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Abstract

In-place reconstruction of differenced data allows information on devices with limited stor-
age capacity to be updated efficiently over low-bandwidth channels. Differencing encodes a
version of data compactly as a set of changes from a previous version. Transmitting updates
to data as a version difference saves both time and bandwidth. In-place reconstruction rebuilds
the new version of the data in the storage or memory the current version occupies – no scratch
space is needed for a second version. By combining these technologies, we support highly-
mobile applications on space-constrained hardware.

We present an algorithm that modifies a differentially encoded version to be in-place recon-
structible. The algorithm trades a small amount of compression to achieve this property. Our
treatment includes experimental results that show our implementation to be efficient in space
and time and verify that compression losses are small. Also, we give results on the computa-
tional complexity of performing this modification while minimizing lost compression.

keywords: differencing, differential compression, version management, data distribution, in-place recon-
struction, mobile computing



1 Introduction

We develop a system for data distribution and version management to be used in highly-mobile and
resource-limited computers operating on low-bandwidth networks. The system combines differencing with
a technology called in-place reconstruction. Differencing encodes a file compactly as a set of changes from
a previous version. The system sends the difference encoding to a target computer in order to update the file,
saving bandwidth and transfer time when compared with transmitting the whole file. In-place reconstruction
updates the file in the memory or storage space the current version occupies. In-place reconstruction brings
the benefits of differencing to the computers that need it the most – resource-constrained devices such as
wireless handhelds and cellular phones.

Differencing has been widely used to reduce latency and lower bandwidth requirements in distributed
systems. The original applications of differencing focused on reducing the storage required to maintain
sequences of versions. Examples include source code control systems [21, 25, 16], editors [9], and databases
[22]. In the last decade, researchers have realized that these algorithms compress data quickly and can
be used to reduce bandwidth requirements and transfer time for applications that exchange data across
networks. Examples include backup and restore [4], database consistency [6], and Internet protocols [2, 19,
5].

For completeness, we often group delta compression [10, 11, 5] with differencing [1, 16]. Delta com-
pression is a generalization of differencing and data compression [27], in that a version of a file may be
compressed with respect to matching strings from within the file being encoded, as well as from the other
version. Although the results of this paper concern differential compression, our methods apply to delta
encoding as well.

To date, differencing has not been employed effectively for resource-constrained mobile and wireless
devices. While the problem space is ideal, it has not been used because reconstructing a differential encoding
requires storage space (disk or memory) to manifest a new version of data while keeping the old version as
a reference. This problem is particularly acute for mass-produced devices that use expensive non-volatile
memories, such as personal digital assistants, wireless handhelds, and cellular phones. For these devices, it
is important to keep manufacturing costs low. Therefore, it is not viable to add storage to a device solely for
the purpose of differencing.

In-place reconstruction makes differential compression available to resource-constrained devices on any
network; mobile and wireless networks are the most natural and interesting application. In-place recon-
struction allows a version to be updated by a differential encoding in the memory or storage that it currently
occupies; reconstruction does not need additional scratch space for a second copy. An in-place recon-
structible differential encoding is a permutation and modification of the original encoding. This conversion
comes with a small compression penalty. In-place reconstruction brings the latency and bandwidth benefits
of differencing to the space-constrained, mass-produced devices that need them the most. The combination
of differencing and in-place reconstruction keeps the cost of manufacturing mobile devices low, by reducing
the demand on networking and storage hardware.

For one example application, we choose updating/patching the operating system of phones in a cellular
network. Currently, the software and firmware in cellular phones remains the same over the life of the phone,
or at least until the customer brings a phone in for service. Suppose that the authentication mechanism in the
phone was compromised – perhaps the crypto was broken [13] or more likely keys were revealed [23]. In
either case, updating software becomes essential for the correct operation of system. In particular, without
trustworthy authentication, billing cannot be performed reliably. Using in-place reconstruction, the system
patches the software quickly over the cellular network. The update degrades performance minimally by
making the update size as small as possible. This example fits our system model well. Phones are mass-
produced and, therefore, resource-constrained in order to keep manufacturing costs low. Also, cellular
networks are low-bandwidth and cellular devices compete heavily for bandwidth. In-place reconstruction
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makes these devices manageable over networks, instead of immutable.
For another example, we choose a distributed inventory management system based on mobile-handheld

devices. Many limited-capacity devices track quantities throughout an enterprise. To reduce latency, these
devices cache portions of the database for read-only and update queries. Each device maintains a radio
link to update its cache and runs a consistency protocol. In-place reconstruction allows the devices to keep
their copies of data consistent using differencing without requiring scratch space, thereby increasing the
cache utilization at target devices. We observe that in-place reconstruction applies to both structured data
(databases) and unstructured data (files), because they manipulate a differential encoding, as opposed to the
original data. Algorithms for differencing structured data [6] employ encodings that are suitable for in-place
techniques.

Any application that has multiple resource-constrained computers sharing data interactively will want to
use this technology and, in particular, applications that involve computer-human workflows using cellular
or radio-frequency devices. Examples include security and law enforcement, property management, airport
services, health care, and shipping/delivery.

1.1 Differencing and In-Place Reconstruction

We modify a differentially encoded file so that it is suitable for reconstructing the new version of the file
in-place. A difference file encodes a sequence of instructions, or commands, for a computer to materialize a
new file version in the presence of a reference version, the old version of the file. When rebuilding a version
encoded by a difference file, data are both copied from the reference version to the new version and added
explicitly when portions of the new version do not appear in the reference version.

If we were to attempt naively to reconstruct an arbitrary difference file in-place, the resulting output
would often be corrupt. This occurs when the encoding instructs the computer to copy data from a file
region where new file data has already been written. The data the algorithm reads have been altered and the
algorithm rebuilds an incorrect file.

We present a graph-theoretic algorithm for modifying difference files that detects situations where an
encoding attempts to read from an already written region and permutes the order that the algorithm applies
commands in a difference file to reduce the occurrence of such conflicts. The algorithm eliminates any
remaining conflicts by removing commands that copy data and adding these data to the encoding explicitly.
Eliminating data copied between versions increases the size of the encoding but allows the algorithm to
output an in-place reconstructible difference file.

Experimental results verify the viability and efficiency of modifying difference files for in-place recon-
struction. Our findings indicate that our algorithms exchange a small amount of compression for in-place
reconstructibility.

Experiments also reveal an interesting property of these algorithms not expressed by algorithmic anal-
ysis. We show in-place reconstruction algorithms to be I/O bound. In practice, the most important perfor-
mance factor is the output size of the encoding. Two heuristics for eliminating data conflicts were studied
in our experiments, and they show that the heuristic that loses less compression is superior to the more
time-efficient heuristic that loses more compression.

The graphs constructed by our algorithm form an apparently new class of directed graphs, which we call
CRWI (conflicting read-write interval) digraphs. Our modification algorithm is not guaranteed to minimize
the amount of lost compression, but we do not expect an efficient algorithm to have this property, because
we show that minimizing the lost compression is an NP-hard problem. We also consider the complexity
of finding an optimally-compact, in-place reconstructible difference “from scratch”, i.e. directly from a
reference file and a version file. We show that this problem is NP-hard. In contrast, without the requirement
of in-place reconstructibility, an optimally-compact difference file can be found in polynomial time [24, 18,
20].
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2 Related Work

Encoding versions compactly by detecting altered regions of data is a well known problem. The first
applications of differential compression found changed lines in text data for analyzing the recent modifica-
tions to files [8]. Considering data as lines of text fails to encode a minimum sized difference, as it does not
examine data at a fine granularity and finds only matching data that are aligned at the beginning of a new
line.

The problem of representing the changes between versions of data was formalized as string-to-string
correction with block move [24] – detecting maximally matching regions of a file at an arbitrarily fine
granularity without alignment. However, differencing continued to rely on the alignment of data, as in
database records [22], and the grouping of data into block or line granules, as in source code control systems
[21, 25], to simplify the combinatorial task of finding the common and different strings between versions.

Efforts to generalize differencing to un-aligned data and to minimize the granularity of the smallest
change resulted in algorithms for compressing data at the granularity of a byte. Early algorithms were based
upon either dynamic programming [18] or the greedy method [24, 20, 16] and performed this task using
time quadratic in the length of the input files.

Differential compression algorithms were improved to run in linear time and linear space. Algorithms
with these properties have been derived from suffix trees [26, 17, 15]. Like algorithms based on greedy
methods and dynamic programming, these algorithms generate optimally compact encodings.

Delta compression is a more general form of differencing. It includes the concept of finding matching
data within the file being encoded as well as comparing that file to other similar files [10, 11, 5]. Delta
compression runs in linear time. Related to delta compression is a coding technique that unifies differential
and general compression [14].

Recent advances produced differencing algorithms that run in linear time and constant space [1]. These
algorithms trade a small amount of compression in order to improve performance.

Any of the linear run-time algorithms allow differencing to scale to large inputs without known structure
and permit the application of differential compression to data management systems. These include binary
source code control [16] and backup and restore [4].

Applications distributing HTTP objects using delta compression have emerged [2, 19, 5]. They permit
Web servers to both reduce the amount of data transmitted to a client and reduce the latency associated with
loading Web pages. Efforts to standardize delta files as part of the HTTP protocol and the trend toward
making small network devices HTTP compliant indicate the need to distribute data to network devices
efficiently.

3 Encoding Difference Files

Differencing algorithms encode the changes between two file versions compactly by finding strings
common to both versions. We term the first file a version file that contains the data to be encoded and
the second a reference file to which the version file is compared. Differencing algorithms encode a file by
partitioning the data in the version file into strings that are encoded using copies from the reference file
and strings that are added explicitly to the version file (Figure 1). Having partitioned the version file, the
algorithm outputs a difference that encodes this version. This encoding consists of an ordered sequence of
copy commands and add commands.

An add command is an ordered pair, ht; li, where t (to) encodes the string offset in the file version and
l (length) encodes the length of the string. The l bytes of data to be added follow the command. A copy
command is an ordered triple, hf; t; li where f (from) encodes the offset in the reference file from which
data are copied, t encodes the offset in the new file where the data are to be written, and l encodes that
length of the data to be copied. The copy command moves the string data in the interval [f; f + l� 1] in the
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Figure 1: Encoding difference files. Common strings are encoded as copy commands hf; t; li and new
strings in the new file are encoded as add commands ht; li followed by the length l string of added data.

C1 C2

(a) Differential copy

conflict corrupt

C1 C2

(b) In-place copy

Figure 2: Data conflict and corruption when performing copy command C1 before C2.

reference file to the interval [t; t+ l � 1] in the version file.
In the presence of the reference file, a difference file rebuilds the version file with add and copy com-

mands. The intervals in the version file encoded by these commands are disjoint. Therefore, any permutation
of the command execution order materializes the same output version file.

4 In-Place Modification Algorithm

An in-place modification algorithm changes an existing difference file into a difference file that recon-
structs correctly a new file version in the space the current version occupies. At a high level, our technique
examines the input difference file to find copy commands that conflict; in which one command reads data
from the write interval (file address range to which the command writes data) of the other copy command.
The algorithm represents potential data conflicts in a digraph. It topologically sorts the digraph to produce an
ordering on copy commands that reduces conflicts. It eliminates the remaining conflicts by converting copy
commands to add commands. The algorithm outputs the permuted and converted commands as an in-place
reconstructible difference. Actually, as described in more detail below, the algorithm performs permutation
and conversion of commands concurrently.

4.1 Conflict Detection

The algorithm orders commands that attempt to read a region to which another command writes. For
this, we adopt the term write before read (WR) conflict [3]. For copy commands hfi; ti; lii and hfj; tj ; lji,
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with i < j, a WR conflict occurs when

[ti; ti + li � 1] \ [fj ; fj + lj � 1] 6= ;: (1)

In other words, copy command i and j conflict if i writes to the interval from which j reads data. By
denoting, for each copy command hfk; tk; lki, the command’s read interval as Readk = [fk; fk + lk � 1]
and its write interval as Writek = [tk; tk + lk � 1], we write the condition (Equation 1) for a WR conflict
as Writei \ Readj 6= ;. In Figure 2, commands C1 and C2 executed in that order generate a data conflict
(blacked area) that corrupts data were the file reconstructed in place.

This definition considers only WR conflicts between copy commands and neglects add commands. Add
commands write data to the version file; they do not read data from the reference file. Consequently, an
algorithm avoids all potential WR conflicts from adding data by placing add commands at the end of an
encoding. In this way, the algorithm completes all reads from copy commands before executing the first add
command.

Additionally, we define WR conflicts so that a copy command cannot conflict with itself, even though
a single copy command’s read and write intervals intersect sometimes and would seem to cause a conflict.
We deal with read and write intervals that overlap by performing the copy in a left-to-right or right-to-left
manner. For command hf; t; li, if f � t, we copy the string byte by byte starting at the left-hand side when
reconstructing a file. Since, the f (from) offset always exceeds the t (to) offset in the new file, a left-to-right
copy never reads a byte over-written by a previous byte in the string. When f < t, a symmetric argument
shows that we should start our copy at the right hand edge of the string and work backward. For this example,
we performed the copies in a byte-wise fashion. However, the notion of a left-to-right or right-to-left copy
applies to moving a read/write buffer of any size.

A difference file suitable for in-place reconstruction obeys the property

(8j)
"

Readj \
 
j�1[
i=1

Writei

!
= ;
#
; (2)

indicating the absence of WR conflicts. Equivalently, it guarantees that a copy command reads and transfers
data from the original file.

4.2 CRWI Digraphs

To find a permutation that reduces WR conflicts, we represent potential conflicts between the copy com-
mands in a digraph and topologically sort this digraph. A topological sort on digraph G = (V;E) produces
a linear order on all vertices so that if G contains edge

!
uv then vertex u precedes vertex v in topological

order.
Our technique constructs a digraph so that each copy command in the difference file has a corresponding

vertex in the digraph. On this set of vertices, we construct an edge relation with a directed edge
!
uv from

vertex u to vertex v when copy command u’s read interval intersects copy command v’s write interval. Edge
!
uv indicates that by performing command u before command v, the difference file avoids a WR conflict. We
call a digraph obtained from a difference file in this way a conflicting read-write interval (CRWI) digraph.
A topologically sorted version of this graph obeys the requirement for in-place reconstruction (Equation 2).
To the best of our knowledge, the class of CRWI digraphs has not been defined previously. While we know
little about its structure, it is clearly smaller than the class of all digraphs. For example, the CRWI class does
not include any complete digraphs with more than two vertices.

4.3 Strategies for Breaking Cycles

As total topological orderings are possible only on acyclic digraphs and CRWI digraphs may contain
cycles, we enhance a standard topological sort to break cycles and output a total topological order on a
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subgraph. A depth-first search implementation of topological sort [7] is modified to detect cycles. Upon
detecting a cycle, our modified sort breaks the cycle by removing a vertex. The sort outputs a digraph
containing a subset of all vertices in topological order and a set of vertices that were removed. The algorithm
re-encodes the data contained in the copy commands of the removed vertices as add commands in the output.

We define the amount of compression lost upon deleting a vertex to be the cost of deletion. Based on this
cost function, we formulate the optimization problem of finding the minimum cost set of vertices to delete
to make a digraph acyclic. Replacing a copy command (hf; t; li) with an add command (ht; li) increases the
encoding size by l�kfk, where kfk is the size of the encoding of offset f . Thus, the vertex that corresponds
to the copy command hf; t; li is assigned cost l � kfk.

When turning a digraph into an acyclic digraph by deleting vertices, an in-place conversion algorithm
could minimize the amount of compression lost by selecting a set of vertices with the smallest total cost.
This problem, called the FEEDBACK VERTEX SET problem, was shown by Karp [12] to be NP-hard for
general digraphs. In Section 8, we show that it remains NP-hard even when restricted to CRWI digraphs.
Thus, we do not expect an efficient algorithm to minimize the cost in general. In our implementation, we
examine two efficient, but not optimal, policies for breaking cycles. The constant-time policy picks the
“easiest” vertex to remove, based on the execution order of the topological sort, and deletes this vertex. This
policy performs no extra work when breaking cycles. The local-minimum policy detects a cycle and loops
through all vertices in the cycle to determine and then delete the minimum cost vertex. The local-minimum
policy may perform as much additional work as the total length of cycles found by the algorithm. Although
these policies perform well in our experiments, we note in Section 4.7 that they do not guarantee that the
total cost of deletion is within a constant factor of the optimum.

4.4 Generating Conflict Free Permutations

Our algorithm for converting difference files into in-place reconstructible difference files takes the fol-
lowing steps to find and eliminate WR conflicts between a reference file and a version file.

Algorithm

1. Given an input difference file, we partition the commands in the file into a set C of copy commands
and a set A of add commands.

2. Sort the copy commands by increasing write offset, Csorted = fc1; c2; :::; cng. For ci and cj , this set
obeys: i < j () ti < tj . Sorting the copy commands allows us to perform binary search when
looking for a copy command at a given write offset.

3. Construct a digraph from the copy commands. For the copy commands c1; c2; :::; cn, we create a
vertex set V = fv1; v2; :::; vng. Build the edge set E by adding an edge from vertex vi to vertex vj
when copy command ci reads from the interval to which cj writes:

�!
vivj () Readi \Writej 6= ; () [fi; fi + li � 1] \ [tj ; tj + lj � 1] 6= ;:

4. Perform a topological sort on the vertices of the digraph. This sort also detects cycles in the di-
graph and breaks them. When breaking a cycle, select one vertex on the cycle using either the local-
minimum or constant-time policy and remove it. Replace the data encoded in its copy command with
an equivalent add command, which is put into set A.

5. Output the remaining copy commands to the difference file in topologically sorted order.

6. Output all add commands in set A to the difference file.
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The resulting difference file reconstructs the new version out of order, both out of write order in the
version file and out of the order that the commands appeared in the original encoding.

For completeness, we give a brief description of how a standard depth-first search (DFS) algorithm was
modified to perform step 4 in our implementation, as these details affect both the results of our experiments
and the asymptotic worst-case time bounds. As described, the DFS algorithm outputs the un-removed copy
commands in reverse topologically sorted order. A topological order is achieved by reversing the output
of the DFS algorithm. A DFS algorithm uses a stack to visit the vertices of a digraph in a certain order.
The algorithm marks each vertex either un-visited, on-stack, or finished. Initially, every vertex is marked
un-visited. Until no more un-visited vertices exist, the algorithm chooses a un-visited vertex u and calls
VISIT(u). The procedure VISIT(u) marks u as on-stack, pushes u on the stack, and examines each vertex
w for which there is an edge

!
uw in the graph. For each such w: (1) if w is marked finished then w is not

processed further; (2) if w is marked un-visited then VISIT(w) is performed; (3) if w is marked on-stack
then the vertices between u and w on the stack form a directed cycle, which must be broken.

For the constant-time policy, u is popped from the stack and removed from the graph. Letting p denote
the new top of the stack, the execution of VISIT(p) continues as though u were marked finished. For the
local-minimum policy, the algorithm loops through all vertices on the cycle to find one of minimum cost,
that is, one whose removal causes the smallest increase in the size of the difference file; call this vertex r.
Vertices r through u are popped from the stack and marked un-visited, except r which is removed. If there
is a vertex p on the top of the stack, then the execution of VISIT(p) continues as though r were marked
finished. Recall that we are describing an execution of VISIT(u) by examining all w such that there is an
edge

!
uw. After all such w have been examined, u is marked finished, u is popped from the stack, and the

copy command corresponding to vertex u is written in reverse sorted order. Using the constant-time policy,
this procedure has the same running time as DFS, namely, O(jV j+ jEj). Using the local-minimum policy,
when the algorithm removes a vertex, it retains some of the work (marking) that the DFS has done. However,
in the worst case, the entire stack pops after each vertex removal, causing running time proportional to jV j2.
(While we can construct examples where the time is proportional to jV j2, we do not observe this worst-case
behavior in our experiments.)

4.5 Algorithmic Performance

Suppose that the algorithm is given a difference file consisting of a set C of copy commands and a set A
of add commands. The presented algorithm uses time O(jCj log jCj) both for sorting the copy commands by
write order and for finding conflicting commands, using binary search on the sorted write intervals for the jV j
vertices in V – recall that jV j = jCj. Additionally, the algorithm separates and outputs add commands using
time O(jAj) and builds the edge relation using time O(jEj). As noted above, step 4 takes time O(jV j+ jEj)
using the constant-time policy and time O(jV j2) using the local-minimum policy. The total worst-case
execution time is thus O(jCj log jCj + jEj + jAj) for the constant-time policy and O(jV j2 + jAj) for the
local-minimum policy. The algorithm uses space O(jEj + jCj + jAj). Letting n denote the total number
of commands in the difference file, the graph contains as many vertices as copy commands. Therefore,
jV j = jCj = O(n). The same is true of add commands, jAj = O(n). However, we have no bound for the
number of edges, except the trivial bound O(jV j2) for general digraphs. (In Section 4.6, we demonstrate by
example that our algorithm can generate a digraph having a number of edges meeting this bound.) On the
other hand, we also show that the number of edges in digraphs generated by our algorithm is linear in the
length of the version file V that the difference file encodes (Lemma 1). We denote the length of V by LV .

Substituting these bounds on jEj into the performance expressions, for an input difference file con-
taining n commands encoding a version file of length LV , the worst-case running time of our algorithm is
O(n log n + min(LV ; n2)) using the constant-time policy and O(n2) using the local-minimum policy. In
either case, the space is O(n+min(LV ; n2)).
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4.6 Bounding the Size of the Digraph

The performance of digraph construction, topological sorting, and cycle breaking depends upon the
number of edges in the digraphs our algorithm constructs. We asserted previously (Section 4.5) that the
number of edges in a CRWI digraph grows quadratically with the number of copy commands and is bounded
above by the length of the version file. We now verify these assertions.

No digraph has more than O(jV j2) edges. To establish that this bound is tight for CRWI digraphs, we
show an example of a difference file whose CRWI digraph realizes this bound. Consider a version file of
length L that is broken up into blocks of length

p
L (Figure 3). There are

p
L such blocks, b1; b2; :::; bpL

.
Assume that all blocks excluding the first block in the version file, b2; b3; :::; bpL

, are all copies of the first

block in the reference file. Also, the first block in the version file consists of
p
L copies of length 1 from

any location in the reference file. A difference file for this reference and version file consists of
p
L “short”

copy commands, each of length 1, and
p
L � 1 “long” copy commands, each of length

p
L. Since each

short command writes into each long command’s read interval, a CRWI digraph for this difference file has
an edge from every vertex representing a long command to every vertex representing a short command. This
digraph has

p
L� 1 vertices each with out-degree

p
L for total edges in 
(L) = 
(jCj2).

The 
(L) bound also turns out to be the maximum possible number of edges.

Lemma 1 For a difference file that encodes a version file V of length LV , the number of edges in the digraph
representing potential WR conflicts is at most LV .

Proof. The CRWI digraph has an edge representing a potential WR conflict from copy command i to copy
command j when

[fi; fi + li � 1] \ [tj; tj + lj � 1] 6= ;:
Copy command i has a read interval of length li. Recalling that the write intervals of all copy commands
are disjoint, there are at most li edges directed out of copy command i – this occurs when the region
[fi; fi + li � 1] in the version file is encoded by li copy commands of length 1. We also know that, for any
encoding, the sum of the lengths of all read intervals is less than or equal to LV . As all read intervals sum
to � LV , and no read interval generates more out-edges than its length, the number of edges in the digraph
from a difference file that encodes V is less than or equal to LV . �

If each copy command in the difference file encodes a string of length at least `, then a similar proof shows
that there are at most LV=` edges.
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Figure 4: A CRWI digraph constructed from a binary tree by adding a directed edge from each leaf to the
root vertex (only some paths shown). Each leaf has costC and each other vertex has costC + 1. The
local-minimum cycle breaking policy performs poorly on this CRWI digraph, removing each leaf vertex,
instead of the root vertex.

Bounding the number of edges in CRWI digraphs verifies the performance bounds presented in Section
4.5.

4.7 Non-Optimality of the Local-Minimum Policy

An adversarial example shows that the cost of a solution (a set of deleted vertices) found using the
local-minimum policy is not bounded above by any constant times the optimal cost. Consider the digraph
of Figure 4; Theorem 1 in Section 7 shows that this is a CRWI digraph. The local-minimum policy for
breaking cycles looks at thek cycles(v0; : : : ; vi; v0) for i = 1; 2; : : : ; k. For each cycle, it chooses to delete
the minimum cost vertex– vertexvi with costC. As a result, the algorithm deletes verticesv1; v2; : : : ; vk,
incurring total costkC. However, deleting vertexv0, at costC + 1, is the globally optimal solution. If we
further assume that the original differencefile contains only the2k � 1 copy commands in Figure 4 and
that the size of eachcopy command isc, then the size of the differencefile generated by the local-minimum
solution is(k� 1)c+ kC, the size of the optimal differencefile is2(k� 1)c+C +1, and the ratio of these
two sizes approaches1=2 +C=2c for largek. AsC=c can be arbitrarily large, this ratio is not bounded by a
constant.

The merit of the local-minimum solution, as compared to breaking cycles in constant time, is difficult to
determine. On differencefiles whose digraphs have sparse edge relations, cycles are infrequent and looping
through cycles saves compression at little cost. However, worst-case analysis indicates no preference for
the local-minimum solution when compared to the constant-time policy. This motivates a performance
investigation of the run-time and compression associated with these two policies (Section 5).

5 Experimental Results

As in-place reconstruction is used for distributing data to mobile and resource-limited devices, we ex-
tracted a large body of experimental data that consists of versions of software intended for handhelds and
personal digital assistants. Files include applications, boot loaders, and operating system components. In-
place differencing was measured against these data with the goals of:

� determining the compression loss due to making differencefiles in-place reconstructible;

� comparing the constant-time and local-minimum policies for breaking cycles;

� showing in-place conversion algorithms to be efficient when compared with differencing algorithms;
and,

� characterizing the graphs created by the algorithm.
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Figure 5: File counts and data size.

In all cases, we obtained the original differencefiles using the correcting 1.5-pass differential compression
algorithm [1].

The experimental data we collected and employed are characteristic of the intended application. Be-
cause our interest lies in distributingfiles to resource-limited devices, we collected versions of open-source
software intended for the Compaq iPAQ handheld device, a personal digital assistant that can run versions
of the Linux operating system. Data were obtained in April 2002 fromwww.handhelds.org, a Web site
designed to facilitate the“creation of open source software for use on handheld and wearable computers.”
To collect data, we downloaded the software archive and ran scripts that search the archive for multiple ver-
sions of the samefiles. The original and processed data are available from the Hopkins Storage Systems lab
at http://hssl.cs.jhu.edu/ipdata/. All experimental data arefiles that are distributed to handheld devices:
boot loaders, applications,flash updates, and their associated datafiles. We did not include source code or
other data not intended for distribution to handhelds.

We categorize the differencefiles in our experiments into 3 groups that describe what operations were
required to makefiles in-place reconstructible. Experiments were conducted on 1959files totaling more
that 87.4 Megabytes– an averagefile size of approximately 44 kilobytes. Of thesefiles (Figure 5), 33%
of the files contained cycles that needed to be broken. 65% did not have cycles, but needed to havecopy
commands reordered. The remaining 2% offiles were trivially in-place reconstructible;i.e. none of thecopy
commands conflicted. For trivialfiles, performing copies before adds creates an in-place difference.

The amount of data infiles is distributed differently across the three categories than are thefile counts.
Files with cycles contain over 58.0% (50.7 MB) of data with an averagefile size of 78 KB. Files that need
copy commands reordered hold 39.3% (34.3 MB) of data, with an averagefile size of 27 KB. Trivially
in-place reconstructiblefiles occupy 2.7% (2.4 MB) of data with an averagefile size of 60 KB.

The distribution offiles and data across the three categories confirms that efficient algorithms for cycle
breaking and command reordering are needed to deliver differentially compressed data in-place. While most
differencefiles do not contain cycles, those that do have cycles contain the majority of the data.

We group compression results into the same categories. Figure 6(a) shows compression (size of dif-
ferencefiles as a fraction of the originalfile size) and Figure 6(b) shows the total size of the difference
files. For each category and for allfiles, we report data for three algorithms, all of which are derived from
the correcting 1.5-pass differencing algorithm (HPDelta) [1]. These algorithms are: the correcting 1.5-pass
differencing algorithm modified so that code-words are in-place reconstructible (IP-HPDelta); the in-place
modification algorithm using the local-minimum cycle breaking policy (IP-LMin); and the in-place mod-
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Figure 6: Compression performance showing the compression achieved and the total number of bytes of
compressed data for each class offiles.

ification algorithm using the constant-time cycle breaking policy (IP-Const). The HPDelta algorithm is a
linear time, constant space algorithm for generating differentially compressedfiles.

The IP-HPDelta algorithm is a modification of HPDelta to output code-words that are suitable for in-
place reconstruction. Throughout this paper, we have describedadd commandsht; li andcopy commands
hf; t; li, where both commands encode explicitly the“to” t or write offset in the versionfile. However,
differencing algorithms, such as HPDelta, reconstruct data in write order and do not encode a write offset
– an add command can simply behli and acopy commandhf; li. Since commands are applied in write
order, the end offset of the previous command implies the write offset of the current command implicitly.
The code-words of IP-HPDelta are modified to make the write offset explicit, allowing our algorithm to
reorder commands. This extrafield in each code-word introduces a per-command overhead in a difference
file. The amount of compression loss varies, depending upon the number of commands and the original size
of the differencefile. Overhead in these experiments ran to more than 4.4%– which corresponds to output
deltafiles that are 16% larger than with HPDelta. The codewords used in these experiments are not well
tuned for in-place reconstruction, spending 4 bytes per codeword to describe a write offset. In the future,
in-place differencing will require the careful codeword design that has been done for delta compression
[14] to minimize these losses. For now, our experiments focus on compression loss from cycle breaking,
i.e. compression loss attributable to in-place algorithms.

From the IP-HPDelta algorithm, we derive the IP-Const and IP-LMin algorithms. They run the IP-
HPDelta algorithm to generate a differencefile and then permute and modify the commands according to
our techniques. The IP-Const algorithm implements the constant-time policy and the IP-LMin algorithm
implements the local-minimum policy.

Experimental results describe the amount of compression lost due to in-place reconstruction. Over all
files, IP-HPDelta compresses data to 31.1% their orginal size (Figure 6(a)). This number does not include
data compression, which can be performed after the difference is taken. Compared to IP-HPDelta, IP-Const
output is 3.6% larger, 28.10 MB as compared to 27.14 MB. The loss is attributed to breaking cycles. In
contrast, IP-LMin generates output only 0.5% larger, 27.27 MB versus 27.14. The local-minimum policy
performs excellently in practice– compression losses are one seventh that of the constant-time policy.

Becausefiles with cycles contain the majority of the data (Figure 6(b)), the results forfiles with cycles
dominate the results for allfiles. In reorder and trivially in-place differencefiles, no cycles are present and
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Computation I/O Elapsed
� 0.95% � 0.95% � 0.95%

IP-HPDelta 46.71 0.20 270.71 1.38 317.64 1.41
IP-Const 48.42 0.21 288.70 1.43 337.30 1.44
IP-LMin 48.40 0.20 288.58 1.44 337.26 1.44
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Figure 7: Run-time results

no compression is lost. The class offiles that are trivially in-place are incompressible using differencing.
This class is dominated by few largefiles with little similarity between versions.

In-place algorithms incur execution time overheads when performing additional I/O and when permuting
the commands in a differencefile. An in-place algorithm generates a differencefile and then modifies the
file to have the in-place property. In-place algorithms create an intermediatefile that contains the output of
the differential compression algorithm. This intermediate output serves as the input for the algorithm that
modifies/permutes commands. We present execution-time results in Figure 7 for both in-place algorithms
– IP-Const and IP-LMin. Figure 7(b) includes 95% confidence intervals, which are barely discernible. IP-
LMin and IP-Const perform all of the steps of the base algorithm (IP-HPDelta) before manipulating the
intermediatefile. Results show that the extra work incurs an overhead of about 6%,i.e. the total run takes 20
seconds longer. Almost all of this overhead comes from additional I/O. We conclude that tasks for in-place
reconstruction are small when compared with the effort of compressing data– the algorithmic tasks take only
2 seconds of additional time over the whole experiment. Despite inferior worst-case run-time bounds, the
local-minimum policy performs nearly identically t0 (and marginally better than) the constant-time policy
in practice.

Examining run-time results in more detail continues to show that IP-LMin tracks the performance of
IP-Const, even for the largest and most complex inputs. In Figure 8, we see how run-time performance
varies with the size of the graph the algorithm creates (number of edges and vertices); these plots measure
data rate– file size (bytes) divided by run time (seconds). Graph size is the complexity measure for which
IP-Const and IP-LMin should vary, but no such variance can be seen. Results show that in-place conversion
algorithms are I/O bound, as are differencing algorithms [1]. Reducing computational effort when breaking
cycles benefits an algorithm very little, as computation is a small fraction of total performance. Whereas
minimizing the size of the output benefits an algorithm more, as I/O dictates overall performance.
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Figure 8: Run-time results

In Figure 9, we look at some statistical measures of graphs constructed when creating in-place difference
files. While graphs can be quite large, a maximum of 26,626 vertices and 40,950 edges, the number of edges
scales linearly with the number of vertices and less than linearly with input file size. The constructed graphs
do not exhibit edge relations that approach the O(jV j2) upper bound. Therefore, data rate performance
should not degrade as the number of edges increases. To illustrate, consider two pairs of versions as inputs
to the IP-LMin algorithm in which one pair of versions generates a graph that contains twice the edges of
the other. Based on Figure 9, we expect the larger graph to have twice as many vertices and encode twice
as much data. While the larger instance does twice the work breaking cycles, it benefits from reorganizing
twice as much data.

The linear scaling of edges with vertices and file size matches our intuition about the nature of differ-
entially compressed data. Differencing encodes multiple versions of the same data. Therefore, we expect
matching regions between these files (encoded as edges in a CRWI graph) to have spatial locality; i.e. the
same string often appears in the same portion of a file. These input data do not exhibit correlation between
all regions of a file, which would result in dense edge relations. Additionally, differencing algorithms local-
ize matching between files, correlating or synchronizing regions of file data [1]. All of these factors result
in the linear scaling that we observe.

6 Generalization to In-Place Delta Compression

As mentioned in the Introduction, delta compression permits data to be copied from the version file,
as well as from the reference file. Parts of the version file that have already been materialized during the
reconstruction may be copied to other parts of the version file. Although in-place delta compression is not a
subject of this paper, we note that the conversion of an arbitrary delta encoding to an in-place reconstructible
delta encoding fits within our framework. We assume that the input delta encoding is designed to materialize
the version file in space that is separate from the space occupied by the reference file. Thus, the copy
commands can be partitioned into copy-from-R commands that read from the reference file and copy-from-V
commands that read from the version file. For in-place reconstruction, as before, no part of the read interval
of a copy-from-R command may be overwritten before the command is performed. But for a copy-from-V
command, all of its read interval must be overwritten with that part of the version file before the command
is performed.

An algorithm that converts an arbitrary delta encoding to an in-place reconstructible delta encoding
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Figure 9: Edges in difference files that contain cycles.

proceeds as follows. First apply the algorithm of Section 4 to the copy-from-R commands and the add
commands in the input delta encoding. The output is a sequence of copy-from-R commands followed by
add commands (including the add commands that were created by replacing a copy-from-R command by
an equivalent add command). By the correctness of our algorithm, when this command sequence is applied
in-place to the reference file, it materializes the version file except for those intervals that are write intervals
of copy-from-V commands. The in-place reconstructible delta encoding is completed by placing the copy-
from-V commands, in the same order that they appear in the input delta encoding, after the add commands.

7 A Sufficient Condition for CRWI Digraphs

Sections 7, 8, and 9 contain our results on the graph theory and computational complexity of in-place
differential encoding. All proofs are available in the Appendix.

In this section we give a simple sufficient condition (Theorem 1) for a digraph to be a CRWI digraph.
We use this result to prove the theorems in Sections 8 and 9. We begin by recalling the definition of
a CRWI digraph and defining the CRWI digraphs meeting two restrictions. An interval is of the form

I = [i; j]
def
= fi; i + 1; : : : ; jg where i and j are integers with 0 � i � j. Let jIj denote the length of I ,

that is, j � i + 1. A read-write interval set (RWIS) has the form (R;W) where R = fR(1); : : : ; R(n)g
and W = fW (1); : : : ;W (n)g are sets of intervals such that the intervals in W are pairwise disjoint and
jR(v)j = jW (v)j for 1 � v � n. Given a RWIS (R;W) as above, define the digraph graph(R;W) as
follows: (i) the vertices of graph(R;W) are 1; : : : ; n; and (ii) for each pair v; w of vertices with v 6= w,
there is an edge

!
vw in graph(R;W) iff R(v) \W (w) 6= ;.

A digraph G = (V;E) is a CRWI digraph if G = graph(R;W) for some RWIS (R;W). Furthermore,
G is a disjoint-read CRWI digraph if in addition the intervals inR are pairwise disjoint. The motivation for
this restriction is that if a version string V is obtained from a reference string R by moving, inserting and
deleting substrings, then an encoding of V could have little or no need to copy data from the same region
of R more than once. An NP-hardness result with the disjoint-read restriction tells us that the ability of an
encoding to copy data from the same region more than once is not essential to the hardness of the problem.
LetN+ denote the positive integers. A digraph G with cost function Cost : V ! N+ is a length-cost CRWI
digraph if there is an RWIS (R;W) such that G = graph(R;W) and jR(v)j = Cost(v) for all 1 � v � n.
The motivation for the length-cost restriction is that replacing a copy of a long string s by an add of s causes
the length of the encoding to increase by approximately the length of s. If in addition the intervals in R are
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pairwise disjoint, then G is a disjoint-read length-cost CRWI digraph. We let (G;Cost) denote the digraph
G with cost function Cost.

For a digraph G and a vertex v of G, let indeg(v) denote the number of edges directed into v, and let
outdeg(v) denote the number of edges directed out of v. Define indeg(G) to be the maximum of indeg(v)
over all vertices v of G, and define outdeg(G) to be the maximum of outdeg(v) over all vertices v of G. The
digraph G has the 1-or-1 edge property if, for each edge

!
vw of G, either outdeg(v) = 1 or indeg(w) = 1

(or both).

Theorem 1

1. Let G be a digraph. If G has the 1-or-1 edge property then G is a CRWI digraph. If in addition
indeg(G) � 2, then G is a disjoint-read CRWI digraph.

2. Let G = (V;E) be a digraph and let Cost : V ! N+ with Cost(v) � 2 for all v 2 V . If G has
the 1-or-1 edge property and outdeg(G) � 2, then (G;Cost) is a length-cost CRWI digraph. If in
addition indeg(G) � 2, then (G;Cost) is a disjoint-read length-cost CRWI digraph.

The proof of Theorem 1 is given in Appendix A. While Theorem 1 shows that the 1-or-1 edge property
is a sufficient condition for a digraph to be a CRWI digraph, it is not necessary.

8 Optimal Cycle Breaking on CRWI Digraphs is NP-hard

In this section we formally state the result mentioned in Section 4.3, that given a CRWI digraph G and
a cost function on its vertices, finding a minimum-cost set of vertices whose removal breaks all cycles in G
is an NP-hard problem. Moreover, NP-hardness holds even when the problem is restricted to the case that
(G;Cost) is a disjoint-read length-cost CRWI digraph and all costs are the same.

For a digraph G = (V;E), a feedback vertex set (FVS) is a set S � V such that the digraph obtained
from G by deleting the vertices in S and their incident edges is acyclic. Define �(G) to be the minimum
size of an FVS for G. Karp [12] has shown that the following decision problem is NP-complete.

FEEDBACK VERTEX SET

Instance: A digraph G and a K 2N+.
Question: Is �(G) � K?

His proof does not show that the problem is NP-complete when G is restricted to be a CRWI digraph.
Because we are interested in the vertex-weighted version of this problem where G is a CRWI digraph, we
define the following decision problem.

WEIGHTED CRWI FEEDBACK VERTEX SET

Instance: A CRWI digraph G = (V;E), a function Cost : V ! N+, and a K 2 N+.
Question: Is there a feedback vertex set S for G such that

P
v2S Cost(v) � K?

The following theorem is proved in Appendix B by a simple transformation from FEEDBACK VERTEX SET

to WEIGHTED CRWI FEEDBACK VERTEX SET.

Theorem 2 WEIGHTED CRWI FEEDBACK VERTEX SET is NP-complete. Moreover, for each constant
C � 2, it remains NP-complete when restricted to instances where (G;Cost) is a disjoint-read length-cost
CRWI digraph, Cost(v) = C for all v, indeg(G) � 2, and outdeg(G) � 2.
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9 Complexity of Finding Optimal In-Place Difference Files

The subject of the paper up to this point has been the problem of post-processing a given differential
encoding of a version file V so that V can be reconstructed in-place from the reference file R using the
modified differential encoding. A more general problem is to find an in-place reconstructible differential
encoding of a given version file V in terms of a given reference file R. Thus, this paper views the general
problem as a two-step process, and concentrates on methods for and complexity of the second step.

Two-Step In-Place Differential Encoding
Input: A reference fileR and a version file V .

1. Using an existing differencing algorithm, find an encoding � of V in terms of R.

2. Modify � by permuting commands and possibly changing some copy commands to add commands
so that the modified encoding is in-place reconstructible.

A practical advantage of the two-step process is that we can utilize existing differencing algorithms
to perform step 1. A potential disadvantage is the possibility that there is an efficient (in particular, a
polynomial-time) algorithm that finds an optimally-compact, in-place reconstructible encoding for any input
V and R. Then the general problem would be made more difficult by breaking it into two steps as above,
because solving the second step optimally is NP-hard. However, we show that this possibility does not
occur: Finding an optimally-compact in-place reconstructible encoding is itself an NP-hard problem. For
this result we define an in-place reconstructible encoding � to be one that contains no WR conflict. It is
interesting to compare the NP-hardness of minimum-cost in-place differential encoding with the fact that
minimum-cost differential encoding (not necessarily in-place reconstructible) can be solved in polynomial
time [24, 18, 20].

This NP-hardness result is proved using the following simple measure for the cost of a differential
encoding. This measure simplifies the analysis while retaining the essence of the problem.

Simple Cost Measure: The cost of a copy command is 1, and the cost of an add command h t; l i is the length
l of the added string.

BINARY IN-PLACE DIFFERENTIAL ENCODING

Instance: Two strings R and V of bits, and a K 2 N+.
Question: Is there a differential encoding � of V in terms ofR such that � contains no WR conflict and the
simple cost of � is at most K?

Taking R and V to be strings of bits means that copy commands in � can copy any binary substrings from
R; in other words, the granularity of change is one bit. This makes our NP-completeness result stronger,
as it easily implies NP-completeness of the problem for any larger (constant) granularity. The following
theorem is proved in Appendix C.

Theorem 3 BINARY IN-PLACE DIFFERENTIAL ENCODING is NP-complete.

10 Conclusions

We have presented algorithms that modify difference files so that the encoded version may be recon-
structed in the absence of scratch memory or storage space. Such an algorithm facilitates the distribution
of software to network-attached devices over low-bandwidth channels. Differential compression lessens the
time required to transmit files over a network by encoding the data to be transmitted compactly. In-place
reconstruction exchanges a small amount of compression in order to do so without scratch space.

Experimental results support that converting a differential encoding into an in-place reconstructible en-
coding has limited impact on compression. We also find that for bottom line performance, keeping difference
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files small to reduce I/O matters more than execution time differences in cycle breaking heuristics, because
in-place reconstruction is I/O bound. The algorithm to convert a difference file to an in-place reconstructible
difference file requires much less time than generating the difference file in the first place.

Our results also add to the theoretical understanding of in-place reconstruction. We have given a sim-
ple sufficient condition, the 1-or-1 edge property, for a digraph to be a CRWI digraph. Two problems of
maximizing the compression of an in-place reconstructible difference file have been shown NP-hard: first,
when the input is a difference file and the objective is to modify it to be in-place reconstructible; and second,
when the input is a reference file and a version file and the objective is to find an in-place reconstructible
difference file for them. The first result justifies our use of efficient, but not optimal, heuristics for cycle
breaking.

In-place reconstructible differencing provides the benefits of differencing for data distribution to an im-
portant class of applications – devices with limited storage and memory. In the current network computing
environment, this technology decreases greatly the time to distribute software without increasing the devel-
opment cost or complexity of the receiving devices. Differential compression provides Internet-scale file
sharing with improved version management and update propagation, and in-place reconstruction delivers
the technology to the resource-constrained computers that need it most.

11 Future Directions

Detecting and breaking conflicts at a finer granularity can reduce lost compression when breaking cycles.
In our current algorithms, we eliminate cycles by converting copy commands into add commands. However,
typically only a portion of the offending copy command actually conflicts with another command; only the
overlapping range of bytes. We propose, as a simple extension, to break a cycle by converting part of a copy
command to an add command, eliminating the graph edge (rather than a whole vertex as we do today), and
leaving the remaining portion of the copy command (and its vertex) in the graph. This extension does not
fundamentally change any of our algorithms, only the cost function for cycle breaking.

As a more radical departure from our current model, we are exploring reconstructing difference files with
bounded scratch space, as opposed to zero scratch space as with in-place reconstruction. This formulation,
suggested by Martı́n Abadi, allows an algorithm to avoid WR conflicts by moving regions of the reference
file into a fixed size buffer, which preserves reference file data after that region has been written. The
technique avoids compression loss by resolving data conflicts without eliminating copy commands.

Reconstruction in bounded space is logical, as target devices often have a small amount of available
space that can be used advantageously. However, in-place reconstruction is more generally applicable. For
bounded space reconstruction, the target device must contain enough space to rebuild the file. Equivalently,
an algorithm constructs a difference for a specific space bound. Systems benefit from using the same dif-
ference file to update software on many devices. For example, distributing an updated calendar program
to many PDAs. In such cases, in-place reconstruction offers a lowest common denominator solution that
works for every receiver in exchange for a little lost compression.

Although departing from our current model could yield smaller difference files, the message of this
paper remains that the compression loss due to in-place reconstructibility is modest even within this simple
model.
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Figure 10: Examples of vertices in the sets Hj; Tj for j = 0; 1; 2. All edges directed out of v; v1; : : : ; vd or
into w;w1; : : : ; wd are shown. Edges directed into v; v1; : : : ; vd or out of w;w1; : : : ; wd are not shown.

Appendix

A Proof of Theorem 1

We prove parts 1 and 2 together. For both parts we assume that G = (V;E) has the 1-or-1 edge property
and Cost(v) � 2 for all v 2 V . We show how to choose the read intervals and write intervals such that
jR(v)j = jW (v)j for all v 2 V , the write intervals are pairwise disjoint, and R(v) \ W (w) 6= ; iff
!
vw 2 E. If in addition indeg(G) � 2, then the chosen read intervals are pairwise disjoint. If in addition
outdeg(G) � 2, then the choices also satisfy the length-cost condition jR(v)j = Cost(v) for all v 2 V .

Let T0 (resp., T1; T2) be the set of vertices v 2 V with outdeg(v) = 0 (resp., outdeg(v) = 1,
outdeg(v) � 2). The three sets T0; T1; T2 partition V ; that is, they are pairwise disjoint and their union
equals V . Let H0 be the set of vertices w such that indeg(w) = 0. Let H1 be the set of w such that:
(i) indeg(w) � 1, and (ii) all v with

!
vw 2 E have outdeg(v) = 1 (i.e., v 2 T1). Let H2 be the set of w

such that there exists a v with
!
vw 2 E and outdeg(v) � 2; that is, w is the head of some edge whose tail v

belongs to T2. Note that H0;H1;H2 partition V . In Figure 10 the sets Hj; Tj for j = 0; 1; 2 are illustrated
in general, and Figure 11 shows these sets for a particular digraph. The intervals are chosen by the following
procedure. For j = 0; 1; 2, executions of step j choose read (resp., write) intervals for vertices in Tj (resp.,
Hj). Because T0 [ T1 [ T2 = H0 [H1 [H2 = V , the procedure chooses a read and write interval for each
vertex. Because T0; T1; T2 are pairwise disjoint and H0;H1;H2 are pairwise disjoint, no interval is chosen
at executions of two differently numbered steps. We show, during the description of the procedure, that no
interval is chosen at two different executions of the same-numbered step. It follows that each vertex has its
read interval and its write interval chosen exactly once. (The steps 0, 1, 2 are independent; in particular, it is
not important that they are done in the order 0, 1, 2.)

Interval Choosing Procedure
Set k = 0. The parameter k is increased after each execution of step 0, 1, or 2, in order that all intervals
chosen during one execution of a step are disjoint from all intervals chosen during later executions of these
steps. By an “execution of step j” we mean an execution of the body of a while statement in step j.

0. (a) While T0 6= ;:
Let v 2 T0 be arbitrary (in this case, R(v) should not intersect any write interval); choose
R(v) = [k; k + Cost(v)� 1]; remove v from T0; and set k  k + Cost(v).

(b) While H0 6= ;:
Let w 2 H0 be arbitrary (in this case, W (w) should not intersect any read interval); choose
W (w) = [k; k + Cost(w)� 1]; remove w from H0; and set k  k + Cost(w).

1. While T1 6= ;:
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Figure 11: Example of the sets Hj; Tj for a particular digraph.

(a) Let v1 be an arbitrary vertex in T1 and let w be the (unique) vertex such that
�!
v1w 2 E. If

indeg(w) = d � 2, let v1; v2; : : : ; vd be the vertices such that
�!
viw 2 E for 1 � i � d. We

claim that vi 2 T1 for all 1 � i � d: for i = 1 this is true by assumption; if 2 � i � d and
outdeg(vi) � 2, this would contradict the 1-or-1 edge property because

�!
viw 2 E, outdeg(vi) �

2, and indeg(w) � 2. A consequence of the claim is that w 2 H1. (See Figure 10.)

(b) Choose R(v1) = [l; r] and W (w) = [l0; r+1] such that minfl; l0g = k, j [l; r] j = Cost(v1), and
j [l0; r + 1] j = Cost(w). Because Cost(w) � 2, we have l0 � r; so r 2 R(v1) \W (w) (which
implies R(v1) \W (w) 6= ;). If d � 2, choose R(vi) = [r + 1; ri] such that j [r + 1; ri] j =
Cost(vi) for 2 � i � d. So r + 1 2 R(vi) \W (w) for 2 � i � d. Note that if outdeg(G) � 2
then d � 2, and R(v1)\R(v2) = ; if d = 2. Because this step is the only one where more than
one read interval is chosen at the same execution of a step, if outdeg(G) � 2 then the chosen
read intervals are pairwise disjoint.

(c) Remove v1; : : : ; vd from T1. Because
!
vw 2 E implies that v = vi for some 1 � i � d, this

ensures that none of W (w); R(v1); : : : ; R(vd) are re-chosen at another execution of step 1. Set
k  maxfr + 1; r2; r3; : : : ; rdg+ 1.

2. While T2 6= ;:
(a) Let v be an arbitrary vertex in T2, let d = outdeg(v) (so d � 2), and let w1; : : : ; wd be the

vertices such that
�!
vwi 2 E for 1 � i � d. Note that wi 2 H2 for all i, by definition of H2. By

the 1-or-1 edge property, indeg(wi) = 1 for all i. (See Figure 10.)

(b) If outdeg(G) � 2, then d = 2, and our choice of intervals must satisfy the length-cost prop-
erty. In this case, choose R(v) = [l; r], W (w1) = [l0; r � 1], and W (w2) = [r; r2] such that
minfl; l0g = k and the intervals have the correct lengths according to the cost function. Note
that Cost(v) � 2 implies that l � r � 1, and this in turn implies that r � 1 2 R(v) \W (w1).
Also r 2 R(v) \W (w2) by definition.

If outdeg(G) � 3, then the length-cost property does not have to hold, so we choose R(v) =
[k; k + d� 1] and W (wi) = [k + i� 1; k + i� 1] for 1 � i � d.

(c) Remove v from T2. Because indeg(wi) = 1 for all 1 � i � d, it follows that none of
R(v);W (w1); : : : ;W (wd) are re-chosen at another execution of step 2. Set k to one plus the
maximum right end-point of the intervals R(v);W (w1); : : : ;W (wd).
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B Proof of Theorem 2

The following lemma is the basis for the proof of NP-completeness.

Lemma 2 There is a polynomial-time transformation that takes an arbitrary digraph G0 = (V 0; E0) and
produces a digraph G = (V;E) such that G has the 1-or-1 edge property, outdeg(G) � 2, indeg(G) � 2,
jV j � 4jV 0j2, and �(G) = �(G0).

Proof. The digraph G contains the directed subgraph Dv for each v 2 V 0. The subgraph Dv consists of
the vertex ~v, a directed binary in-tree Tin;v with root ~v and indeg(v) leaves (i.e., all edges are directed from
the leaves toward the root ~v), and a directed binary out-tree Tout;v with root ~v and outdeg(v) leaves (i.e.,
all edges are directed from the root ~v toward the leaves). If indeg(v) = 0 (resp., outdeg(v) = 0) then
Tin;v (resp., Tout;v) is the single vertex ~v. For each edge

!
xy of G0, add to G an edge from a leaf of Tout;x

to a leaf of Tin;y, such that each leaf is an end-point of exactly one such added edge. By construction,
outdeg(G) � 2 and indeg(G) � 2. We leave to the reader the easy verifications that G has the 1-or-1 edge
property, jV j � 4jV 0j2, and �(G) = �(G0). �

We now return to the proof that WEIGHTED CRWI FEEDBACK VERTEX SET is NP-complete. The prob-
lem clearly belongs to NP. To prove NP-completeness we give a polynomial-time reduction from FEEDBACK

VERTEX SET to WEIGHTED CRWI FEEDBACK VERTEX SET. Let G0 and K 0 be an instance of FEEDBACK

VERTEX SET, where G0 is an arbitrary digraph. Transform G0 to G using Lemma 2. Let Cost � C . Be-
cause G has the 1-or-1 edge property, outdeg(G) � 2, and indeg(G) � 2, Theorem 1 says that (G;Cost)
is a disjoint-read length-cost CRWI digraph. Clearly the minimum cost of an FVS for G is C � �(G), and
C � �(G) = C � �(G0) by Lemma 2. Therefore, the output of the reduction is (G;Cost) and CK .

C Proof of Theorem 3

In this proof, “cost” means “simple cost” , and a “conflict-free” � is one containing no WR conflict. It
suffices to give a polynomial-time reduction from FEEDBACK VERTEX SET to BINARY IN-PLACE DIFFER-
ENTIAL ENCODING. Let G0 and K 0 be an instance of FEEDBACK VERTEX SET. We describe binary strings
R and V and an integer K such that �(G0) � K 0 iff there is a conflict-free differential encoding � of V in
terms ofR such that the cost of � is at most K .

First, using the transformation of Lemma 2, obtain GwhereG has the 1-or-1 edge property, outdeg(G) �
2, indeg(G) � 2, and �(G) = �(G0). Let G = (V;E) and V = f1; 2; : : : ; ng. Let l = dlogne. For each
v 2 V , define the binary string �v as

�v = 10100b100b200b300 : : : bl00

where b1b2b3 : : : bl is the l-bit binary representation of v � 1. Note that the length of �v is 3l + 5 for all
v, and that v 6= w implies �v 6= �w. Let L = 3l + 6, and define Cost(v) = L for all v 2 V . It follows
from Theorem 1 that (G;Cost) is a disjoint-read length-cost CRWI digraph. Because the interval-finding
procedure in the proof of Theorem 1 runs in polynomial time, we can construct in polynomial time a RWIS
(R;W), with R = fR(1); : : : ; R(n)g and W = fW (1); : : : ;W (n)g, such that G = graph(R;W),
jR(v)j = jW (v)j = L for all v 2 V , and the intervals of R are pairwise disjoint (the intervals ofW are
pairwise disjoint by definition). Moreover, because indeg(G) � 2 and L � 4, it is easy to see that we
can make the read intervals be at least distance 3 apart, that is, if i 2 R(v), j 2 R(w), and v 6= w, then
ji � jj � 3. (Referring to the interval-choosing procedure in the proof of Theorem 1, this can be done by
incrementing k by an additional 2 after every execution of a step; and in executions of step 2 where d = 2
choosing R(v1) = [k; k+L� 1], R(v2) = [k+L+2; k+2L+1], and W (w) = [k+L� 1; k+2L� 2].
Note that R(v2) \W (w) 6= ; because L � 4 implies k + 2L� 2 � k + L+ 2.)
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Let � : f1; : : : ; ng ! f1; : : : ; ng be a permutation such that the intervals of R in left-to-right order
(ordered as intervals) are R(�(1)); R(�(2)); : : : ; R(�(n)); thus, if 1 � j1 < j2 � n, i1 2 R(�(j1)), and
i2 2 R(�(j2)), then i1 < i2 (in fact, i1 � i2� 3). Similarly, let � be a permutation such that the intervals in
W in left-to-right order are W (�(1));W (�(2)); : : : ;W (�(n)).

The binary strings R and V are of the form

R =

PRz }| {
�1 0�2 0 : : : �n 0 0* ��(1) 1 0 0 0

* ��(2) 1 0 0 0
* : : : ��(n�1) 1 0 0 0

* ��(n) 1

V = 1* : : : 1* ��(1) 1 1
* ��(2) 1 1

* : : : ��(n�1) 1 1
* ��(n) 1| {z }

SV

where 0* (resp., 1*) denotes a string of zero or more 0’s (resp., 1’s), and where these “ rubber-length” strings
are adjusted so that: (i) the prefix PR ofR does not overlap the suffix SV of V , and (ii) for all v; w 2 V , the
substring �v1 of R overlaps the substring �w1 of V iff

!
vw is an edge of G. That (ii) can be accomplished

follows from the facts G = graph(R;W), all read and write intervals have length L = 3l+6 (which equals
the length of �v1 for all v), and the read intervals are at least distance 3 apart so we can insert at least two
zeroes between ��(i)1 and ��(i+1)1 for 1 � i < n.

Three properties this R and V will be used:

(P1) R contains no occurrence of the substring 11;

(P2) for each v 2 V , the string �v1 appears exactly once as a substring ofR;

(P3) for each v 2 V with v 6= �(n), the string �v1 always appears in V in the context : : : 1�v11 : : :.

Property P1 is obvious by inspection. Property P2 follows from the facts: (i) 101 appears as a substring ofR
only as the first three symbols of �w for each w 2 V ; and (ii) if v 6= w then �v 6= �w. Property P3 follows
because, for each w 2 V , the string �w1 both begins and ends with 1, and there are only 1’s between ��(i)1
and ��(i+1) for 1 � i < n.

Let LV denote the length of V , and define K = LV � nL+ n+K 0. We show that

�(G) � K 0 , there is a conflict-free differential encoding � of V
such that the cost of � is at most K .

()) Let �(G) � K 0 and let S be a FVS for G with jSj � K0. We first describe an encoding �0 of V
that is not necessarily conflict-free. Each substring represented by 1* is encoded by an add command; the
total cost of these add commands is LV � nL. If v 2 V � S, then �v1 is encoded by a copy of ��(i)1 in
R, where i is such that �(i) = v; the total cost of these copy commands is jV � Sj = n � jSj. If v 2 S,
then �v1 is encoded by a copy of �v from PR followed by an add of “1” ; the total cost of these commands
is 2jSj. Therefore, the total cost of �0 is LV � nL+ n+ jSj � LV � nL+ n+K 0 = K . For each v 2 S,
the read interval of the copy command that copies �v from PR does not intersect the write interval of any
copy command in �0. Therefore, the CRWI digraph of �0 is a subgraph of the graph obtained from G by
removing, for each v 2 S, all edges directed out of v. Because S is an FVS for G, the CRWI digraph of �0

is acyclic. Therefore, a conflict-free differential encoding � of the same cost can be obtained by permuting
the copy commands of �0 and moving all add commands to the end.

(() Let � be a conflict-free differential encoding of V having cost at most K = LV�nL+n+K 0. By
properties P1 and P3, it follows that no copy command in � can encode a prefix (resp., suffix) of a substring
�v1 together with at least one of the 1’s preceding it (resp., following it). Therefore, using property P1 again,
the commands in � that encode substrings denoted 1* must have total cost equal to the total length of these
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substrings, that is, cost LV � nL. The remaining commands can be partitioned into sets C1; C2; : : : ; Cn

such that the commands in Cv encode �v1 for each v 2 V . Let S be the set of v 2 V such that Cv contains
at least two commands. We first bound jSj and then argue that S is a FVS for G. By definition of S, the
cost of � is at least LV � nL + jV � Sj + 2jSj. Because the cost of � is at most LV � nL+ n+K 0 by
assumption, we have jSj � K0. To show that S is a FVS, assume for contradiction that there is a cycle in G
that passes only through vertices in V �S. If v 2 V �S then Cv contains one command 
v , so 
v must be a
copy command that encodes �v1. By property P2, the copy command 
v must be to copy the substring �v1
from the unique location where it occurs in R as ��(i)1 where i is such that v = �(i). The strings R and V
have been constructed such that, if

!
vw is an edge of G (in particular, if

!
vw is an edge on the assumed cycle

through vertices in V � S), then the substring �v1 of R overlaps the substring �w1 of V . So the existence
of this cycle contradicts the assumption that � is conflict-free.
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