
 CS60002: MC04

Mobile Computing
#MC04 Push/Notifications

CS60002: Distributed Systems
Winter 2006-2007

 CS60002: MC04

Update to “parts we will discuss”
✔ Device databases

– Flash, OR/direct
✔ Synchronization

– Algorithms
➔ Push/notifications

– Scale to MM
✗ Handheld design

– CPU, RTOS, battery

✗ Core Mobile Apps
– Email/IM, PDA,browse

✗ IP Protocols
– IMS, SIMPLE/XMPP

● Broadcast
– Algorithms

● Device Management
– Software & Config

 CS60002: MC04

Push/Notifications
● What is it?
● Brief history of implementations

– Identify three paradigms
● Implementation challenges
● Analysis of some implementations

– Scalability of the three paradigms
– Slides inadequate. Please take notes.

 CS60002: MC04

What is “Push”?
● Client data updated asynchronously

– No user action needed
– Server or peer “pushes” an update to the client

● Older than computing itself
– Telegraph, phone, TV

● Instant Messaging
– Talk (PDP-11 1970s, Unix 1980s), IRC (1988)
– ICQ (1996), AOL IM (1997)
– Jabber/XMPP (2000)

 CS60002: MC04

Push reinvented
● TCP/HTTP Server Push

– Pointcast.com (1992)
– <META HTTP-EQUIV="Refresh" CONTENT=15>
– multipart/x-mixed-replace (Netscape 1995)
– Microsoft channels (1996?)

● Push e-mail and messaging
– IMAP IDLE (RFC 2177 – 1997)
– BlackBerry (1999)
– WAP Push (WAP 1.2 – 2001)

 CS60002: MC04

Push reinvention (contd.)
● Push email (contd.)

– Good, Seven, Visto, Funambol (2004 ..)
– “Direct Push” (Windows Mobile 2006)
– iPhone Push email (Summer 2008)

● IP telephony
– SIP (1999) => SIMPLE (2002)
– XMPP (1998) => Google Jingle (2008)

 CS60002: MC04

Push reinvention (contd.)
● TCP/HTTP Server Push – Take 2

– Comet or reverse-AJAX (2007?)
– More to come?

Customer demand is the mother of reinvention!

 CS60002: MC04

Three paradigms

1) Polling
– Client polls server frequently
– Variant: Asynchronous exchanges

2) Client listens on an inbound port
– Peers and Server post to that port
– Variant: Poke-n-pull

3) Client stays connected to a server
– All peers post to that server

 CS60002: MC04

Many challenges
● Latency

– Seconds, not minutes
● Scalability

– Millions of clients
● Battery Management

– Radio vs. Application
● Firewalls

– Outbound only!

● Routing
● Security
● Interoperability
● Version management
● Video performance
● Multicast scalability
● ...

 CS60002: MC04

#1: Polling

● Check once every n seconds
– Average latency is n/2

● Optimizations
– Vary frequency of polling
– Compressed response

POP3
Client

POP3
email
server

UIDL

1 345098
2 350893
...

 CS60002: MC04

#1 Polling: HTTP Refresh

● Suitable for thin clients (browsers)
– Server can control frequency of polling

● Challenges
– Not supported uniformly
– Not clear what the browser should do with updates

HTTP
Client

HTTP
server

GET
REFRESH 30
<META HTTP-EQUIV="Refresh" CONTENT=30>

 CS60002: MC04

#1 Polling Variant: AJAX

● JavaScript code “polls”
– Server response arrives asynchronously
– JavaScript code interprets updates

● Not limited to polling
– AJAX can do a lot more than polling

HTTP
Client

HTTP
server

XmlHttpRequest
<xml>...

 CS60002: MC04

#2 Client Listens
● Registry at Server

– Client gets dynamic ID
– Client gets ServerSocket
– Client informs server

● Server contacts client
– UDP
– GSM (SMS)

ServerClientClientClient

 CS60002: MC04

#2 Variant: Poke-n-pull
● UDP/SMS inadequate

– Payload too bulky
– Update calls for session

● Server “pokes” client
– By UDP or SMS
– Client initiates TCP

● Examples
– WAP Push

ServerClientClientClient

 CS60002: MC04

#3 Client stays connected
● Client connects to server

– TCP, HTTP
● Server keeps conn idle

– May reconnect repeatedly
– But connected 24x7

● On push/notifications
– Server sends data
– Client processes event

ServerClientClientClient

 CS60002: MC04

#3: HTTP idiosyncracies
● Why HTTP?

– Supported on mobiles
– More robust
– Gets through firewalls

● HTTP Limitations
– Request/Response
– 2 conn/server limit

● New names
– Comet, reverse-AJAX

ServerClient

 CS60002: MC04

#1: Polling: Scalability
● Load on server is O(n*f)

– n Clients
– f Polls/hour

● Not much we can do to help
– Optimizations (variable f, compress data)
– Distribute over hundreds of blade servers
– Load balancer respects affinity
– Move frequent answers closer to the edge

 CS60002: MC04

#2 Client Listens: Scalability
● Most scalable of the three

– Limited only by network topology
– Direct peer-to-peer connections possible

● However, reality forces spoke-n-hub topology!
– Hold-n-forward messaging applications
– Firewalls
– Limited capability devices

● Hybrid of #2 and #3

 CS60002: MC04

#3 Stay Connected: Scalability
● O(n) idle connections

– Workload may be much smaller!
– Limit on file descriptors/handles
– Scalability of TCP/IP stack

● Solution
– Tune transport protocol (TCP)
– Use async I/O to maximize clients/threads
– Dynamic load balancing of clients/blade

 CS60002: MC04

Recap
● Push continues to be reinvented

– Many implementations
● Three paradigms

– Client polls server
– Client listens on a port, peers and servers talk
– Client listens to a server, which relays peers

● Scalability
– Hub-n-spoke topology requires scalable hub

