Model Checking

Testing & Verification
Dept. of Computer Science & Engg, IIT Kharagpur

Pallab Dasgupta

Professor, Dept. of Computer Science & Engg.,
Professor-in-charge, AVLSI Design Lab,

Indian Institute of Technology Kharagpur

T

BFEERR RN
EFRE R A 0N I &

Agenda

Q0 Quick Overview
O Properties, Automata and State Machines

0 Model Checking

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 2

Formal Property Verification

O What is formal property verification?

m Verification of formal properties?

m Formal methods for property verification?
O Both are important requirements

O Broad Classification
m Dynamic property verification (DPV)
m Static/Formal property verification (FPV)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

Dynamic Property Verification (DPV)

Simulation Platform

Coverage defs

Constraints

3

J b

h [IS e TRy] [Test generation engine]
Property Specs
(user—defined) 1> (Rraperly il
S Y =
- %, ey
e Master—1
{bridge 1o
- FF = 1 oS peripheral bus)
4 ‘ T b Memory
l clk = [clk—generﬂturj H
5P s
J = FF = 2 Master—2
| = | (processor) .4—[_.-"' e
Device under Test (DUT) T
Test environment modeled by the Test—Bench
A

DUT Interface

© Pallab Dasgupta, Dept. of Computer Sc & Engg

, IT Kharagpur

Formal Property Verification (FPV)

p1 always !gl|| !g2 Yes!!
Model Checker The DUT satisfies the
(formal property verifier) properties under all scenarios

p2 always r2 && Irl - next g2

Formal Properties TT
1 ,r-aai/;-‘ \Q el = L
r ", r1q
d x‘“‘-a?\ .I'I 1.'l l
FF g i /-.. JI r2 1
™y . L,-' a1 L%
o — az X 1
clk . -
\ FSM model
- ::'_“\1 . arrorl
—*D-:‘}—b /.’ FE g2 Counter—example trace
- State—machine L)
ra extraction
Device under Test (DUT)
FPV Tool

Temporal Logics (Timed / Untimed, Linear Time / Branching Time): LTL, CTL
Early Languages: Forspec (Intel), Sugar (IBM), Open Vera Assertions (Synopsys)

Current IEEE Standards: SystemVerilog Assertions (SVA),
Property Specification Language (PSL)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 5

Formal Property Verification

0 The formal method is called “Model Checking”

m The algorithm has two inputs
e A finite state transition system (FSM) representing
the implementation

e A formal property representing the specification

m The algorithm checks whether the FSM “models” the
property
e This is an exhaustive search of the FSM to see
whether it has any path / state that refutes the
property.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 6

Advent of FPV

Goal: Exhaustive verification of the design intent within feasible time limits

Philosophy: Extraction of formal models of the design intent and the implementation
and comparing them using mathematical / logical methods

‘ Formal Properties | Design Intent \ °Temp9ral Logics _ |
(Turing Award: Amir Pnueli)

I Model * Adopted b)_/ Accelera / IEE!E
e * Integrated into SystemVerilog

Checking
always @(posedge clk) * Tools:
begin Academia: NuSMV, VIS
if (Irst) begin a1 <= a2; Implementation - Industry: Magellan (Synopsys)
a2 <= ~af; end, IFV (Cadence)
end « 2008: Clarke & Emerson get
Turing Award

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 7

LTL Model Checking: Philosophy

O Given a LTL property, ¢, to be checked over a module, M, we do

the following:

m Create a checker automaton, B which accepts runs

- ’
satisfying —o

m Extract a (possibly non-deterministic) finite state machine, J,
from the module, M.

m Compute the product of J with B—.(p and check whether the

product has any accepting run.
e If not then M |= o.

e Otherwise, the accepting run is a counter-example trace.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

Example: Priority Arbiter

ri— > g1
Implementation
E >92
r2—
Property:

Specification

* Either of the grant lines is always asserted

* In Linear Temporal Logic: G(g1v g2)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

Step1: FSM Extraction

r1

v
A
Q

—_—

__& » g2

\ 4

r2

Transition Relation:
4
g,<=r
g's & —rAr, A—g,

Start state: r,=0, r,=0, g,=0, g,=1

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

PS I/P NS
9192 | Il g9,
00 00 00
00 01 01
00 10 10
00 11 10
01 00 00
01 01 01
01 10 10
01 11 10
10 00 00
10 01 00
10 10 10
10 11 10
11 00 00
11 01 00
11 10 10
11 11 10

10

Step1: Transition Relation

@)

A

©0 (©cC

0110 0111
1100 @

Unreachable states

¢
/4

i

?Q
N

/

/

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

PS I/P NS
99 | 2 | g¢g'.g,
00 00 00
00 01 01
00 10 10
00 11 10
01 00 00
01 01 01
01 10 10
01 11 10
10 00 00
10 01 00
10 10 10
10 11 10
11 00 00
11 01 00
11 10 10
11 11 10

Step2: Create automaton for property

Q Every LTL property can be converted to a Buchi Alternating
Automata

m States of the automata represents the states of the property
checker

m The automaton accepts all the valid runs (that is, those that
satisfy the property)

m How does this help to check the property?

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 12

Step2: Applying the strategy

Q Our property: ¢=G[g,Vvg,]

m Either of the grant lines is always active

O We will create the automaton, 3, for —¢

m —¢=F[-g;A—Q,]
m Sometime both grant lines will be inactive

O We will then search for a common run between this automaton
and the FSM for the implementation

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 13

How to create the checker automaton?

O Let us consider a property Fq // Eventually q is true

d We can rewrite it as:
Fg=q v XFq Il Either q is true now or

Fq is true in the next state

O Therefore we can have the following types of states:
m States that satisfy g
m States that do not satisfy q but satisfy XFq
m States that do not satisfy q and do not satisfy XFq
m The first two types are labeled by Fqg

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 14

The automaton for our property

Our property: Fq where q =-g, A -9,

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 15

What is this automaton?

Every run satisfying Fq
belongs to this automaton
» which are these runs?

- * runs starting from Fq
@ labeled states

But all runs starting from Fg—labeled states do not satisfy Fq
* Eg. runs that stay in state s forever do not satisfy Fq

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 16

Which runs satisfy Fq?

Runs that start from Fq-labeled states and visit states
labeled by g or by —Fq infinitely often.

» This can be expressed as a fairness constraint

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

17

Step3: Is the product non-empty?

g-labeled
states

@ Start\) q=-9, A9,
(0

Unreachable states

e9 @ |

/ J

The common run is shown in red. Product is non-empty.
Conclusion: Our implementation does not model G[g, vJ,]

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 18

Computational facts

O If a LTL property has k sub-formulas, then the checker
automaton for it has O(2k) states

m Decomposing the property into a conjunction of smaller
properties helps in containing the size of this automaton

m It also helps the FPV tool to prune away parts of the
implementation before taking the emptiness check

O LTL model checking is PSPACE-complete, but linear in the size
of the implementation
m The main bottleneck is in the size of the implementation

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 19

Capacity is the main issue

O The size of the global state transition system is exponential in
the total number of bits in the RTL

m This is the major bottleneck, even in control dominated
designs

m Efficient compact representations of the state space is the
key challenge

O Also the checker automaton grows exponentially with the length
of the property

m With increasingly complicated properties, this is also
becoming a growing issue

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 20

Background Theory

O Creating the checker automaton

m LTL properties can be converted to non-deterministic Buchi
automata

m The determinization problem of Buchi automata

0 Model checking
m Finding strongly connected components
m Tableau construction

O Fixpoint algorithms and CTL model checking
O LTL model checking 2 CTL model checking

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 21

Definitions

0 The symbol o is used to denote the set of non-negative integers,

thatis, ®={0,1, 2, 3, ...}

0 By X we denote a finite alphabet
m X" is the set of finite words over X
m X° denotes the set of infinite words (or ®-words) over X
m We write aeX®, as a = a(0)o(1) ... with a(i)eX.
m Finite set of letters occurring infinitely often:

Inf(a) = {aeX | Vi Jj>i afj) =a}

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 22

o-Automata

0 An e-automaton is a quintuple (Q, Z, §, q,, Acc), where Qis a
finite set of states, X is a finite alphabet, 5: Q X X 2 2Q%is the state

transition relation, q,€Q is the initial state, and Acc is the

acceptance component.
m In a non-deterministic ®-automaton, a transition function
30: QXX > Qis used
m The acceptance component can be given as a set of states,
as a set of state-sets, or as a function from the set of states

to a finite set of natural numbers

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 23

Buchi Acceptance

d An o-automaton A = (Q, %, §, q,, F), with acceptance component

F—Q is called a Buchi automaton if it is used with the following

acceptance condition (Buchi acceptance):

m A word aeX® is accepted by A iff there exists a run © of A on
a satisfying the condition:
Inf(x) N F 20

that is, at least one of the states in F has to be visited

infinitely often during the run.

m L(A) ={aeX?| A accepts a} is the w-language recognized by
A.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 24

Muller Acceptance

d An e-automaton A = (Q, %, 9, q,, F), with acceptance component

Fc2Qis called a Muller automaton when used with the following
acceptance condition (Muller acceptance):
m A word aeX® is accepted by A iff there exists a run © of A on
a satisfying the condition:
Inf(x) € F
that is, the set of infinitely recurring states of n is exactly one

of the sets in F.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 25

LTL - Buchi Automata

O Theorem [Wolper, Vardi, Sisla '83]: Given an LTL property ¢, one

can build a Buchi automaton A = (Q, Z, 3, q,, F) where
m X =2AP
e the number of atomic propositions, variables, etc in ¢
m |Q] < 2009l

e |o| is the length of the formula

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 26

Examples

aUb

pU(qUr)

GF(p A Xp)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 27

Det. versus Non-det. Buchi Automata

O There exist languages which are accepted by some non-
deterministic Buchi automaton but not by any deterministic

Buchi-automaton

A= ({Ch, f)! {a! b}! A! 9 {f}) A A

A accepts the language: @ @
a
L ={ ae{a,b} | #,(a) <o}

b
[\ 2)
@'@@, Normal determinization will produce this
automaton, which also accepts (a, b)® ¢ L
b

The automaton accepts L with F = {{{q,, f}}}
as Muller condition

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 28

LTL Model Checking

O Given a model M and an LTL formula ¢

m Build the Buchi automaton B,
m Compute product of M and B,
e Each state of M is labeled with propositions
e Each state of B, is labeled with propositions
e Match states with the same labels
m The product accepted the traces of M that are also traces of
B.,EnNZ-)
m If the product accepts any sequence

e We have found a counter-example

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 29

Symbolic Tableau Construction

0 Elementary Formulas

m ALTL formula ¢ is called elementary, if it is a variable
(p€AP), a negated variable (¢=—v, with yeAP) or the
outermost operator is a next operator (¢ = Xvy).

el(o) :={o}, if pcAP

el(—¢) :=el(p)

el(e v y) :=el(p) L el(y)

el(Xg) :={Xq} L el(p)

el(e Uy) :={X(e U y)} L el(p) L el(y)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 30

Symbolic Tableau Construction

L The set of states of the tableau is S; = 2¢l()

Q The labeling function L; is defined as follows:

Sat(p) :={s| o € s}, if pcel(p)

Sat(—¢) :={s|¢ ¢ Sat(e)}

Sat(ep v y) := Sat(p) U Sat(y)

Sat(p U y) := Sat(y) L (Sat(p) N Sat(X(e U y)))

X

R, (s,s") = q//G/;Wp)(s e Sat(Xy) < s'e Sat(w))

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 31

Language Emptiness

InNZ,,=O

0 Compute strongly connected components
m Non trivial
m Containing an accepting state

1 None means no sequence is accepted
m Proved the property

Q Very expensive

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

32

Nested Depth First Search

O The product is a Buchi automaton

O How do we find accepted sequences?
m Accepted sequences must contain a cycle
e In order to contain accepting states infinitely often

m We are interested only in cycles that contain at least an
accepting state

m During depth first search start a second search when we are
in an accepting states

e If we can reach the same state again we have a cycle (and
a counter-example)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 33

Example

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 34

Example

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 35

Nested Depth First Search

procedure DFS(Ss)
visited = visited v {s}
for each successor s’ of s
iIfT s’ ¢ visited then
DFS(s’)
iIfT s’ 1s accepting then
DFS2(s’, Ss’)
end 1f
end 1f
end for
end procedure

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

36

Nested Depth First Search

procedure DFS2(s, seed)
visited2 = visited2 v {s}
for each successor s’ of s
iIfT s’ = seed then
return “Cycle Detect”;
end 1f
iIT s’ ¢ visited2 then
DFS2(s’, seed)
end 1f
end for
end procedure

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

37

CTL Model Checking

O Need only Modalities EX, EU, EG.
O Other Modalities can be expressed in terms of EX, EU, EG.

|| AFp = -EG —pP
a AGp = —EF —p

[Clarke,Emerson]

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 38

Example EX p

 Reverse image

Image”’(P,R)={v: forsomev'v'eP and (v,v') e R}

Image-!(P,R)

R: Transition
Relation

EXP

EXp= 3av((v,v)eRAp e L(v))

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 39

Example: EF g

U EF g is calculated as

gvEXg

gV
\ EX(g v EX g)

Least
Fix Point

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 40

Model checking f = EF g

Given a model M=< AP,S,SO, R, L >

and S, the sets of states satisfying g inM

procedure CheckEF (S,)
Q := emptyset; Q' =S, ;
while Q= Q’ do

Q:=Q’;
Q:=Qu{s| 3s'[R(s,;s’) AQ(s’)] }
end while

S;:=Q; return(S;)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 41

Example: EG g

d EG g is calculated as

g A
;=D EXgaExg)) gaExg) 9

Greatest
Fix Point

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 42

Model checking f=EG g

Given a model M=< AP,S,5,,R,L >

and S, the sets of states satisfyinggin M

procedure CheckEG (S,)
Q:=S; Q:=8¢g;
while Q # Q’ do
Q:=Q’;
Q:=QNn{s| 3s'[R(s,s’) AQ(s’)]}
end while

S;:=Q; return(S;)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 43

Checking Nested Formulas

EF(pI\‘EG/ﬁq)

I | EF

p/\EG—q

Bottom Up

C/‘SA

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 44

Checking Nested formulas

BTG q)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 45

Complexity

 Linear in the size of the Model

M Linear in the size of the CTL Formula
m Model Size = M
m Formula Size = |F|
m Complexity = O (M x |F|)

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 46

Fairness in CTL Model Checking

Q Fairness F is a set of states {s1,s2,...,sn}

m A fair path of a model is a path which visits the states in F
infinitely often.

m A CTL formula f is true under the fairness constrain F if f is
true only in the FAIR paths of the model.

False Property:
AF(g1)

Fairnessei s
assertediinfinitely,
oftéen

liruerPropenty:

AE(gd) under:
fialfness E ={s0,s2}

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

Fairness Formal Semantics

O A fair Kripke structure is a 6 tuple

m M=(AP,S,S,,R,L,F) where F c 25 is a set of fairness constrains
m Letn=s,S,...beapathin M

m Inf(n) = {s| s = s, for infinitely many i}

O We say that = is fair if and only if for every element P € F,

inf(xr)nP = ®

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 48

Cone-of-influence Reductions

ri— > g1
DO The original state machine
[: » g2 had 16 states
2 —*
After COR based on:
r, = Xg,
The reduced state machine
r1— *d1 has 4 states

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 49

Bounded Model Checking (BMC)

O Broad Methodology

m We construct a Boolean formula that is satisfiable iff the
underlying state transition system can realize a finite
sequence of state transitions that satisfy the temporal
property we are trying to validate

m We use powerful SAT solvers to determine the satisfiability of
the Boolean formula

m The bound may be increased incrementally until we reach the
diameter of the state transition graph

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 50

BMC: Translation to SAT

O We unfold the property into Boolean clauses over different time
steps

O We unfold the state machine into Boolean clauses over the same
number of time steps

0 We check whether the clauses are together satisfiable

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 51

BMC: Example

QF(PAg) =(pAq) V F(pAq)
=(poAq) V (pP1Aq)
up to 2 time steps

P P

o8

O From state machine (up to 2 time steps)

(PoA—=9qp) A (Pt A=q) V(P A-qy))
=(pp A—qq) A(—qy)

L The total set of clauses is unsatisfiable

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur

52

Advantages

O Able to handle larger state spaces as compared to BDD'’s.

O Takes advantage of several decades of research on efficient SAT
solvers.

QO The witness/counterexample produced are usually of minimum
possible length, making them easier to understand and analyze.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 53

Requirements

O Specification in temporal logic.

0 System as a finite state machine.

U Bound, k, on path length.

m In bounded model checking, only paths of bounded length k
or less are considered.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 54

Limitations of BMC

d Sound but not complete
m Works for a bounded depth

m In order to have a complete procedure, we need to run it at
least up to the diameter (unknown) of the transition system

Q For larger depths the number of clauses can grow rapidly,
thereby raising capacity issues

O Nevertheless, SAT-based FPV tools can handle much larger designs as
compared to BDD-based tools

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 55

On-the-fly FPV tools

0 Automata Theoretic on-the-fly FPV Tools

m Creates the checker automaton
m The emptiness search is done depth-first, thereby saving
space

m Trades model checking time for space efficiency

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 56

ATPG-based FPV tools

d ATPG based FPV Tools

m Synthesizes the checker automaton as a non-deterministic
FSM (behavioral)

m Uses sequential ATPG to generate simulation vectors
m Not complete unless we have 100% test coverage

{)
Checker Automaton -
{)
RTL —
. y Generate tests for a

stuck-at-1 fault here

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 57

	Agenda
	Formal Property Verification
	Dynamic Property Verification (DPV)
	Formal Property Verification (FPV)
	Formal Property Verification
	Advent of FPV
	LTL Model Checking: Philosophy
	Example: Priority Arbiter
	Step1: FSM Extraction
	Step1: Transition Relation
	Step2: Create automaton for property
	Step2: Applying the strategy
	How to create the checker automaton?
	The automaton for our property
	What is this automaton?
	Which runs satisfy Fq?
	Step3: Is the product non-empty?
	Computational facts
	Capacity is the main issue
	Background Theory
	Definitions
	-Automata
	Büchi Acceptance
	Muller Acceptance
	LTL  Buchi Automata
	Examples
	Det. versus Non-det. Buchi Automata
	LTL Model Checking
	Symbolic Tableau Construction
	Symbolic Tableau Construction
	Language Emptiness
	Nested Depth First Search
	Example
	Example
	Nested Depth First Search
	Nested Depth First Search
	CTL Model Checking
	Example EX p
	Example: EF g
	Model checking f = EF g
	Example: EG g
	Model checking f = EG g
	Checking Nested Formulas
	Checking Nested formulas
	Complexity
	Fairness in CTL Model Checking
	Fairness Formal Semantics
	Cone-of-influence Reductions
	Bounded Model Checking (BMC)
	BMC: Translation to SAT
	BMC: Example
	Advantages
	Requirements
	Limitations of BMC
	On-the-fly FPV tools
	ATPG-based FPV tools
	Agenda
	Formal Property Verification
	Dynamic Property Verification (DPV)
	Formal Property Verification (FPV)
	Formal Property Verification
	Advent of FPV
	LTL Model Checking: Philosophy
	Example: Priority Arbiter
	Step1: FSM Extraction
	Step1: Transition Relation
	Step2: Create automaton for property
	Step2: Applying the strategy
	How to create the checker automaton?
	The automaton for our property
	What is this automaton?
	Which runs satisfy Fq?
	Step3: Is the product non-empty?
	Computational facts
	Capacity is the main issue
	Background Theory
	Definitions
	-Automata
	Büchi Acceptance
	Muller Acceptance
	LTL  Buchi Automata
	Examples
	Det. versus Non-det. Buchi Automata
	LTL Model Checking
	Symbolic Tableau Construction
	Symbolic Tableau Construction
	Language Emptiness
	Nested Depth First Search
	Example
	Example
	Nested Depth First Search
	Nested Depth First Search
	CTL Model Checking
	Example EX p
	Example: EF g
	Model checking f = EF g
	Example: EG g
	Model checking f = EG g
	Checking Nested Formulas
	Checking Nested formulas
	Complexity
	Fairness in CTL Model Checking
	Fairness Formal Semantics
	Cone-of-influence Reductions
	Bounded Model Checking (BMC)
	BMC: Translation to SAT
	BMC: Example
	Advantages
	Requirements
	Limitations of BMC
	On-the-fly FPV tools
	ATPG-based FPV tools

