Matchings and Factors
Matchings

- A matching of size k in a graph G is a set of k pairwise disjoint edges.
 - The vertices belonging to the edges of a matching are saturated by the matching; the others are unsaturated.
 - If a matching saturates every vertex of G, then it is a perfect matching or 1-factor.
Alternating Paths

• Given a matching M, an M-alternating path is a path that alternates between the edges in M and the edges not in M.

 – An M-alternating path P that begins and ends at M-unsaturated vertices is an M-augmenting path

 – Replacing $M \cap E(P)$ by $E(P)$ – M produces a new matching M' with one more edge than M.
Symmetric Difference

• If G and H are graphs with vertex set V, then the *symmetric difference* $G \Delta H$ is the graph with vertex set V whose edges are all those edges appearing in exactly one of G and H.

 – If M and M' are matchings, then
 $$M \Delta M' = (M \cup M') - (M \cap M')$$
Key result

• A matching M in a graph G is a maximum matching in G iff G has no M-augmenting path.
Bipartite Matching

When \(G \) is a bipartite graph with bipartition \(X, Y \) we may ask whether \(G \) has a matching that saturates \(X \).

– We call this a matching of \(X \) into \(Y \).
Results...

- [Hall’s Theorem: 1935]
 If G is a bipartite graph with bipartition X, Y, then G has a matching of X into Y if and only if $|N(S)| \geq |S|$ for all $S \subseteq X$.

- For $k>0$, every k-regular bipartite graph has a perfect matching.
Vertex Cover & Bipartite Matching

- A vertex cover of G is a set S of vertices such that S contains at least one endpoint of every edge of G.
 - The vertices in S cover the edges of G.

- If G is a bipartite graph, then the maximum size of a matching in G equals the minimum size of a vertex cover of G.

[König and Egerváry: 1931]
An edge cover of G is a set of edges that cover the vertices of G.

- only graphs without isolated vertices have edge covers.
Notation...

- We will use the following notation for independence and covering problems:

\[
\begin{align*}
\alpha(G) & : \text{maximum size of independent set} \\
\alpha'(G) & : \text{maximum size of matching} \\
\beta(G) & : \text{minimum size of vertex cover} \\
\beta'(G) & : \text{minimum size of edge cover}
\end{align*}
\]
Min-max Theorems

• In a graph G, $S \subseteq V(G)$ is an independent set if and only if S' is a vertex cover, and hence $\alpha(G) + \beta(G) = n(G)$.

• If G has no isolated vertices, then $\alpha'(G) + \beta'(G) = n(G)$.

• If G is a bipartite graph with no isolated vertices, then $\alpha(G) = \beta'(G)$

 (max independent set = min edge cover)
Augmenting Path Algorithm

Input:
- A bipartite graph G with a bipartition X, Y, a matching M in G, and the set U of all M-unsaturated vertices in X.

Idea:
- Explore M-alternating paths from U, letting $S \subseteq X$ and $T \subseteq Y$ be the sets of vertices reached.
- Mark vertices of S that have been explored for extending paths.
- For each $x \in (S \cup T) - U$, record the vertex before x on some M-alternating path from U.
Augmenting Path Algorithm

Initialization: Set $S=U$ and $T=\emptyset$

Iteration:

- If S has no unmarked vertex, the stop and report $T \cup (X-S)$ as a minimum cover and M as a maximum matching.
- Otherwise, select an unmarked $x \in S$.
- To explore x, consider each $y \in N(x)$ such that $xy \notin M$. If y is unsaturated, terminate and trace back from y to report an M-augmenting path from U to y. Otherwise, y is matched to some $w \in X$ by M. In this case, include y in T and w in S.
- After exploring all such edges incident to x, mark x and iterate.
Augmenting Path Algorithm

- Repeated application of the Augmenting Path Algorithm to a bipartite graph produces a matching and vertex cover of the same size.

 - The complexity of the algorithm is $O(n^3)$.
 - Since matchings have at most $n/2$ edges, we apply the augmenting path algorithm at most $n/2$ times.
 - In each iteration, we search from a vertex of X at most once, before we mark it. Hence each iteration is $O(e(G))$, which is $O(n^2)$.

Weighted Bipartite Matching

- A *transversal* of an \(n \times n \) matrix \(A \) consists of \(n \) positions – one in each row and each column.

 - Finding a transversal of \(A \) with maximum sum is the *assignment problem*.

 - This is the matrix formulation of the *maximum weighted matching problem*, where \(A \) is the matrix of weights \(w_{ij} \) assigned to the edges \(x_iy_j \) of \(K_{n,n} \) and we seek a perfect matching \(M \) with maximum total weight \(w(M) \).
Minimum Weighted Cover

- Given the weights \(\{w_{ij}\}\), a weighted cover is a choice of labels \(\{u_i\}\) and \(\{v_j\}\) such that \(u_i + v_j \geq w_{ij}\) for all \(i, j\).

- The cost \(c(u, v)\) of a cover \(u, v\) is \(\Sigma u_i + \Sigma v_j\).

- The minimum weighted cover problem is the problem of finding a cover of minimum cost.
Min Cover & Max Matching

- If M is a perfect matching in a weighted bipartite graph G and u, v is a cover, then $c(u, v) \geq w(M)$.
 - Furthermore, $c(u, v) = w(M)$ if and only if M consists of edges x_iy_j such that $u_i + v_j = w_{ij}$. In this case, M is a maximum weight matching and u, v is a minimum weight cover.
Hungarian Algorithm

Input: A matrix of weights on the edges of $K_{n,n}$ with bipartition X, Y.

Idea: Maintain a cover u, v, iteratively reducing the cost of the cover until the equality subgraph $G_{u,v}$ has a perfect matching.

Initialization: Let u, v be a feasible labeling, such as $u_i = \max_j w_{ij}$ and $v_j = 0$, and find a maximum matching M in $G_{u,v}$.
Hungarian Algorithm

Iteration:

- If M is a perfect matching, stop and report M as a maximum weight matching.
- Otherwise, let U be the set of M-unsaturated vertices in X.
- Let S be the set of vertices in X and T the set of vertices in Y that are reachable by M-alternating paths from U. Let
 \[\epsilon = \min\{u_i + v_j - w_{ij} : x_i \in S, y_j \in Y - T\} \]
- Decrease u_i by ϵ for all $x_i \in S$, and increase v_j by ϵ for all $y_j \in T$. If the new equality subgraph G' contains an M-augmenting path, replace M by a maximum matching in G' and iterate. Otherwise, iterate without changing M.
Hungarian Algorithm

• The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover.
Stable Matchings

• Given n men and n women, we wish to establish n stable marriages.
 – If man x and woman a prefers each other over their existing partners, then they might leave their current partners and switch to each other.
 – In this case we say that the unmatched pair (x,a) is an unstable pair.
 – A perfect matching is a stable matching if it yields no unstable matched pair.
Gale-Shapley Proposal Algorithm

Input: Preference rankings by each of \(n\) men and \(n\) women.

Iteration:

- Each man proposes to the highest woman on his preference list who has not previously rejected him.
- If each woman receives exactly one proposal, stop and use the resulting matching.
- Otherwise, every woman receiving more than one proposal rejects all of them except the one that is highest on her preference list.
- Every woman receiving a proposal says “maybe” to the most attractive proposal received.

The algorithm produces a stable matching.
Matchings in General Graphs

• A factor of a graph G is a spanning sub-graph of G.
 – A k-factor is a spanning k-regular sub-graph.
 – An odd component of a graph is a component of odd order; the number of odd components of H is $o(H)$.

• [Tutte 1947]: A graph G has a 1-factor if and only if $o(G - S) \leq \mid S \mid$ for every $S \subseteq V(G)$.

• [Peterson 1891]: Every 3-regular graph with no cut-edge has a 1-factor.
Edmond’s Blossom Algorithm

- Let M be a matching in a graph G, and let u be an M-unsaturated vertex.
- A *flower* is the union of two M-alternating paths from u that reach a vertex x on steps of opposite parity.
- The *stem* of the flower is the maximal common initial path.
- The *blossom* of the flower is the odd cycle obtained by deleting the stem.
Edmond’s Blossom Algorithm

Input: A graph G, a matching M in G, and an M-unsaturated vertex u.

Initialization: $S = \{u\}$ and $T = \{\}$

Iteration:
- If S has no unmarked vertex, stop
- Otherwise, select an unmarked vertex $v \in S$. To explore from v, successively consider each $y \in N(v)$ such that $y \notin T$.
- If y is unsaturated by M, then trace back from y to report an M-augmenting u,y-path.
- If $y \in S$, then a blossom has been found. Contract the blossom and continue the search from this vertex in the smaller graph.
- Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S.
- After exploring all such neighbors of v, mark v and iterate.