computer Science & Engg, IIT Kharagpur

Pallab Dasgupta

Professor, Dept. of Computer Science & Engg.,
Professor-in-charge, AVLSI Design Lab,

Indian Institute of Technology Kharagpur

T

BFEERR RN
EFRE R A 0N I &

Agenda

Structural Hardware Models
4-Valued Logic

Delay

Instantiation

Wiring

Test Benches

Behavioral Models
Concurrency

Summary

Source: The Verilog Hardware Description Language,

By Thomas and Moorby, Kluwer Academic Publishers

Representation: Structural Models

O Structural models

m Are built from gate primitives and/or other modules

m They describe the circuit using logic gates — much as you
would see in an implementation of a circuit.

Q Identify:

m Gate instances, wire names, delay from a or b to f.

m This is a multiplexor — it selects one of n inputs (2 here) and
passes it on to the output

.fl

nsel

module MUX (f, a, b, sel);
output f;
input a, b, sel;

a

b f2 and #5 g1 (f1, a, nsel),
g2 (f2, b, sel);
sel or #5 g3 (f, fl,f2),
not g4 (nsel, sel);
f= assel'+Db-sel endmodule

Dept. of Computer Sc & Engg, IIT Kharagpur 3

Representation: Gate-Level Models

 Need to model the gate’s:
m Function
m Delay

U Function
m Generally, HDLs have built-in gate-level primitives
e Verilog has NAND, NOR, AND, OR, XOR, XNOR, BUF,
NOT, and some others
m The gates operate on input values producing an output value
e Typical Verilog gate instantiation is:

optional “many”
7 N

. P |
and #delay instance-name (out, inl,in2,in3, ...);

and #5 gl (f1, a, nsel);
™~
a comma here let's you
list other instance names
and their port lists.

Dept. of Computer Sc & Engg, IIT Kharagpur

Four-Valued Logic

O Verilog Logic Values

m The underlying data representation allows for any bit to have
one of four values

m 1, 0, x (unknown), z (high impedance)
m X —oneof: 1,0,z orin the state of change
m z —the high impedance output of a tri-state gate.

Dept. of Computer Sc & Engg, IIT Kharagpur 5

Four-Valued Logic

d What basis do these have in reality?

m 0,1...n0question

m Z ... Atri-state gate drives either a zero or one on its output
...and if it’s not doing that, its output is high impedance (2).
Tri-state gates are real devices and z is a real electrical affect.

m X ... not areal value. There is no real gate that drives an x on
to awire. xis used as a debugging aid. X means the simulator
can’'t determine the answer and so maybe you should worry!
All values in a simulation start as X.

d BTW ...

m Verilog keeps track of more values than these in some
situations.

Dept. of Computer Sc & Engg, IIT Kharagpur 6

Four-Valued Logic

O Logic with multi-level logic values
m Logic with these four values make sense

e Nand anything with a 0, and you get a 1. This includes
having an x or z on the other input. That’s the nature of

the nand gate
e Nand two x’s and you get an Xx — makes sense!
m Note: z treated as an x on input. Their rows and columns are
the same
m If you forget to connect an input ... it will be seen as an z.

m At the start of simulation, everything is an x.
A
Input B B:..

A 4-valued truth table for a
Nand gate with two inputs

Input A

Dept. of Computer Sc & Engg, IIT Kharagpur

Delay

O Transport delay — input to output delay
m “nand #35 (f1, a, b, ¢);” #35 is the transport delay

O What if the input changes during that time?

m i.e., how wide must an input spike be to affect the output?

m Think of the gate as having inertia. — The input change must
be present long enough to get the output to change. (That
“long enough” time is called inertial delay)

m in Verilog, this time is equal to the transport delay

|
a
Py | - =
pulse too
. small, no
T—tranSpOrt delay output Change
L
—
........... > !

Dept. of Computer Sc & Engg, IIT Kharagpur 8

Let's Build a Wider 2-bit MUX

Q Build a 2-bit 2:1 MUX

m OK, let's put two 1-bit 2:1 MUXes in the same module with
a common select line

m What would it look like?

— fO

fl

sel

Dept. of Computer Sc & Engg, IIT Kharagpur 9

Reuse!

O Reuse of smaller objects
m Can we use the MUX module that we already designed?
m A big idea — instantiation

m Modules and primitive gates can be instantiated — copied
— to many sites in a design

m Previously, two ANDs, one OR, and a NOT gate were
instantiated into module MUX

m Now we instantiate two copies of module MUX into module

wideMux
mod_ule wideMux (f1, f0, al, a0, b1, b0, sel); Instantiate two MUX
Input al, a0, b1, bO, sel; modules, name them, and

output f1, fO;

specify connections (the
/\' order is important).
MUX bitl (f1, al, b1, sel),

bitO (f0, a0, b0, sel);
endmodule

Dept. of Computer Sc & Engg, IIT Kharagpur 10

Instantiation — Copies

Q Modules and gate primitives are instantiated == copied

m Note the word “copies”

e The copies (also called instances) share the module (or
primitive) definition

e If we ever change a module definition, the copies will all
change too

e However, the internal entities (gate names, internal port
names, and other things to come) are all private, separate
copies

Dept. of Computer Sc & Engg, IIT Kharagpur

11

Instantiation — Copies

O Modules and gate primitives are instantiated == copied

m Don’t think of module instantiations as subroutines that are
called
e They are copies — there are 2 MUX modules in wideMux
with a total of:

4 AND gates,

2 OR gates,

2 NOT gates

Dept. of Computer Sc & Engg, IIT Kharagpur 12

Why Is This Cool?

O In Verilog
m “Primitive” gates are predefined (NAND, NOR, ...)
m Other modules are built by instantiating these gates
m Other modules are built by instantiating other modules, ...

Q The design hierarchy of modules is built using instantiation
m Bigger modules of useful functionality are defined
m You can then design with these bigger modules
e You can reuse modules that you've already built and tested

e You can hide the detail — why show a bunch of gates and
their interconnection when you know it’'s a mux!

O Instantiation & hierarchy control complexity.
m No one designs 1M+ random gates — they use hierarchy.
m What are the software analogies?

Dept. of Computer Sc & Engg, IIT Kharagpur 13

How to Wire Modules Together

d Real designs have many modules and gates

module putTogether ();
wire wl, w2, w3, w4,

bbb lucy (w1, w2, w3, w4);
aaa ricky (w3, w2, wl); what happens when
outlis setto 1?

module bbb (i1,i2, o1, clk);

input i1.i2 c'k: module aaa (in1, outl, out2);
output ol; input inl;
output outl, outz;
xor (01,12 ...);

nand #2 foutd, inl, b);

Each module has it’s own nand #6 (out2, inl, b);
namespace. Wires connect
elements of namespaces.

Dept. of Computer Sc & Engg, IIT Kharagpur 14

Implicit Wires

O How come there were no wires declared in some of these
modules?
m Gate instantiations implicitly declare wires for their outputs.

m All other connections must be explicitly declared as wires —
for instance, connections between module ports

m Output and input declarations are wires

module mux (f, a, b, sel);
output f;

module putTogether (); input 2[5 el

wire wl, w2, w3, w4;
and #5 g1 (f1, a, nsel),

mux \ instl(wl, w2, w3, w4); g2 (f2, b, sel):
aaa duh (w3, w2, wl); or #5 g3 (f, f1, f2);
not g4 (nsel, sel);
endmodule
wires explicitly wires implicitly
declared declared (f1, f2, nsel)

Dept. of Computer Sc & Engg, IIT Kharagpur 15

How to Build and Test a Module

Q Construct a “test bench” for your design

m Develop your hierarchical system within a module that has
Input and output ports (called “design” here)

m Develop a separate module to generate tests for the module
(“test”)

m Connect these together within another module (“testbench”)

module design (a, b, c);
module testbench (); input a, b:

design d (I, m, n);

test t (I, m); module test (q, r);
output g, r;
initial begin
//monitor and display initial begin

/[drive the outputs with signals

Dept. of Computer Sc & Engg, IIT Kharagpur 16

Another View of This

d 3 chunks of Verilog, one for each of:

TESTBENCH is the final piece of hardware which
connects DESIGN with TEST so the inputs generated
go to the thing you want to test...

Another module, >
called TEST, to » Your hardware
generate) called
interesting inputs | DESIGN

Dept. of Computer Sc & Engg, IIT Kharagpur

17

An Example

Module testAdd generated inputs for module halfAdd and displayed

changes. Module halfAdd was the design

module tBench:
wire su, co, a, b;

halfAdd ad (su, co, a, b);
testAdd tb (a, b, su, co);

endmodule

module halfAdd (sum, cOut, a, b);
output sum, cOut;
input a, b;

xor #2 (sum, a, b);
and #2 (cOut, a, b);
endmodule

module testAdd (a, b, sum, cOut);
input sum, cOut;
output a, b;
reg a, b;

initial begin
$monitor ($time,,

“a=%b, b=%Db, sum=%b, cOut=%b’

a, b, sum, cOut);

a=0;b=0;
#10 b = 1;
#10a=1;
#10b = 0;
#10 $finish;
end
endmodule

Dept. of Computer Sc & Engg, IIT Kharagpur

18

The Test Module

O It’s the test generator

Q $monitor module testAdd(a, b, sum, cOut);
m prints its string when executed. input sum, cOut;
m after that, the string is printed output a, b;
when one of the listed values reg a, b;
changes.
m only one monitor can be active at initial begin
any time $monitor ($time,,
m prints at end of current simulation “a=%b, b=%b, sum=%b,
time cOut=%b",
Q Function of this tester a, b, sum, cOut);
m at time zero, print values and set a=0b=0;
a=b=0 #10 b = 1;
m after 10 time units, set b=1 #10a=1;
m after another 10, set a=1 #10b =0; _
m after another 10 set b=0 D Al
m then another 10 and finish E
endmodule

Dept. of Computer Sc & Engg, IIT Kharagpur 19

Another Version of a Test Module

module testAdd (test, sum, cOut);

[Multi-bit “thingies™ input sum, cOut:
m testis atwo-bit register output [1:0] test;
and output reg [1:0] test;

m It acts as a two-bit

number (counts 00-01-10- initial begin

$monitor ($time,,

11-00...) "test=%b, sum=%b, cOut=%b",
m Module tBench needs to test, sum, cOut);
connect it correctly — test = O
mod halfAdd has 1-bit #10 test = test + 1;
ports. #10 test =test + 1;
#10 test =test + 1;
module tBench; #10 $finish:
wire su, co; end
wire [1:0] t; endmodule
halfAdd ad (su, co, t[1], t[0]);
testAdd tb (t, su, co); Connects bit 0 or wire t to this port
endmodule (b of the module halfAdder)

Dept. of Computer Sc & Engg, IIT Kharagpur 20

Another Version of testAdd

module testAdd (test, sum, cOut);
O Other procedural input (ST, GO)
statements output [1:0] test;
m You can use “for”, reg [1:0] test;
“while”, “if-then- o _
else” and others initial begin
here. $monitor ($time,,
"test=%b, sum=%b, cOut=%b",
m This makes it easier test, sum, cOut);
to write if you have for (test = 0; test < 3; test = test + 1)
lots of input bits. #10;
#10 $finish;
end
module tBench; endmodule
wire su, co;
wire [1:0] t;
halfAdd ad (su, co, t[1], t[0]);
testAdd tb (t, su, co); hmm... “<3" ... ?
endmodule

Dept. of Computer Sc & Engg, IIT Kharagpur 21

Structural Vs. Behavioral Models

d Structural model
m Just specifies primitive gates and wires
m i.e., the structure of alogical netlist
m You basically know how to do this now.

d Behavioral model
m More like a procedure in a programming language
m Still specify a module in Verilog with inputs and outputs...

m ...butinside the module you write code to tell what you want to
have happen, NOT what gates to connect to make it happen

m i.e, you specify the behavior you want, not the structure to do it

Qd Why use behavioral models
m For testbench modules to test structural designs
m For high-level specs to drive logic synthesis tools

Dept. of Computer Sc & Engg, IIT Kharagpur 22

How Do Behavioral Models Fit In?

O How do they work with the event list module testAdd (a, b, sum, cOut);

and scheduler? input sum, cOut;
m Initial (and always) begin output a, b;
executing at time 0 in arbitrary eg ab;
order initial begin
m They execute until they come to $monitor ($time,,

“a=%b, b=%b,
sum=%b, cOut=%b",
a, b, sum, cOut);

a “#delay” operator
m They then suspend, putting

themselves in the event list 10 a=0b=0:
time units in the future (for the #10 b = 1;
case at the right) e S 1

m At 10 time units in the future, zig gfi_n?s’h;
they resume executing where end
they left off. endmodule

L Some details omitted

m_..more to come
Dept. of Computer Sc & Engg, IIT Kharagpur 23

Concurrent Activity

Eval g2, g3

Do these two evaluations happen at the same time?
m Yes and No! Yes and No!

d Yes ...
m They happen at the same simulated (or virtual) time
m After all, the time when they occur is 27

d No ...
m We all know the processor is only doing one thing at any
given time
Qd So, which is done first?

m That's undefined. We can’t assume anything except that the
order is arbitrary.

Dept. of Computer Sc & Engg, IIT Kharagpur 24

Concurrent Activity

Q The pointis
m In the real implementation, all activity will be concurrent

m Thus the simulator models the elements of the system as
being concurrent in simulated time

e The simulator stands on its head trying to do this!

d Thus,

m Even though the simulator executes each element of the
design one at a time ...

m ... we'll call it concurrent

Dept. of Computer Sc & Engg, IIT Kharagpur 25

Behavioral Verilog HDL codes

Multiplexer
module module_name(port_names); module mux (f, a, b, sel);
input [port_size] input_port_names: input [3:0] a, b;
output [port_size] output_port names: ~ 'NPUt sel;
wire [wire_size] wire_names; output [3:0] T
_ reg [3:0] f;
reg [reg_size] reg_names; wews @aer b or o)
always @(sensitivity list) if (sel)
"ot f=b;
behavioral statements else
- f=a;
endmodule

endmodule

Dept. of Computer Sc & Engg, IIT Kharagpur 26

Flip-flop Design: An Example

module DFF(d, q, gbar, clk, reset);
Input d, clk, reset;
output g, gbar;
reg q, gbar;
always @(posedge clk or posedge reset)
begin
If (sel)
begin g = 1'b0; qbar =1'b1; end
else
begin g =d; qbar = ~d; end
end
endmodule

Dept. of Computer Sc & Engg, IIT Kharagpur 27

Behavioral Statements

0 Continuous assignment statements
m using assign

O Procedural assignment statements
m Blocking assignment (using =)
m Non blocking assignment (using <=)

Dept. of Computer Sc & Engg, IIT Kharagpur

28

Blocks Statements

0 Sequential Block Statements:

m Sequential block is a group of statements between a begin
and an end.

m A sequential block, in an always statement executes
repeatedly

m Inside an initial statement, it operates only once

O Parallel Block Statements:

m Statements are enclosed within
fork

join

Dept. of Computer Sc & Engg, IIT Kharagpur 29

Block statements: Examples

always @(a or b or ¢);

begin

#5 d = a+tb;
#10 e = a-c;
#15 f = b+c;
end

Initial

begin

#5 d = atb;
#10 e = a-c;
#15 f = b+c;
end

always @(a or b or c);
fork

#5 d =a+tb;
#10 e = a-c;
#15 f=Db+c;
join

Dept. of Computer Sc & Engg, IIT Kharagpur

30

Examples

O Blocking:

Q

Statement executed at time t
causing M1 to be assigned at t+3

always @(Al or Bl or Clor M1)
begin Z
M1 =#3 (Al & B1);

Y1=#1(M1]|Cl);
end

Q

Statement executed at time t+3
causing Y1 to be assigned at time
t+4

O Non-blocking:
always @(A2 or B2 or C2 or M2)

begin —

M2 <= #3 (A2 & B2):

Q

Statement executed at time t
causing M2 to be assigned at t+3

Y2 <=#1 (M1 | C1);
end \1

Q

Statement executed at time t
causing Y2 to be assigned at time
t+1. Uses old values.

Dept. of Computer Sc & Engg, IIT Kharagpur

31

Example: Implementation

O Blocking Assignment
module BA(clk, a, b, ¢)
input clk, a, b;
output c;
reg b, c;
always @(posedge clk)
begin

b=a; c=Db;
end
endmodule

Dept. of Computer Sc & Engg, IIT Kharagpur 32

Example: Implementation

O Non Blocking Assignment
module NBA(clk, a, b, c)
input clk, a, b;
output c;
reg b, c;
always @(posedge clk)
begin

b<=a; c<=b;
end
endmodule

Dept. of Computer Sc & Engg, IIT Kharagpur 33

Design using Functions and Tasks
O Function O Task
module m_name(port_declarations) module m_name(port_declarations)
begin begin
ret_val = func_name(arguments); task_name(arguments);
end end
function func_name; task task _name;
Input declaration Input declaration
variable declaration output declaration
begin variable declaration
<statements> begin
end <statements>
endfunction end
endmodule endtask
endmodule

Dept. of Computer Sc & Engg, IIT Kharagpur 34

FSM Design using Verilog HDL

module parity (clk, reset, i, 0) ;
Input clk, reset, i;
output O;
reg st, next_st, o;
parameter st_even =0, st_odd =1,
always @ (posedge clk or posedge reset)
begin
If (reset ==1)
st <= st_even;
else
st <= next_st;

Reset

end
[* State transitions */
[* Output computation */

endmodule
Dept. of Computer Sc & Engg, IIT Kharagpur 35

State Transitions & O/P computations

/[State Transitions
always @ (i or st)
begin
If (i==1) begin
If (st ==st_even)
next_st =st_odd;
else next_st = st_even;

end

else next_st = st;
end
/[l Output Computation
always @(st)

begin
If (st == st_even) 0=0;
else 0=1;

end

Reset

Dept. of Computer Sc & Engg, IIT Kharagpur

36

	Representation: Structural Models
	Representation: Gate-Level Models
	Four-Valued Logic
	Four-Valued Logic
	Four-Valued Logic
	Delay
	Let’s Build a Wider 2-bit MUX
	Reuse!
	Instantiation — Copies
	Instantiation — Copies
	Why Is This Cool?
	How to Wire Modules Together
	Implicit Wires
	How to Build and Test a Module
	Another View of This
	An Example
	The Test Module
	Another Version of a Test Module
	Another Version of testAdd
	Structural Vs. Behavioral Models
	How Do Behavioral Models Fit In?
	Concurrent Activity
	Concurrent Activity
	Behavioral Verilog HDL codes
	Flip-flop Design: An Example
	Behavioral Statements
	Blocks Statements
	Block statements: Examples
	Examples
	Example: Implementation
	Example: Implementation
	Design using Functions and Tasks
	FSM Design using Verilog HDL
	State Transitions & O/P computations
	Representation: Structural Models
	Representation: Gate-Level Models
	Four-Valued Logic
	Four-Valued Logic
	Four-Valued Logic
	Delay
	Let’s Build a Wider 2-bit MUX
	Reuse!
	Instantiation — Copies
	Instantiation — Copies
	Why Is This Cool?
	How to Wire Modules Together
	Implicit Wires
	How to Build and Test a Module
	Another View of This
	An Example
	The Test Module
	Another Version of a Test Module
	Another Version of testAdd
	Structural Vs. Behavioral Models
	How Do Behavioral Models Fit In?
	Concurrent Activity
	Concurrent Activity
	Behavioral Verilog HDL codes
	Flip-flop Design: An Example
	Behavioral Statements
	Blocks Statements
	Block statements: Examples
	Examples
	Example: Implementation
	Example: Implementation
	Design using Functions and Tasks
	FSM Design using Verilog HDL
	State Transitions & O/P computations
	Representation: Structural Models
	Representation: Gate-Level Models
	Four-Valued Logic
	Four-Valued Logic
	Four-Valued Logic
	Delay
	Let’s Build a Wider 2-bit MUX
	Reuse!
	Instantiation — Copies
	Instantiation — Copies
	Why Is This Cool?
	How to Wire Modules Together
	Implicit Wires
	How to Build and Test a Module
	Another View of This
	An Example
	The Test Module
	Another Version of a Test Module
	Another Version of testAdd
	Structural Vs. Behavioral Models
	How Do Behavioral Models Fit In?
	Concurrent Activity
	Concurrent Activity
	Behavioral Verilog HDL codes
	Flip-flop Design: An Example
	Behavioral Statements
	Blocks Statements
	Block statements: Examples
	Examples
	Example: Implementation
	Example: Implementation
	Design using Functions and Tasks
	FSM Design using Verilog HDL
	State Transitions & O/P computations

