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Agenda

Q0 Quick Overview
O Properties, Automata and State Machines

0 Model Checking
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Formal Property Verification

O What is formal property verification?

m Verification of formal properties?

m Formal methods for property verification?
O Both are important requirements

O Broad Classification
m Dynamic property verification (DPV)
m Static/Formal property verification (FPV)
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Dynamic Property Verification (DPV)

Simulation Platform
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Formal Property Verification (FPV)

p1 always !gl|| !g2 Yes!!
Model Checker The DUT satisfies the
(formal property verifier) properties under all scenarios

p2 always r2 && Irl - next g2
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FPV Tool

Temporal Logics (Timed / Untimed, Linear Time / Branching Time): LTL, CTL
Early Languages: Forspec (Intel), Sugar (IBM), Open Vera Assertions (Synopsys)

Current IEEE Standards: SystemVerilog Assertions (SVA),
Property Specification Language (PSL)
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Formal Property Verification

0 The formal method is called “Model Checking”

m The algorithm has two inputs
e A finite state transition system (FSM) representing
the implementation

e A formal property representing the specification

m The algorithm checks whether the FSM “models” the
property
e This is an exhaustive search of the FSM to see
whether it has any path / state that refutes the
property.

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 6




Advent of FPV

Goal: Exhaustive verification of the design intent within feasible time limits

Philosophy: Extraction of formal models of the design intent and the implementation
and comparing them using mathematical / logical methods

‘ Formal Properties | Design Intent \ °Temp9ral Logics _ |
(Turing Award: Amir Pnueli)

I Model * Adopted b)_/ Accelera / IEE!E
e * Integrated into SystemVerilog

Checking
always @( posedge clk ) * Tools:
begin Academia: NuSMV, VIS
if (Irst) begin a1 <= a2; Implementation - Industry: Magellan (Synopsys)
a2 <= ~af; end, IFV (Cadence)
end « 2008: Clarke & Emerson get
Turing Award

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 7




LTL Model Checking: Philosophy

O Given a LTL property, ¢, to be checked over a module, M, we do

the following:

m Create a checker automaton, B which accepts runs

- ’
satisfying —o

m Extract a (possibly non-deterministic) finite state machine, J,
from the module, M.

m Compute the product of J with B—.(p and check whether the

product has any accepting run.
e If not then M |= o.

e Otherwise, the accepting run is a counter-example trace.
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Example: Priority Arbiter

ri— > g1
Implementation
E >92
r2—
Property:

Specification

* Either of the grant lines is always asserted

* In Linear Temporal Logic: G(g1v g2)
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Step1: FSM Extraction
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Transition Relation:
4
g,<=r
g's & —rAr, A—g,

Start state: r,=0, r,=0, g,=0, g,=1
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Step1: Transition Relation
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Step2: Create automaton for property

Q Every LTL property can be converted to a Buchi Alternating
Automata

m States of the automata represents the states of the property
checker

m The automaton accepts all the valid runs (that is, those that
satisfy the property)

m How does this help to check the property?
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Step2: Applying the strategy

Q Our property: ¢=G[g,Vvg,]

m Either of the grant lines is always active

O We will create the automaton, 3, for —¢

m —¢=F[-g;A—Q,]
m Sometime both grant lines will be inactive

O We will then search for a common run between this automaton
and the FSM for the implementation
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How to create the checker automaton?

O Let us consider a property Fq // Eventually q is true

d We can rewrite it as:
Fg=q v XFq Il Either q is true now or

Fq is true in the next state

O Therefore we can have the following types of states:
m States that satisfy g
m States that do not satisfy q but satisfy XFq
m States that do not satisfy q and do not satisfy XFq
m The first two types are labeled by Fqg
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The automaton for our property

Our property: Fq where q =-g, A -9,
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What is this automaton?

Every run satisfying Fq
belongs to this automaton
» which are these runs?

- * runs starting from Fq
@ labeled states

But all runs starting from Fg—labeled states do not satisfy Fq
* Eg. runs that stay in state s forever do not satisfy Fq
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Which runs satisfy Fq?

Runs that start from Fq-labeled states and visit states
labeled by g or by —Fq infinitely often.

» This can be expressed as a fairness constraint
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Step3: Is the product non-empty?

g-labeled
states

@ Start\ ) q=-9, A9,
(0

Unreachable states

e9 @ |

/ J

The common run is shown in red. Product is non-empty.
Conclusion: Our implementation does not model G[g, vJ,]
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Computational facts

O If a LTL property has k sub-formulas, then the checker
automaton for it has O(2k) states

m Decomposing the property into a conjunction of smaller
properties helps in containing the size of this automaton

m It also helps the FPV tool to prune away parts of the
implementation before taking the emptiness check

O LTL model checking is PSPACE-complete, but linear in the size
of the implementation
m The main bottleneck is in the size of the implementation
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Capacity is the main issue

O The size of the global state transition system is exponential in
the total number of bits in the RTL

m This is the major bottleneck, even in control dominated
designs

m Efficient compact representations of the state space is the
key challenge

O Also the checker automaton grows exponentially with the length
of the property

m With increasingly complicated properties, this is also
becoming a growing issue
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Background Theory

O Creating the checker automaton

m LTL properties can be converted to non-deterministic Buchi
automata

m The determinization problem of Buchi automata

0 Model checking
m Finding strongly connected components
m Tableau construction

O Fixpoint algorithms and CTL model checking
O LTL model checking 2 CTL model checking
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Definitions

0 The symbol o is used to denote the set of non-negative integers,

thatis, ®={0,1, 2, 3, ...}

0 By X we denote a finite alphabet
m X" is the set of finite words over X
m X° denotes the set of infinite words (or ®-words) over X
m We write aeX®, as a = a(0)o(1) ... with a(i)eX.
m Finite set of letters occurring infinitely often:

Inf(a) = {aeX | Vi Jj>i afj) =a}
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o-Automata

0 An e-automaton is a quintuple (Q, Z, §, q,, Acc), where Qis a
finite set of states, X is a finite alphabet, 5: Q X X 2 2Q%is the state

transition relation, q,€Q is the initial state, and Acc is the

acceptance component.
m In a non-deterministic ®-automaton, a transition function
30: QXX > Qis used
m The acceptance component can be given as a set of states,
as a set of state-sets, or as a function from the set of states

to a finite set of natural numbers
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Buchi Acceptance

d An o-automaton A = (Q, %, §, q,, F), with acceptance component

F—Q is called a Buchi automaton if it is used with the following

acceptance condition (Buchi acceptance):

m A word aeX® is accepted by A iff there exists a run © of A on
a satisfying the condition:
Inf(x) N F 20

that is, at least one of the states in F has to be visited

infinitely often during the run.

m L(A) ={aeX?| A accepts a} is the w-language recognized by
A.
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Muller Acceptance

d An e-automaton A = (Q, %, 9, q,, F), with acceptance component

Fc2Qis called a Muller automaton when used with the following
acceptance condition (Muller acceptance):
m A word aeX® is accepted by A iff there exists a run © of A on
a satisfying the condition:
Inf(x) € F
that is, the set of infinitely recurring states of n is exactly one

of the sets in F.
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LTL - Buchi Automata

O Theorem [Wolper, Vardi, Sisla '83]: Given an LTL property ¢, one

can build a Buchi automaton A = (Q, Z, 3, q,, F) where
m X =2AP
e the number of atomic propositions, variables, etc in ¢
m |Q] < 2009l

e |o| is the length of the formula
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Examples

aUb

pU(qUr)

GF(p A Xp)
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Det. versus Non-det. Buchi Automata

O There exist languages which are accepted by some non-
deterministic Buchi automaton but not by any deterministic

Buchi-automaton

A= ({Ch, f)! {a! b}! A! 9 {f}) A A

A accepts the language: @ @
a
L ={ ae{a,b} | #,(a) <o}

b
[\ 2 )
@'@@, Normal determinization will produce this
automaton, which also accepts (a, b)® ¢ L
b

The automaton accepts L with F = {{{q,, f}}}
as Muller condition
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LTL Model Checking

O Given a model M and an LTL formula ¢

m Build the Buchi automaton B,
m Compute product of M and B,
e Each state of M is labeled with propositions
e Each state of B, is labeled with propositions
e Match states with the same labels
m The product accepted the traces of M that are also traces of
B.,EnNZ-)
m If the product accepts any sequence

e We have found a counter-example
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Symbolic Tableau Construction

0 Elementary Formulas

m ALTL formula ¢ is called elementary, if it is a variable
(p€AP), a negated variable (¢=—v, with yeAP) or the
outermost operator is a next operator (¢ = Xvy).

el(o) :={o}, if pcAP

el(—¢) :=el(p)

el(e v y) :=el(p) L el(y)

el(Xg) :={Xq} L el(p)

el(e Uy) :={X(e U y)} L el(p) L el(y)
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Symbolic Tableau Construction

L The set of states of the tableau is S; = 2¢l()

Q The labeling function L; is defined as follows:

Sat(p) :={s| o € s}, if pcel(p)

Sat(—¢) :={s|¢ ¢ Sat(e)}

Sat(ep v y) := Sat(p) U Sat(y)

Sat(p U y) := Sat(y) L (Sat(p) N Sat(X(e U y)))

X

R, (s,s") = q//G/;Wp)(s e Sat(Xy) < s'e Sat(w))
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Language Emptiness

InNZ,,=O

0 Compute strongly connected components
m Non trivial
m Containing an accepting state

1 None means no sequence is accepted
m Proved the property

Q Very expensive
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Nested Depth First Search

O The product is a Buchi automaton

O How do we find accepted sequences?
m Accepted sequences must contain a cycle
e In order to contain accepting states infinitely often

m We are interested only in cycles that contain at least an
accepting state

m During depth first search start a second search when we are
in an accepting states

e If we can reach the same state again we have a cycle (and
a counter-example)
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Example
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Example
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Nested Depth First Search

procedure DFS(Ss)
visited = visited v {s}
for each successor s’ of s
iIfT s’ ¢ visited then
DFS(s’)
iIfT s’ 1s accepting then
DFS2(s’, Ss’)
end 1f
end 1f
end for
end procedure
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Nested Depth First Search

procedure DFS2(s, seed)
visited2 = visited2 v {s}
for each successor s’ of s
iIfT s’ = seed then
return “Cycle Detect”;
end 1f
iIT s’ ¢ visited2 then
DFS2(s’, seed)
end 1f
end for
end procedure
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CTL Model Checking

O Need only Modalities EX, EU, EG.
O Other Modalities can be expressed in terms of EX, EU, EG.

|| AFp = -EG —pP
a AGp = —EF —p

[Clarke,Emerson]
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Example EX p

 Reverse image

Image”’(P,R)={v: forsomev'v'eP and (v,v') e R}

Image-!(P,R)

R: Transition
Relation

EXP

EXp= 3av((v,v)eRAp e L(v))
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Example: EF g

U EF g is calculated as

gvEXg

gV
\ EX(g v EX g)

Least
Fix Point
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Model checking f = EF g

Given a model M=< AP,S,SO, R, L >

and S, the sets of states satisfying g inM

procedure CheckEF (S, )
Q := emptyset; Q' =S, ;
while Q= Q’ do

Q:=Q’;
Q:=Qu{s| 3s'[R(s,;s’) AQ(s’)] }
end while

S;:=Q; return(S;)
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Example: EG g

d EG g is calculated as

g A
;=D EXgaExg) ) gaExg ) 9

Greatest
Fix Point
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Model checking f=EG g

Given a model M=< AP,S,5,,R,L >

and S, the sets of states satisfyinggin M

procedure CheckEG (S,)
Q:=S; Q:=8¢g;
while Q # Q’ do
Q:=Q’;
Q:=QNn{s| 3s'[R(s,s’) AQ(s’) ]}
end while

S;:=Q; return(S;)
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Checking Nested Formulas

EF(pI\‘EG/ﬁq)

I | EF

p/\EG—q

Bottom Up

C/‘SA
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Checking Nested formulas

BTG q)
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Complexity

 Linear in the size of the Model

M Linear in the size of the CTL Formula
m Model Size = M
m Formula Size = |F|
m Complexity = O (M x |F|)
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Fairness in CTL Model Checking

Q Fairness F is a set of states {s1,s2,...,sn}

m A fair path of a model is a path which visits the states in F
infinitely often.

m A CTL formula f is true under the fairness constrain F if f is
true only in the FAIR paths of the model.

False Property:
AF(g1)

Fairnessei s
assertediinfinitely,
oftéen

liruerPropenty:

AE(gd) under:
fialfness E ={s0,s2}
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Fairness Formal Semantics

O A fair Kripke structure is a 6 tuple

m M=(AP,S,S,,R,L,F) where F c 25 is a set of fairness constrains
m Letn=s,S,...beapathin M

m Inf(n) = {s| s = s, for infinitely many i}

O We say that = is fair if and only if for every element P € F,

inf(xr)nP = ®
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Cone-of-influence Reductions

ri— > g1
_DO_ The original state machine
[: » g2 had 16 states
2 —*
After COR based on:
r, = Xg,
The reduced state machine
r1— *d1 has 4 states
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Bounded Model Checking (BMC)

O Broad Methodology

m We construct a Boolean formula that is satisfiable iff the
underlying state transition system can realize a finite
sequence of state transitions that satisfy the temporal
property we are trying to validate

m We use powerful SAT solvers to determine the satisfiability of
the Boolean formula

m The bound may be increased incrementally until we reach the
diameter of the state transition graph
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BMC: Translation to SAT

O We unfold the property into Boolean clauses over different time
steps

O We unfold the state machine into Boolean clauses over the same
number of time steps

0 We check whether the clauses are together satisfiable
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BMC: Example

QF(PAg) =(pAq) V F(pAq)
=(poAq) V (pP1Aq)
up to 2 time steps

P P

o8

O From state machine (up to 2 time steps)

(PoA—=9qp) A (Pt A=q) V(P A-qy))
=(pp A—qq) A(—qy)

L The total set of clauses is unsatisfiable
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Advantages

O Able to handle larger state spaces as compared to BDD'’s.

O Takes advantage of several decades of research on efficient SAT
solvers.

QO The witness/counterexample produced are usually of minimum
possible length, making them easier to understand and analyze.
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Requirements

O Specification in temporal logic.

0 System as a finite state machine.

U Bound, k, on path length.

m In bounded model checking, only paths of bounded length k
or less are considered.
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Limitations of BMC

d Sound but not complete
m Works for a bounded depth

m In order to have a complete procedure, we need to run it at
least up to the diameter (unknown) of the transition system

Q For larger depths the number of clauses can grow rapidly,
thereby raising capacity issues

O Nevertheless, SAT-based FPV tools can handle much larger designs as
compared to BDD-based tools
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On-the-fly FPV tools

0 Automata Theoretic on-the-fly FPV Tools

m Creates the checker automaton
m The emptiness search is done depth-first, thereby saving
space

m Trades model checking time for space efficiency

© Pallab Dasgupta, Dept. of Computer Sc & Enggqg, IIT Kharagpur 56




ATPG-based FPV tools

d ATPG based FPV Tools

m Synthesizes the checker automaton as a non-deterministic
FSM (behavioral)

m Uses sequential ATPG to generate simulation vectors
m Not complete unless we have 100% test coverage

{ )
Checker Automaton -
{ )
RTL —
. y Generate tests for a

stuck-at-1 fault here
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