Bounded Model Checking

Testing & Verification Dept. of Computer Science & Engg, IIT Kharagpur

Pallab Dasgupta

Professor, Dept. of Computer Science & Engg., Professor-in-charge, AVLSI Design Lab, Indian Institute of Technology Kharagpur

Bounded Model Checking (BMC)

Broad Methodology

- We construct a Boolean formula that is satisfiable iff the underlying state transition system can realize a finite sequence of state transitions that satisfy the temporal property we are trying to validate
- We use powerful SAT solvers to determine the satisfiability of the Boolean formula
- The bound may be increased incrementally until we reach the diameter of the state transition graph

Requirements

□ Specification in temporal logic.

System as a finite state machine.

Bound, k, on path length.

In bounded model checking, only paths of bounded length k or less are considered.

BMC: Translation to SAT

- We unfold the property into Boolean clauses over different time steps
- We unfold the state machine into Boolean clauses over the same number of time steps
- We check whether the clauses are together satisfiable

Example: *Priority Arbiter*

Implementation

Initial state: g1=0, g2=1

Specification

Property:

- When r1 is high, g1 must be asserted for the next two cycles
- In Linear Temporal Logic: G($r1 \Rightarrow Xg1 \land XXg1$)

Example: *Priority Arbiter*

 $\frac{\text{Transition Relation}}{g2' \leftarrow r2 \land \neg r1 \land \neg g1}$

g1′ ← r1

Initial state: g1=0, g2=1

Strategy:

Property: G(r1 \Rightarrow Xg1 \land XXg1) Negate property: F(r1 \land (\neg Xg1 \lor \neg XXg1))

Unfold transition relation one step at a time and check whether a witness for the negated property exists

Variables in Temporal Worlds

If r1 is true in a cycle then g1 has to be true for the next two cycles

Example: Bound=2

Is there a witness of length=2?

Clauses from Transition Relation: C_1^1 : $r2^0 \land \neg r1^0 \land \neg g1^0 \Rightarrow g2^1$ C_2^1 : $r1^0 \Rightarrow g1^1$

Clauses from Initial State: I: g2⁰ ∧ ¬g1⁰

<u>Clauses from Property</u>: F(r1 $\land (\neg Xg1 \lor \neg XXg1)$) Z¹: r1⁰ $\land \neg g1^1$

<u>SAT Check</u>: Is $Z^1 \wedge I \wedge C_1^1 \wedge C_2^1$ satisfiable?

Answer: No, since Z¹ conflicts with C₂¹

Example: Bound=3

Is there a witness of length=3?

Clauses from Transition Relation: C_1^1, C_2^1 : from previous iteration C_1^2 : $r2^1 \land \neg r1^1 \land \neg g1^1 \Rightarrow g2^2$ C_2^2 : $r1^1 \Rightarrow g1^2$ Clauses from Initial State:I: $g2^0 \land \neg g1^0$

Clauses from Property: F(r1 $\land (\neg Xg1 \lor \neg XXg1)$) Z²: (r1⁰ $\land (\neg g1^1 \lor \neg g1^2)) \lor (r1^1 \land \neg g_1^2)$

SAT Check: Is $Z^2 \wedge I \wedge C_1^1 \wedge C_2^1 \wedge C_1^2 \wedge C_2^2$ satisfiable?

Yes: Witness: $r1^0 = 1$, $r1^1 = 0$, $g1^1 = 1$, $g1^2 = 0$, rest are don't cares Conclusion: We have found a bug!!

Formal Methodology

Bound on path length k

Clauses describing the system M :

- Initial state : I(s₀)
- Unrolled transition relation : $\Lambda_{i=0..k-1} \rho(s_i, s_{i+1})$
- **Loop clause** $loop_k = \mathbf{V}_{i=0..k} \ \rho(s_k, s_i)$
- [f]_{i,k} means that temporal property f is true at state s_i.
- For the property f to hold on the system M Λ [f]_{i,k} must be satisfiable.

Translation of LTL to SAT

 $[X f]_{i,k} = (i < k) \land [f]_{i+1,k}$ [F f]_{ik} = V_{j=i..k} [f]_{j,k} [G f]_{i,k} = \Lambda_{j=i..k} [f]_{j,k} \land loop_k [f U g]_{i,k} = V_{j=i..k} ([g]_{j,k} \land \Lambda_{n=i..j-1} [f]_{n,k})

Advantages

- □ Able to handle larger state spaces as compared to BDD's.
- Takes advantage of several decades of research on efficient SAT solvers.
- The witness/counterexample produced are usually of minimum possible length, making them easier to understand and analyze.

Limitations of BMC

Sound but not complete

- Works for a bounded depth
- In order to have a complete procedure, we need to run it at least up to the diameter (unknown) of the transition system
- For larger depths the number of clauses can grow rapidly, thereby raising capacity issues
- Nevertheless, SAT-based FPV tools can handle much larger designs as compared to BDD-based tools