Design Verification – *Overview*

Testing & Verification Dept. of Computer Science & Engg, IIT Kharagpur

Pallab Dasgupta

Professor, Dept. of Computer Science & Engg., Professor-in-charge, AVLSI Design Lab, Indian Institute of Technology Kharagpur

Design Flows: Digital versus Analog

Design Cycle: Intent Creation

Design Cycle: Implementation

Verification Dominates Design

Pieces of the verification puzzle

Functional Verification Challenge

- □ Is the implementation correct?
 - How do we define *correct*?
 - Classical: Simulation result matches with golden
 output
 - Formal: Equivalence with respect to a golden model
 - Property verification: Correctness properties (assertions) expressed in a formal language
 - Formal: Model checking
 - Semi-formal: Assertion-based verification
 - Trade-off between computational complexity and exhaustiveness

Simulation

Advances:

- Test bench languages are richer (such as SystemVerilog)
- Coverage monitors and assertions
- Layered test benches and Transaction Level Modelling

Advent of Formal Methods in EDA

Goal: Exhaustive verification of the design intent within feasible time limits

<u>Philosophy:</u> Extraction of formal models of the design intent and the implementation and comparing them using mathematical / logical methods

Formal Properties	Design Intent	Model	 Temporal Logics (<i>Turing Award: Amir Pnueli</i>) Adopted by Accelera / IEEE Integrated into SystemVerilog
always @(posedge clk) begin if (!rst) begin a1 <= a2; a2 <= ~a1; end; end	Register Transfer (Level	Checking Logical Equivalence Checking	 Tools: Academia: NuSMV, VIS Industry: Magellan (Synopsys) IFV (Cadence) 2008: Clarke & Emerson get Turing Award
	Gate Level		
	Transistor Level		

Toy example: Priority Arbiter

• Either g1 or g2 is always false (mutual exclusion)

$$G[\neg g1 \lor \neg g2]$$

When r2 is the sole request, g2 comes in the next cycle

G[(
$$\neg$$
r1 \land r2) \Rightarrow Xg2]

• When none are requesting, the arbiter parks the grant on g2

$$G[(\neg r1 \land \neg r2) \Rightarrow Xg2]$$

Violation!!

Dynamic Property Verification (DPV)

[Source: A Roadmap for Formal Property Verification, Springer, 2006]

Formal Property Verification (FPV)

Temporal Logics (Timed / Untimed, Linear Time / Branching Time): *LTL, CTL*

Early Languages: Forspec (Intel), Sugar (IBM), Open Vera Assertions (Synopsys)

Current IEEE Standards: SystemVerilog Assertions (SVA), Property Specification Language (PSL)

Assertion Based Verification Flow

Course Agenda: Verification Track

- Design Entry: Brief overview of Verilog
- □ Simulators: How they work
- Test Scenarios and Coverage
- Static Checks
- Symbolic Representation of Logic and State Spaces: BDDs, SAT
- Equivalence Checking
- Assertions
- **Given Service Service**
- Formal Verification Coverage

Verification Group Profile

The verification research group focuses on providing industrially relevant methods for the verification of various designs – ranging from digital and mixed-signal chip designs to complex software and embedded systems such as automotive control systems. Areas of strength include:

- Design Intent Verification
- Formal Verification Coverage
- Mixed-signal Design Verification
- Coverage-driven Semi-Formal Verif.
- Verification of Automotive Systems
- Verification of Web Interfaces

Home: http://www.facweb.iitkgp.ernet.in/~pallab/forverif.html

The Family

PhD Students:

J.K. Deka (Completed) Prasenjit Basu (Submitted) Sayantan Das (Completed) Ansuman Banerjee (Submitted) Suchismita Roy (Submitted) Bhaskar Pal (Submitted) Arijit Mondal (Ongoing) P.V. Rajkumar (Ongoing) Manoj Dixit (Ongoing) Srobona Mitra (Ongoing) Priyankar Ghosh (Ongoing) Chandan Karfa (Ongoing) Subrat Panda (Ongoing) Dipankar Das (Ongoing)

MS Students:

Ansuman Banerjee (Completed) Bhaskar Pal (Completed) Pritam Ray (Completed) Arijit Mondal (Completed) Sayak Ray (Submitted) Anindyasundar Nandi (Submitted) Rajdeep Mukhopadhyay (Ongoing) Aritra Hazra (Ongoing) Sourashis Das (Ongoing) Kamalesh Ghosh (Ongoing) Antara Ain (Ongoing)

Some Alumni:

Shuvendu Lahiri (CMU), Pankaj Chauhan (CMU) Sagar Chaki (CMU), Arindam Chakraborty (UC Berkeley), Krishnendu Chakraborty (UC Berkeley), S Sriram (Stanford), Jayanta Bhadra (U Texas, Austin)

Home: http://www.facweb.iitkgp.ernet.in/~pallab/forverif.html