Model Checking

Testing & Verification Dept. of Computer Science & Engg, IIT Kharagpur

Pallab Dasgupta

Professor, Dept. of Computer Science & Engg., Professor-in-charge, AVLSI Design Lab, Indian Institute of Technology Kharagpur

Quick Overview

- **Properties, Automata and State Machines**
- Model Checking

Formal Property Verification

- □ What is formal property verification?
 - Verification of *formal properties*?
 - **Formal methods for property verification?**
- Both are important requirements
- Broad Classification
 - Dynamic property verification (DPV)
 - Static/Formal property verification (FPV)

Dynamic Property Verification (DPV)

Formal Property Verification (FPV)

Temporal Logics (Timed / Untimed, Linear Time / Branching Time): *LTL, CTL* Early Languages: *Forspec (Intel), Sugar (IBM), Open Vera Assertions (Synopsys)*

Current IEEE Standards: SystemVerilog Assertions (SVA), Property Specification Language (PSL)

Formal Property Verification

□ The formal method is called *"Model Checking"*

- The algorithm has two inputs
 - A finite state transition system (FSM) representing the implementation
 - A formal property representing the specification
- The algorithm checks whether the FSM "models" the property
 - This is an exhaustive search of the FSM to see whether it has any path / state that refutes the property.

Advent of FPV

Goal: Exhaustive verification of the design intent within feasible time limits

<u>Philosophy:</u> Extraction of formal models of the design intent and the implementation and comparing them using mathematical / logical methods

LTL Model Checking: *Philosophy*

- Given a LTL property, φ, to be checked over a module, *M*, we do the following:
 - Create a checker automaton, $B_{\neg \phi}$, which accepts runs satisfying $\neg \phi$
 - Extract a (possibly non-deterministic) finite state machine, *J*, from the module, *M*.
 - Compute the product of J with $B_{-\phi}$ and check whether the product has any accepting run.
 - If not then M \mid = φ .
 - Otherwise, the accepting run is a counter-example trace.

Example: *Priority Arbiter*

Implementation

Property:

Specification

- Either of the grant lines is always asserted
- In Linear Temporal Logic: G(g1 v g2)

Step1: FSM Extraction	PS	I/P	NS	
	9 1 9 2	r ₁ r ₂	g' 1 g' 2	
	00	00	00	Γ
$r1 \xrightarrow{g1}} g1$	00	01	01	
	00	10	10	
	00	11	10	
	01	00	00	
	01	01	01	
	01	10	10	
	01	11	10	
Transition Deletion:	10	00	00	
$a'_{A} \Leftrightarrow r_{A}$	10	01	00	
$g'_{2} \Leftrightarrow \neg r_{1} \land r_{2} \land \neg g_{1}$ Start state: $r_{1}=0, r_{2}=0, g_{1}=0, g_{2}=1$	10	10	10	
	10	11	10	
	11	00	00	
	11	01	00	
	11	10	10	
© Pallab Dasgupta, Dept. of Computer Sc & Engg, IIT Kharagpur	11	11	10	10

Step1: Transition Relation	PS 9 ₁ 9 ₂	l/P r ₁ r ₂	NS g′ ₁ g′ ₂	
	00	00	00	
	00	01	01	
Start Good	00	10	10	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00	11	10	
	01	00	00	
	01	01	01	
	01	10	10	
$\chi \qquad \qquad$	01	11	10	
	10	00	00	
	10	01	00	
Unreachable states	10	10	10	
	10	11	10	
	11	00	00	
	11	01	00	
	11	10	10	L
© Pallab Dasgupta, Dept. of Computer Sc & Engg, IIT Kharagpur	11	11	10	۱·

Step2: Create automaton for property

- Every LTL property can be converted to a Büchi Alternating Automata
 - States of the automata represents the states of the property checker
 - The automaton accepts all the valid runs (that is, those that satisfy the property)
 - How does this help to check the property?

Step2: Applying the strategy

- **Our property:** $\varphi = G[g_1 \vee g_2]$
 - Either of the grant lines is always active
- **We will create the automaton**, A, for $\neg \phi$
 - $\blacksquare \neg \varphi = \mathbf{F}[\neg \mathbf{g}_1 \land \neg \mathbf{g}_2]$
 - Sometime both grant lines will be inactive
- We will then search for a common run between this automaton and the FSM for the implementation

How to create the checker automaton?

Let us consider a property Fq // Eventually q is true

We can rewrite it as:

Fq = $q \vee XFq$ // Either q is true now or Fq is true in the next state

□ Therefore we can have the following types of states:

- States that satisfy q
- States that do not satisfy q but satisfy XFq
- States that do not satisfy q and do not satisfy XFq
- The first two types are labeled by Fq

The automaton for our property

Our property: Fq where $q = \neg g_1 \land \neg g_2$

What is this automaton?

But all runs starting from Fq–labeled states do not satisfy Fq

• Eg. runs that stay in state s forever do not satisfy Fq

Which runs satisfy Fq?

Runs that start from Fq–labeled states and visit states labeled by q or by ¬Fq infinitely often.

This can be expressed as a fairness constraint

Step3: Is the product non-empty?

The common run is shown in red. Product is non-empty.

Conclusion: Our implementation does not model $G[g_1 \lor g_2]$

Computational facts

- If a LTL property has k sub-formulas, then the checker automaton for it has O(2^k) states
 - Decomposing the property into a conjunction of smaller properties helps in containing the size of this automaton
 - It also helps the FPV tool to prune away parts of the implementation before taking the emptiness check
- LTL model checking is PSPACE-complete, but linear in the size of the implementation
 - The main bottleneck is in the size of the implementation

Capacity is the main issue

- The size of the global state transition system is exponential in the total number of bits in the RTL
 - This is the major bottleneck, even in control dominated designs
 - Efficient compact representations of the state space is the key challenge
- Also the checker automaton grows exponentially with the length of the property
 - With increasingly complicated properties, this is also becoming a growing issue

Background Theory

Creating the checker automaton

- LTL properties can be converted to non-deterministic Buchi automata
- The determinization problem of Buchi automata
- Model checking
 - Finding strongly connected components
 - Tableau construction
- Fixpoint algorithms and CTL model checking
- $\Box \text{ LTL model checking} \rightarrow \text{CTL model checking}$

Definitions

- The symbol ω is used to denote the set of non-negative integers, that is, ω = {0, 1, 2, 3, …}
- **D** By Σ we denote a finite alphabet
 - Σ^* is the set of finite words over Σ
 - Σ^{ω} denotes the set of infinite words (or ω -words) over Σ
 - We write $\alpha \in \Sigma^{\omega}$, as $\alpha = \alpha(0)\alpha(1) \dots$ with $\alpha(i) \in \Sigma$.
 - Finite set of letters occurring infinitely often:

 $Inf(\alpha) = \{ a \in \Sigma \mid \forall i \exists j > i \alpha(j) = a \}$

ω-Automata

- □ An ω-automaton is a quintuple (Q, Σ, δ, q_I, Acc), where Q is a finite set of states, Σ is a finite alphabet, δ: Q X Σ → 2^Q is the state transition relation, q_I∈Q is the initial state, and Acc is the acceptance component.
 - In a non-deterministic ω -automaton, a transition function $\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}$ is used
 - The acceptance component can be given as a set of states, as a set of state-sets, or as a function from the set of states to a finite set of natural numbers

Büchi Acceptance

- □ An ω -automaton A = (Q, Σ , δ , q_I, F), with acceptance component F_⊆Q is called a Buchi automaton if it is used with the following acceptance condition (Buchi acceptance):
 - A word $\alpha \in \Sigma^{\omega}$ is accepted by A iff there exists a run π of A on α satisfying the condition:

 $lnf(\pi) \cap F \neq \Phi$

that is, at least one of the states in F has to be visited infinitely often during the run.

■ L(A) = { $\alpha \in \Sigma^{\omega}$ | A accepts α } is the ω -language recognized by A.

Muller Acceptance

- □ An ω -automaton A = (Q, Σ , δ , q_I, F), with acceptance component F₂2^Q is called a Muller automaton when used with the following acceptance condition (Muller acceptance):
 - A word $\alpha \in \Sigma^{\omega}$ is accepted by A iff there exists a run π of A on α satisfying the condition:

 $lnf(\pi) \in F$

that is, the set of infinitely recurring states of π is exactly one of the sets in F.

LTL → Buchi Automata

- Theorem [Wolper, Vardi, Sisla '83]: Given an LTL property φ, one can build a Buchi automaton A = (Q, Σ, δ, q_I, F) where
 - Σ = 2^{AP}
 - the number of atomic propositions, variables, etc in $\boldsymbol{\phi}$
 - $\blacksquare |Q| \le 2^{O(|\phi|)}$
 - $|\phi|$ is the length of the formula

Det. versus Non-det. Buchi Automata

There exist languages which are accepted by some nondeterministic Buchi automaton but not by any deterministic Buchi-automaton

A = ({q_I, f), {a, b}, ∆, q_I, {f}) A accepts the language:

$$\mathsf{L} = \{ \alpha \in \{\mathsf{a},\mathsf{b}\}^{\omega} \mid \#_{\mathsf{b}}(\alpha) < \infty \}$$

Normal determinization will produce this automaton, which also accepts $(a, b)^{\omega} \notin L$

The automaton accepts L with F = {{{q_i, f}}} as Muller condition

LTL Model Checking

- $\hfill\square$ Given a model M and an LTL formula ϕ
 - Build the Buchi automaton B_{¬∞}
 - **Compute product** of M and $B_{\neg \phi}$
 - Each state of M is labeled with propositions
 - Each state of $B_{\neg_{0}}$ is labeled with propositions
 - Match states with the same labels
 - The product accepted the traces of M that are also traces of $B_{\neg\phi}(\Sigma_M \cap \Sigma_{\neg\phi})$
 - If the product accepts any sequence
 - We have found a counter-example

Symbolic Tableau Construction

Elementary Formulas

A LTL formula φ is called *elementary*, if it is a variable (φ∈AP), a negated variable (φ=¬ψ, with ψ∈AP) or the outermost operator is a *next* operator (φ = Xψ).

```
\begin{split} el(\phi) & := \{\phi\}, \text{ if } \phi \in AP \\ el(\neg \phi) & := el(\phi) \\ el(\phi \lor \psi) & := el(\phi) \cup el(\psi) \\ el(X\phi) & := \{X\phi\} \cup el(\phi) \\ el(\phi \cup \psi) & := \{X(\phi \cup \psi)\} \cup el(\phi) \cup el(\psi) \end{split}
```

Symbolic Tableau Construction

- **The set of states of the tableau is** $S_T = 2^{el(\phi)}$
- **The labeling function** L_T **is defined as follows:**

 $\begin{array}{ll} \mathsf{Sat}(\phi) & := \{ \mathsf{s} \mid \phi \in \mathsf{s} \}, \, \mathsf{if} \, \phi \in \mathsf{el}(\phi) \\ \\ \mathsf{Sat}(\neg \phi) & := \{ \mathsf{s} \mid \phi \not \in \mathsf{Sat}(\phi) \} \\ \\ \mathsf{Sat}(\phi \lor \psi) & := \mathsf{Sat}(\phi) \cup \mathsf{Sat}(\psi) \\ \\ \\ \mathsf{Sat}(\phi \sqcup \psi) & := \mathsf{Sat}(\psi) \cup (\mathsf{Sat}(\phi) \cap \mathsf{Sat}(\mathsf{X}(\phi \sqcup \psi))) \end{array}$

$$R_{T}(s,s') = \bigwedge_{X \psi \in e^{I}(\varphi)} (s \in Sat(X \psi) \Leftrightarrow s' \in Sat(\psi))$$

Language Emptiness

$$\Sigma_{\mathsf{M}} \cap \Sigma_{\neg \varphi} = \emptyset$$

Compute strongly connected components

- Non trivial
- Containing an *accepting state*

None means no sequence is accepted

Proved the property

Very expensive

Nested Depth First Search

- □ The product is a Büchi automaton
- □ How do we find accepted sequences?
 - Accepted sequences must contain a cycle
 - In order to contain accepting states infinitely often
 - We are interested only in cycles that contain at least an accepting state
 - During depth first search start a second search when we are in an accepting states
 - If we can reach the same state again we have a cycle (and a counter-example)

Example

Example


```
procedure DFS(s)
  visited = visited \cup \{s\}
  for each successor s' of s
    if s' \notin visited then
      DFS(s')
      if s' is accepting then
        DFS2(s', s')
      end if
    end if
  end for
end procedure
```

Nested Depth First Search

```
procedure DFS2(s, seed)
  visited2 = visited2 \cup {s}
  for each successor s' of s
    if s' = seed then
      return "Cycle Detect";
    end if
    if s' \notin visited2 then
      DFS2(s', seed)
    end if
  end for
end procedure
```

CTL Model Checking

- □ Need only Modalities EX, EU, EG.
- □ Other Modalities can be expressed in terms of EX, EU, EG.

■ A(p U q) = ¬E[¬q U (¬p ∧ ¬q)] ∧ ¬EG ¬q

Reverse image

Image⁻¹(P, R) = {v : for some v', v' $\in P$ and (v, v') $\in R$ }

Example: EF g

EF g is calculated as

© Pallab Dasgupta, Dept. of Computer Sc & Engg, IIT Kharagpur

Model checking f = EF g

```
Given a model M= < AP,S,S0, R, L >
```

```
and S_g the sets of states satisfying g in M
```

```
procedure CheckEF (S<sub>g</sub>)

Q := emptyset; Q' := S<sub>g</sub>;

while Q \neq Q' do

Q := Q';

Q' := Q \cup { s | \existss' [ R(s,s') \land Q(s') ] }

end while
```

 $S_f := Q$; return(S_f)

Example: EG g

EG g is calculated as

© Pallab Dasgupta, Dept. of Computer Sc & Engg, IIT Kharagpur

```
Given a model M= < AP,S,S<sub>0</sub>, R, L >
```

```
and S_g the sets of states satisfying g in M
```

```
procedure CheckEG (S<sub>g</sub>)

Q := S ; Q' := Sg ;

while Q \neq Q' do

Q := Q';

Q' := Q \cap{ s | \existss' [ R(s,s') \land Q(s') ] }

end while

S<sub>f</sub> := Q ; return(S<sub>f</sub>)
```

Checking Nested Formulas

© Pallab Dasgupta, Dept. of Computer Sc & Engg, IIT Kharagpur

Complexity

Linear in the size of the Model

Linear in the size of the CTL Formula

- Model Size = M
- Formula Size = |F|
- Complexity = O (M x |F|)

Fairness in CTL Model Checking

□ Fairness F is a set of states {s1,s2,...,sn}

- A fair path of a model is a path which visits the states in F infinitely often.
- A CTL formula f is true under the fairness constrain F if f is true only in the FAIR paths of the model.

© Pallab Dasgupta, Dept. of Computer Sc & Engg, IIT Kharagpur

False Property: AF(g1) Fairness: r1 is asserted infinitely often

True Property:

AF(g1) under fairness F ={s0,s2}

Fairness Formal Semantics

□ A fair Kripke structure is a 6 tuple

- M=(AP,S,S₀,R,L,F) where $F \subseteq 2^{S}$ is a set of fairness constrains
- Let $\pi = s_0, s_1, \dots$ be a path in M
- $Inf(\pi) = \{s | s = s_i \text{ for infinitely many } i\}$

□ We say that π is fair if and only if for every element $P \in F$, inf(π) $\cap P \neq \Phi$

Cone-of-influence Reductions

Bounded Model Checking (BMC)

Broad Methodology

- We construct a Boolean formula that is satisfiable iff the underlying state transition system can realize a finite sequence of state transitions that satisfy the temporal property we are trying to validate
- We use powerful SAT solvers to determine the satisfiability of the Boolean formula
- The bound may be increased incrementally until we reach the diameter of the state transition graph

BMC: Translation to SAT

- We unfold the property into Boolean clauses over different time steps
- We unfold the state machine into Boolean clauses over the same number of time steps
- We check whether the clauses are together satisfiable

BMC: Example

 $\Box F(p \land q) = (p_0 \land q_0) \lor F(p \land q)$ = (p_0 \land q_0) \lor (p_1 \land q_1) up to 2 time steps

□ From state machine (*up to 2 time steps*) $(p_0 \land \neg q_0) \land ((\neg p_1 \land \neg q_1) \lor (p_1 \land \neg q_1))$ $= (p_0 \land \neg q_0) \land (\neg q_1)$

The total set of clauses is unsatisfiable

Advantages

- □ Able to handle larger state spaces as compared to BDD's.
- Takes advantage of several decades of research on efficient SAT solvers.
- The witness/counterexample produced are usually of minimum possible length, making them easier to understand and analyze.

Requirements

□ Specification in temporal logic.

System as a finite state machine.

Bound, k, on path length.

In bounded model checking, only paths of bounded length k or less are considered.

Limitations of BMC

Sound but not complete

- Works for a bounded depth
- In order to have a complete procedure, we need to run it at least up to the diameter (unknown) of the transition system
- For larger depths the number of clauses can grow rapidly, thereby raising capacity issues
- Nevertheless, SAT-based FPV tools can handle much larger designs as compared to BDD-based tools

Automata Theoretic on-the-fly FPV Tools

- Creates the checker automaton
- The emptiness search is done depth-first, thereby saving space
- Trades model checking time for space efficiency

ATPG-based FPV tools

□ ATPG based FPV Tools

- Synthesizes the checker automaton as a non-deterministic FSM (behavioral)
- Uses sequential ATPG to generate simulation vectors
- Not complete unless we have 100% test coverage

