
Model CheckingModel CheckingModel Checking

Pallab Pallab DasguptaDasgupta
Professor, Dept. of Computer Science & Professor, Dept. of Computer Science & EnggEngg.,.,
ProfessorProfessor--inin--charge, AVLSI Design Lab,charge, AVLSI Design Lab,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Testing & Verification
Dept. of Computer Science & Engg, IIT Kharagpur
Testing & VerificationTesting & Verification
Dept. of Computer Science & Dept. of Computer Science & EnggEngg, IIT Kharagpur, IIT Kharagpur

2© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

AgendaAgenda

Quick OverviewQuick Overview

Properties, Automata and State MachinesProperties, Automata and State Machines

Model CheckingModel Checking

3© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Formal Property VerificationFormal Property Verification

What is What is formal property verification?formal property verification?

■■ Verification of Verification of formal properties?formal properties?

■■ Formal methods Formal methods for property verification?for property verification?

Both are important requirementsBoth are important requirements

Broad ClassificationBroad Classification

■■ Dynamic property verification (DPV)Dynamic property verification (DPV)

■■ Static/Formal property verification (FPV)Static/Formal property verification (FPV)

4© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Dynamic Property Verification (DPV)Dynamic Property Verification (DPV)

5© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Formal Property Verification (FPV)Formal Property Verification (FPV)

always !g1 || !g2

always r2 && !r1 next g2

Formal PropertiesFormal Properties

Temporal Logics (Timed / Temporal Logics (Timed / UntimedUntimed, Linear Time / Branching Time): , Linear Time / Branching Time): LTL, CTLLTL, CTL

Early Languages: Early Languages: ForspecForspec (Intel), Sugar (IBM), Open Vera Assertions (Synopsys)(Intel), Sugar (IBM), Open Vera Assertions (Synopsys)

Current IEEE Standards: Current IEEE Standards: SystemVerilogSystemVerilog Assertions (SVA), Assertions (SVA),
Property Specification Language (PSL)Property Specification Language (PSL)

6© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Formal Property VerificationFormal Property Verification

The formal method is called The formal method is called ““Model CheckingModel Checking””

■■ The algorithm has two inputsThe algorithm has two inputs
●● A finite state transition system (FSM) representing A finite state transition system (FSM) representing

the implementationthe implementation
●● A formal property representing the specificationA formal property representing the specification

■■ The algorithm checks whether the FSM The algorithm checks whether the FSM ““modelsmodels”” the the
propertyproperty
●● This is an exhaustive search of the FSM to see This is an exhaustive search of the FSM to see

whether it has any path / state that refutes the whether it has any path / state that refutes the
property.property.

7© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Advent of FPVAdvent of FPV

always @(posedge clk)
begin
if (!rst) begin a1 <= a2;

a2 <= ~a1; end;
end

ImplementationImplementation

Formal PropertiesFormal PropertiesFormal Properties Design IntentDesign Intent

ModelModel
CheckingChecking

Goal:Goal: Exhaustive verification of the design intent within feasible timExhaustive verification of the design intent within feasible time limitse limits

Philosophy:Philosophy: Extraction of formal models of the design intent and the implemeExtraction of formal models of the design intent and the implementationntation
and comparing them using mathematical / logical methods and comparing them using mathematical / logical methods

•• Temporal LogicsTemporal Logics
((Turing Award: Turing Award: AmirAmir PnueliPnueli))

•• Adopted by Adopted by AcceleraAccelera / IEEE/ IEEE
•• Integrated into Integrated into SystemVerilogSystemVerilog
•• Tools: Tools:

Academia: Academia: NuSMVNuSMV, VIS, VIS
Industry: Magellan (Synopsys)Industry: Magellan (Synopsys)

IFV (Cadence)IFV (Cadence)
•• 2008: Clarke & Emerson get2008: Clarke & Emerson get

Turing AwardTuring Award

8© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

LTL Model Checking: LTL Model Checking: PhilosophyPhilosophy

Given a LTL property, Given a LTL property, ϕϕ, to be checked over a module, , to be checked over a module, M,M, we do we do

the following:the following:

■■ Create a checker automaton, BCreate a checker automaton, B¬ϕ¬ϕ , which accepts runs , which accepts runs

satisfying satisfying ¬ϕ¬ϕ

■■ Extract a (possibly nonExtract a (possibly non--deterministic) finite state machine, deterministic) finite state machine, JJ, ,

from the module, from the module, M.M.

■■ Compute the product of J with BCompute the product of J with B¬ϕ¬ϕ and check whether the and check whether the

product has any accepting run. product has any accepting run.

●● If not then M |= If not then M |= ϕϕ. .

●● Otherwise, the accepting run is a counterOtherwise, the accepting run is a counter--example trace.example trace.

9© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Example: Example: Priority ArbiterPriority Arbiter

Implementation

Property: Property:
•• Either of the grant lines is always assertedEither of the grant lines is always asserted

•• In Linear Temporal Logic: In Linear Temporal Logic: G(g1 G(g1 ∨∨ g2)g2)
Specification

r1

r2

g1

g2

10© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Step1: FSM ExtractionStep1: FSM Extraction

Transition Relation:Transition Relation:
g′1 ⇔ r1

g′2 ⇔ ¬r1 ∧ r2 ∧ ¬ g1

r1

r2

g1

g2

PSPS
gg11gg22

I/PI/P
rr11rr22

NSNS
gg′′11gg′′22

0000

0000

0000

0000

0101

0101

0101

0101

1010

1010

1010

1010

1111

1111

1111

1111

0000

0101

1010

1111

0000

0101

1010

1111

0000

0101

1010

1111

0000

0101

1010

1111

0000

0101

1010

1010

0000

0101

1010

1010

0000

0000

1010

1010

0000

0000

1010

1010

Start state: r1=0, r2=0, g1=0, g2=1

11© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Step1: Step1: Transition RelationTransition Relation

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011
Unreachable states

1100 1101

1110 1111

Start

PSPS
gg11gg22

I/PI/P
rr11rr22

NSNS
gg′′11gg′′22

0000

0000

0000

0000

0101

0101

0101

0101

1010

1010

1010

1010

1111

1111

1111

1111

0000

0101

1010

1111

0000

0101

1010

1111

0000

0101

1010

1111

0000

0101

1010

1111

0000

0101

1010

1010

0000

0101

1010

1010

0000

0000

1010

1010

0000

0000

1010

1010

12© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Step2: Create automaton for propertyStep2: Create automaton for property

Every LTL property can be converted to a Every LTL property can be converted to a BBüüchichi Alternating Alternating
AutomataAutomata

■■ States of the automata represents the states of the property States of the automata represents the states of the property
checkerchecker

■■ The automaton accepts all the valid runs (that is, those that The automaton accepts all the valid runs (that is, those that
satisfy the property)satisfy the property)

■■ How does this help to check the property?How does this help to check the property?

13© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Step2: Applying the strategyStep2: Applying the strategy

Our property: Our property: ϕϕ = G[g= G[g1 1 ∨∨ gg2 2]]
■■ Either of the grant lines is always activeEither of the grant lines is always active

We will create the automaton, We will create the automaton, AA, for , for ¬¬ϕϕ

■■ ¬¬ϕϕ = F[= F[¬¬gg11 ∧∧ ¬¬gg22]]
■■ Sometime both grant lines will be inactiveSometime both grant lines will be inactive

We will then search for a common run between this automaton We will then search for a common run between this automaton
and the FSM for the implementationand the FSM for the implementation

14© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

How to create the checker automaton?How to create the checker automaton?

Let us consider a property Let us consider a property FqFq // // Eventually q is trueEventually q is true

We can rewrite it as:We can rewrite it as:

FqFq = q = q ∨∨ XFqXFq // // Either q is true now or Either q is true now or

FqFq is true in the next stateis true in the next state

Therefore we can have the following types of states:Therefore we can have the following types of states:

■■ States that satisfy qStates that satisfy q

■■ States that do not satisfy q but satisfy States that do not satisfy q but satisfy XFqXFq

■■ States that do not satisfy q and do not satisfy States that do not satisfy q and do not satisfy XFqXFq

■■ The first two types are labeled by The first two types are labeled by FqFq

15© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

The automaton for our propertyThe automaton for our property

Our property: Our property: FqFq where where q = q = ¬¬gg11 ∧∧ ¬¬gg22

q, XFq q, ¬XFq

¬q, XFq ¬q, ¬XFq

Fq

Fq

Fq

16© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

What is this automaton?What is this automaton?

Every run satisfying Every run satisfying FqFq
belongs to this automatonbelongs to this automaton
•• which are these runs?which are these runs?
•• runs starting from runs starting from FqFq

labeled stateslabeled states

q, XFq q, ¬XFq

¬q, XFq ¬q, ¬XFq

But all runs starting from But all runs starting from FqFq––labeled states do not satisfy labeled states do not satisfy FqFq
•• EgEg. runs that stay in state s forever do not satisfy . runs that stay in state s forever do not satisfy FqFq

Fq

Fq

Fq

17© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Which runs satisfy Which runs satisfy FqFq??

q, XFq q, ¬XFq

¬q, XFq ¬q, ¬XFq

Runs that start from Runs that start from FqFq––labeled states and visit states labeled states and visit states
labeled by labeled by q q or byor by ¬¬FqFq infinitely often.infinitely often.

•• This can be expressed as a fairness constraintThis can be expressed as a fairness constraint

Fq

Fq

Fq

18© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Step3: Step3: Is the product nonIs the product non--empty?empty?

q, XFq q, ¬XFq

¬q, XFq ¬q, ¬XFqStart

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011
Unreachable states

1100 1101

1110 1111

Start q = q = ¬¬gg11 ∧∧ ¬¬gg22

The common run is shown in red. Product is nonThe common run is shown in red. Product is non--empty. empty.
Conclusion: Conclusion: Our implementation does not model G[gOur implementation does not model G[g11 ∨∨ gg22]]

q-labeled
states

19© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Computational factsComputational facts

If a LTL property has k subIf a LTL property has k sub--formulas, then the checker formulas, then the checker
automaton for it has O(2automaton for it has O(2kk) states) states

■■ Decomposing the property into a conjunction of smaller Decomposing the property into a conjunction of smaller
properties helps in containing the size of this automatonproperties helps in containing the size of this automaton

■■ It also helps the FPV tool to prune away parts of the It also helps the FPV tool to prune away parts of the
implementation before taking the emptiness checkimplementation before taking the emptiness check

LTL model checking is PSPACELTL model checking is PSPACE--complete, but linear in the size complete, but linear in the size
of the implementationof the implementation
■■ The main bottleneck is in the size of the implementationThe main bottleneck is in the size of the implementation

20© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Capacity is the main issueCapacity is the main issue

The size of the global state transition system is exponential inThe size of the global state transition system is exponential in
the total number of bits in the RTLthe total number of bits in the RTL
■■ This is the major bottleneck, even in control dominated This is the major bottleneck, even in control dominated

designsdesigns
■■ Efficient compact representations of the state space is the Efficient compact representations of the state space is the

key challengekey challenge

Also the checker automaton grows exponentially with the length Also the checker automaton grows exponentially with the length
of the propertyof the property
■■ With increasingly complicated properties, this is also With increasingly complicated properties, this is also

becoming a growing issuebecoming a growing issue

21© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Background TheoryBackground Theory

Creating the checker automatonCreating the checker automaton
■■ LTL properties can be converted to nonLTL properties can be converted to non--deterministic deterministic BuchiBuchi

automataautomata
■■ The The determinizationdeterminization problem of problem of BuchiBuchi automataautomata

Model checkingModel checking
■■ Finding strongly connected componentsFinding strongly connected components
■■ Tableau constructionTableau construction

FixpointFixpoint algorithms and CTL model checkingalgorithms and CTL model checking

LTL model checking LTL model checking CTL model checkingCTL model checking

22© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

DefinitionsDefinitions

The symbol The symbol ωω is used to denote the set of nonis used to denote the set of non--negative integers, negative integers,

that is, that is, ωω = {0, 1, 2, 3, = {0, 1, 2, 3, ……}}

By By ΣΣ we denote a finite alphabetwe denote a finite alphabet

■■ ΣΣ* is the set of finite words over * is the set of finite words over ΣΣ

■■ ΣΣωω denotes the set of infinite words (or denotes the set of infinite words (or ωω--words) over words) over ΣΣ

■■ We write We write α∈Σα∈Σωω, as , as αα = = αα(0)(0)αα(1) (1) …… with with αα(i)(i)∈Σ∈Σ..

■■ Finite set of letters occurring infinitely often:Finite set of letters occurring infinitely often:

InfInf((αα) = { a) = { a∈Σ∈Σ | | ∀∀i i ∃∃j>i j>i αα(j) = a }(j) = a }

23© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

ωω--AutomataAutomata

An An ωω--automaton is a quintuple (Q, automaton is a quintuple (Q, ΣΣ, , δδ, , qqII, Acc), where Q is a , Acc), where Q is a

finite set of states, finite set of states, ΣΣ is a finite alphabet, is a finite alphabet, δδ: Q X : Q X ΣΣ 22Q Q is the state is the state

transition relation, transition relation, qqII∈∈QQ is the initial state, and Acc is the is the initial state, and Acc is the

acceptance component. acceptance component.

■■ In a nonIn a non--deterministic deterministic ωω--automaton, a transition function automaton, a transition function

δδ: Q X : Q X ΣΣ Q is usedQ is used

■■ The acceptance component can be given as a set of states, The acceptance component can be given as a set of states,

as a set of stateas a set of state--sets, or as a function from the set of states sets, or as a function from the set of states

to a finite set of natural numbersto a finite set of natural numbers

24© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

BBüüchichi AcceptanceAcceptance

An An ωω--automaton A = (Q, automaton A = (Q, ΣΣ, , δδ, , qqII, F), with acceptance component , F), with acceptance component

FF⊆⊆Q is called a Q is called a BuchiBuchi automaton if it is used with the following automaton if it is used with the following

acceptance condition (acceptance condition (BuchiBuchi acceptance):acceptance):

■■ A word A word α∈Σα∈Σωω is accepted by A is accepted by A iffiff there exists a run there exists a run ππ of A on of A on

αα satisfying the condition:satisfying the condition:

InfInf((ππ)) ∩∩ F F ≠Φ≠Φ

that is, at least one of the states in F has to be visited that is, at least one of the states in F has to be visited

infinitely often during the run.infinitely often during the run.

■■ L(A) = {L(A) = {α∈Σα∈Σωω | A accepts | A accepts αα} is the } is the ωω--language recognized by language recognized by

A. A.

25© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

MullerMuller AcceptanceAcceptance

An An ωω--automaton A = (Q, automaton A = (Q, ΣΣ, , δδ, , qqII, F), with acceptance component , F), with acceptance component

FF⊆⊆22QQ is called a Muller automaton when used with the following is called a Muller automaton when used with the following

acceptance condition (Muller acceptance):acceptance condition (Muller acceptance):

■■ A word A word α∈Σα∈Σωω is accepted by A is accepted by A iffiff there exists a run there exists a run ππ of A on of A on

αα satisfying the condition:satisfying the condition:

InfInf((ππ)) ∈∈ FF

that is, the set of infinitely recurring states of that is, the set of infinitely recurring states of ππ is exactly one is exactly one

of the sets in F.of the sets in F.

26© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

LTL LTL BuchiBuchi AutomataAutomata

Theorem [Theorem [WolperWolper, , VardiVardi, , SislaSisla ’’83]: Given an LTL property 83]: Given an LTL property ϕϕ, one , one
can build a can build a BuchiBuchi automaton A = (Q, automaton A = (Q, ΣΣ, , δδ, , qqII, F) where, F) where

■■ ΣΣ = 2= 2APAP

●● the number of atomic propositions, variables, etc in the number of atomic propositions, variables, etc in ϕϕ

■■ |Q| |Q| ≤ ≤ 22O(|O(|ϕϕ|)|)

●● ||ϕϕ| is the length of the formula| is the length of the formula

27© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

ExamplesExamples

aa

bb

TT

a U ba U b

qq

rr

TTpp

qq

rr

p U (q U r)p U (q U r)

GF(pGF(p ∧∧ XpXp))

TT

pp

TT

pp

TT

28© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

DetDet. versus Non. versus Non--detdet. . BuchiBuchi AutomataAutomata

There exist languages which are accepted by some nonThere exist languages which are accepted by some non--
deterministic deterministic BuchiBuchi automaton but not by any deterministic automaton but not by any deterministic
BuchiBuchi--automatonautomaton

qqII

a,ba,b

aa

aa

ff

A = ({A = ({qqII, f), {a, b}, , f), {a, b}, ΔΔ, , qqII, {f}), {f})
A accepts the language: A accepts the language:

L = { L = { αα∈∈{{a,ba,b}}ωω | #| #bb((αα) <) < ∞∞ }}

{{qqII}}

bb

bb

aa

{{qqII, f}, f}
aa

Normal Normal determinizationdeterminization will produce thiswill produce this
automaton, which also accepts (a, b)automaton, which also accepts (a, b)ωω ∉∉ LL

The automaton accepts L with F = {{{The automaton accepts L with F = {{{qqII, f}}}, f}}}
as Muller condition as Muller condition

29© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

LTL Model CheckingLTL Model Checking

Given a model M and an LTL formula Given a model M and an LTL formula ϕϕ
■■ BuildBuild the the BuchiBuchi automaton Bautomaton B¬¬ϕϕ

■■ Compute productCompute product of M and of M and BB¬¬ϕϕ

●● Each state of M is labeled with propositionsEach state of M is labeled with propositions
●● Each state of Each state of BB¬¬ϕϕ is labeled with propositionsis labeled with propositions
●● Match states with the same labelsMatch states with the same labels

■■ The product accepted the traces of M that are also traces of The product accepted the traces of M that are also traces of
BB¬¬ϕϕ ((ΣΣM M ∩∩ ΣΣ¬¬ϕϕ))

■■ If the product accepts any sequenceIf the product accepts any sequence
●● We have found a We have found a countercounter--exampleexample

30© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Symbolic Tableau ConstructionSymbolic Tableau Construction

Elementary FormulasElementary Formulas

■■ A LTL formula A LTL formula ϕϕ is called is called elementary, elementary, if it is a variable if it is a variable
((ϕ∈ϕ∈AP), a negated variable (AP), a negated variable (ϕϕ==¬ψ¬ψ, with , with ψ∈ψ∈AP) or the AP) or the
outermost operator is a outermost operator is a next next operator (operator (ϕϕ = X= Xψψ).).

el(el(ϕϕ)) := {:= {ϕϕ}, if }, if ϕ∈ϕ∈APAP

el(el(¬ϕ¬ϕ)) := el(:= el(ϕϕ))

el(el(ϕϕ ∨∨ ψψ) := el() := el(ϕϕ)) ∪∪ el(el(ψψ))

el(Xel(Xϕϕ)) := {X:= {Xϕϕ} } ∪∪ el(el(ϕϕ))

el(el(ϕϕ U U ψψ) := {X() := {X(ϕϕ U U ψψ)})} ∪∪ el(el(ϕϕ)) ∪∪ el(el(ψψ))

31© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Symbolic Tableau ConstructionSymbolic Tableau Construction

The set of states of the tableau is SThe set of states of the tableau is STT = 2= 2el(el(ϕϕ))

The labeling function LThe labeling function LTT is defined as follows:is defined as follows:

Sat(Sat(ϕϕ)) := {s | := {s | ϕϕ ∈∈ s}, if s}, if ϕ∈ϕ∈el(el(ϕϕ))

Sat(Sat(¬ϕ¬ϕ)) := {s | := {s | ϕϕ ∉∉ Sat(Sat(ϕϕ)})}

Sat(Sat(ϕϕ ∨∨ ψψ) := Sat() := Sat(ϕϕ)) ∪∪ Sat(Sat(ψψ))

Sat(Sat(ϕϕ U U ψψ) := Sat() := Sat(ψψ)) ∪∪ (Sat((Sat(ϕϕ)) ∩∩ Sat(XSat(X((ϕϕ U U ψψ))))))

))(')(()',(
)(

ψψ
ϕψ

SatsXSatsssR
elXT ∈⇔∈∧=

∈

32© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Language EmptinessLanguage Emptiness

ΣΣM M ∩∩ ΣΣ¬¬ϕϕ== ∅ ∅

Compute Compute strongly connected componentsstrongly connected components
■■ Non trivialNon trivial
■■ Containing an Containing an accepting stateaccepting state

None means no sequence is acceptedNone means no sequence is accepted
■■ Proved the propertyProved the property

Very expensiveVery expensive

33© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Nested Depth First SearchNested Depth First Search

The product is a The product is a BBüüchi automatonchi automaton

How do we find accepted sequences?How do we find accepted sequences?
■■ Accepted sequences Accepted sequences must contain a cyclemust contain a cycle

●● In order to contain accepting states infinitely oftenIn order to contain accepting states infinitely often
■■ We are interested only in We are interested only in cycles that contain at least an cycles that contain at least an

accepting stateaccepting state
■■ During depth first search start a During depth first search start a second searchsecond search when we are when we are

in an in an accepting statesaccepting states
●● If we can reach the same state again we have a cycle (and If we can reach the same state again we have a cycle (and

a a countercounter--exampleexample))

34© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

ExampleExample

35© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

ExampleExample

36© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Nested Depth First SearchNested Depth First Search

procedureprocedure DFSDFS((ss))

visitedvisited = = visitedvisited ∪ ∪ {{ss}}
forfor each successor each successor ss’’ of of ss

ifif ss’’ ∉∉ visitedvisited thenthen
DFSDFS((ss’’))
ifif ss’’ is accepting is accepting thenthen
DFS2DFS2((ss’’, , ss’’))

end ifend if
end ifend if

end forend for
end procedureend procedure

37© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Nested Depth First SearchNested Depth First Search

procedure procedure DFS2DFS2((ss, , seedseed))

visited2 visited2 = = visited2visited2 ∪ ∪ {{ss}}
for for each successor each successor ss’’ of of ss
ifif ss’’ = = seed seed thenthen

return return ““Cycle DetectCycle Detect””;;
end ifend if

if if ss’’ ∉∉ visited2visited2 thenthen
DFS2DFS2((ss’’, , seedseed))

end ifend if
end forend for

end procedureend procedure

38© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

CTL Model CheckingCTL Model Checking

Need only Modalities EX, EU, EG.Need only Modalities EX, EU, EG.

Other Modalities can be expressed in terms of EX, EU, EG.Other Modalities can be expressed in terms of EX, EU, EG.

■■ AFpAFp = = ¬¬EG EG ¬¬pp
■■ AGpAGp = = ¬¬EF EF ¬¬pp
■■ A(pA(p U q) = U q) = ¬¬E[E[¬¬qq U (U (¬¬p p ∧∧ ¬¬q)q)]] ∧∧ ¬¬EG EG ¬¬q q

[[Clarke,EmersonClarke,Emerson]]

39© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Example EX pExample EX p

Reverse imageReverse image

})',(and ',' some for:{),(Image-1 RPRP ∈∈= vvvvv

PP
R: TransitionR: Transition

RelationRelation

ImageImage--11(P,R)(P,R)

EX PEX P

EXp = ∃v ((v,v’)∈R ٨ p ∈ L(v))

40© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Example: EF gExample: EF g

EF g is calculated asEF g is calculated as

gggg ∨∨ EX gEX ggg ∨∨
EXEX((gg ∨∨ EX gEX g))

.

LeastLeast
Fix PointFix Point

41© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Model checking Model checking f =f = EF g EF g

Given a model Given a model M= < AP,S,S0, R, L >M= < AP,S,S0, R, L >

and and SSgg the sets of states satisfying the sets of states satisfying gg in Min M

procedure procedure CheckEFCheckEF ((SSgg))

Q := Q := emptysetemptyset; Q; Q’’ := := SSgg ;;

while Q while Q ≠≠ QQ’’ dodo

Q := QQ := Q’’;;

QQ’’ := Q := Q ∪∪ { s | { s | ∃∃s' [R(s,ss' [R(s,s’’)) ∧∧ Q(sQ(s’’)] })] }

end whileend while

SSff := Q ; := Q ; return(return(SSff))

42© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Example: EG gExample: EG g

EG g is calculated asEG g is calculated as

gg ∧∧ EX gEX g gg
g g ∧∧
EXEX((gg ∧∧ EX gEX g))......

Greatest Greatest
Fix PointFix Point

43© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Model checking Model checking f =f = EG g EG g

Given a model M= < AP,S,SGiven a model M= < AP,S,S00, R, L >, R, L >

and and SSgg the sets of states satisfying the sets of states satisfying gg in Min M

procedure procedure CheckEGCheckEG ((SSgg))

Q := S ; QQ := S ; Q’’ := := SgSg ;;

while Q while Q ≠≠ QQ’’ dodo

Q := QQ := Q’’;;

QQ’’ := Q := Q ∩∩{ s | { s | ∃∃s' [R(s,ss' [R(s,s’’)) ∧∧ Q(sQ(s’’)] })] }

end whileend while

SSff := Q ; := Q ; return(return(SSff))

44© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Checking Nested FormulasChecking Nested Formulas

E F(p /E F(p /\\ EG EG ¬¬qq))

p /p /\\ EG EG ¬¬qq

E GE G

EG EG ¬¬qqp p

//\\

E FE F

¬¬qq

Bottom UpBottom Up

45© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Checking Nested formulasChecking Nested formulas

pp statestate

q stateq state

¬p ¬p ٨٨ ¬q¬q statestate

¬q¬qEG¬qEG¬qpp٨٨EG¬qEG¬qEF(pEF(p٨٨EG¬qEG¬q))

EF (p EF (p ٨٨ EG EG ¬¬q)q)

46© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

ComplexityComplexity

Linear in the size of the ModelLinear in the size of the Model

Linear in the size of the CTL FormulaLinear in the size of the CTL Formula
■■ Model Size = Model Size = MM
■■ Formula Size = Formula Size = |F||F|
■■ Complexity = Complexity = O (M x |F|)O (M x |F|)

47© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Fairness in CTL Model CheckingFairness in CTL Model Checking

Fairness F is a set of states {s1,s2,Fairness F is a set of states {s1,s2,……,,snsn}}
■■ A fair path of a model is a path which visits the states in F A fair path of a model is a path which visits the states in F

infinitely often.infinitely often.
■■ A CTL formula f is true under the fairness constrain F if f is A CTL formula f is true under the fairness constrain F if f is

true only in the FAIR paths of the model.true only in the FAIR paths of the model.

¬¬g1,g2,¬r1g1,g2,¬r1

¬¬g1,g2, r1g1,g2, r1 g1,¬g2,¬r1g1,¬g2,¬r1

g1,¬g2,r1g1,¬g2,r1

False Property:False Property:

AF(AF(g1g1))

True Property:True Property:

AF(AF(g1g1) under) under
fairness fairness F ={s0,s2}F ={s0,s2}

S0

S1 S2

S3

Fairness: r1 is Fairness: r1 is
asserted infinitely asserted infinitely

oftenoften

48© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Fairness Formal SemanticsFairness Formal Semantics

A fair A fair KripkeKripke structure is a 6 structure is a 6 tupletuple

■■ M=(AP,S,SM=(AP,S,S00,R,L,F) where F ,R,L,F) where F ⊆⊆ 22SS is a set of fairness constrainsis a set of fairness constrains

■■ Let Let ππ = s= s00,s,s11,,…… be a path in Mbe a path in M

■■ InfInf((ππ) = {s| s =) = {s| s = ssii for infinitely many i}for infinitely many i}

We say that We say that ππ is fair if and only if for every element P is fair if and only if for every element P ∈∈ F, F,

inf(inf(ππ))∩∩PP ≠ ≠ ΦΦ

49© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

ConeCone--ofof--influence Reductionsinfluence Reductions

r1

r2

g1

g2

After COR based on:
r1 ⇒ Xg1

r1 g1

The original state machine
had 16 states

The reduced state machine
has 4 states

50© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Bounded Model Checking (BMC)Bounded Model Checking (BMC)

Broad MethodologyBroad Methodology
■■ We construct a Boolean formula that is We construct a Boolean formula that is satisfiablesatisfiable iffiff the the

underlying state transition system can realize a finite underlying state transition system can realize a finite
sequence of state transitions that satisfy the temporal sequence of state transitions that satisfy the temporal
property we are trying to validateproperty we are trying to validate

■■ We use powerful SAT solvers to determine the We use powerful SAT solvers to determine the satisfiabilitysatisfiability of of
the Boolean formulathe Boolean formula

■■ The bound may be increased incrementally until we reach the The bound may be increased incrementally until we reach the
diameter of the state transition graphdiameter of the state transition graph

51© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

BMC: Translation to SATBMC: Translation to SAT

We unfold the property into Boolean clauses over different time We unfold the property into Boolean clauses over different time
stepssteps

We unfold the state machine into Boolean clauses over the same We unfold the state machine into Boolean clauses over the same
number of time stepsnumber of time steps

We check whether the clauses are together satisfiableWe check whether the clauses are together satisfiable

52© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

BMC: ExampleBMC: Example
F (p F (p ΛΛ q)q) = (p= (p00 ΛΛ qq0 0) V F (p) V F (p ΛΛ q)q)

= (p= (p0 0 ΛΛ qq00) V) V (p(p11 ΛΛ qq11))
up to 2 time stepsup to 2 time steps

From state machine (From state machine (up to 2 time stepsup to 2 time steps))
(p(p0 0 ΛΛ ¬¬ qq00)) ΛΛ ((((¬¬ pp11 ΛΛ ¬¬ qq11)) VV (p(p11 ΛΛ ¬¬ qq11))))
= (p= (p00 ΛΛ ¬¬ qq00)) ΛΛ ((¬¬ qq11))

The total set of clauses is The total set of clauses is unsatisfiableunsatisfiable

p p

53© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

AdvantagesAdvantages

Able to handle larger state spaces as compared to Able to handle larger state spaces as compared to BDDBDD’’ss..

Takes advantage of several decades of research on efficient SAT Takes advantage of several decades of research on efficient SAT
solvers. solvers.

The witness/counterexample produced are usually of minimum The witness/counterexample produced are usually of minimum
possible length, making them easier to understand and analyze.possible length, making them easier to understand and analyze.

54© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

RequirementsRequirements

Specification in temporal logic.Specification in temporal logic.

System as a finite state machine.System as a finite state machine.

Bound, k, on path length.Bound, k, on path length.

■■ In bounded model checking, only paths of bounded length k In bounded model checking, only paths of bounded length k
or less are considered.or less are considered.

55© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

Limitations of BMCLimitations of BMC

Sound but not completeSound but not complete
■■ Works for a bounded depthWorks for a bounded depth
■■ In order to have a complete procedure, we need to run it at In order to have a complete procedure, we need to run it at

least up to the diameter (unknown) of the transition systemleast up to the diameter (unknown) of the transition system

For larger depths the number of clauses can grow rapidly, For larger depths the number of clauses can grow rapidly,
thereby raising capacity issuesthereby raising capacity issues

Nevertheless, SATNevertheless, SAT--based FPV tools can handle much larger designs as based FPV tools can handle much larger designs as
compared to BDDcompared to BDD--based toolsbased tools

56© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

OnOn--thethe--fly FPV toolsfly FPV tools

Automata Theoretic onAutomata Theoretic on--thethe--fly FPV Toolsfly FPV Tools

■■ Creates the checker automatonCreates the checker automaton

■■ The emptiness search is done depthThe emptiness search is done depth--first, thereby saving first, thereby saving
spacespace

■■ Trades model checking time for space efficiencyTrades model checking time for space efficiency

57© Pallab © Pallab DasguptaDasgupta, Dept. of Computer Sc & , Dept. of Computer Sc & EnggEngg, IIT Kharagpur, IIT Kharagpur

ATPGATPG--based FPV toolsbased FPV tools

ATPG based FPV ToolsATPG based FPV Tools
■■ Synthesizes the checker automaton as a nonSynthesizes the checker automaton as a non--deterministic deterministic

FSM (behavioral)FSM (behavioral)
■■ Uses sequential ATPG to generate simulation vectorsUses sequential ATPG to generate simulation vectors
■■ Not complete unless we have 100% test coverageNot complete unless we have 100% test coverage

Checker Automaton

RTL
⊕

Generate tests for a Generate tests for a
stuckstuck--atat--1 fault here1 fault here

	Agenda
	Formal Property Verification
	Dynamic Property Verification (DPV)
	Formal Property Verification (FPV)
	Formal Property Verification
	Advent of FPV
	LTL Model Checking: Philosophy
	Example: Priority Arbiter
	Step1: FSM Extraction
	Step1: Transition Relation
	Step2: Create automaton for property
	Step2: Applying the strategy
	How to create the checker automaton?
	The automaton for our property
	What is this automaton?
	Which runs satisfy Fq?
	Step3: Is the product non-empty?
	Computational facts
	Capacity is the main issue
	Background Theory
	Definitions
	-Automata
	Büchi Acceptance
	Muller Acceptance
	LTL  Buchi Automata
	Examples
	Det. versus Non-det. Buchi Automata
	LTL Model Checking
	Symbolic Tableau Construction
	Symbolic Tableau Construction
	Language Emptiness
	Nested Depth First Search
	Example
	Example
	Nested Depth First Search
	Nested Depth First Search
	CTL Model Checking
	Example EX p
	Example: EF g
	Model checking f = EF g
	Example: EG g
	Model checking f = EG g
	Checking Nested Formulas
	Checking Nested formulas
	Complexity
	Fairness in CTL Model Checking
	Fairness Formal Semantics
	Cone-of-influence Reductions
	Bounded Model Checking (BMC)
	BMC: Translation to SAT
	BMC: Example
	Advantages
	Requirements
	Limitations of BMC
	On-the-fly FPV tools
	ATPG-based FPV tools
	Agenda
	Formal Property Verification
	Dynamic Property Verification (DPV)
	Formal Property Verification (FPV)
	Formal Property Verification
	Advent of FPV
	LTL Model Checking: Philosophy
	Example: Priority Arbiter
	Step1: FSM Extraction
	Step1: Transition Relation
	Step2: Create automaton for property
	Step2: Applying the strategy
	How to create the checker automaton?
	The automaton for our property
	What is this automaton?
	Which runs satisfy Fq?
	Step3: Is the product non-empty?
	Computational facts
	Capacity is the main issue
	Background Theory
	Definitions
	-Automata
	Büchi Acceptance
	Muller Acceptance
	LTL  Buchi Automata
	Examples
	Det. versus Non-det. Buchi Automata
	LTL Model Checking
	Symbolic Tableau Construction
	Symbolic Tableau Construction
	Language Emptiness
	Nested Depth First Search
	Example
	Example
	Nested Depth First Search
	Nested Depth First Search
	CTL Model Checking
	Example EX p
	Example: EF g
	Model checking f = EF g
	Example: EG g
	Model checking f = EG g
	Checking Nested Formulas
	Checking Nested formulas
	Complexity
	Fairness in CTL Model Checking
	Fairness Formal Semantics
	Cone-of-influence Reductions
	Bounded Model Checking (BMC)
	BMC: Translation to SAT
	BMC: Example
	Advantages
	Requirements
	Limitations of BMC
	On-the-fly FPV tools
	ATPG-based FPV tools

