Authentication in Distributed Systems

CS60002: Distributed Systems

Bhaskar Pal Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Outline

- Background
- Conventional Cryptography
- Modern Cryptography
 - Private Key
 - Public Key
- Authentication Protocols

• An Intruder is an entity which is not authorized to access information

Role of Cryptography

- Study of mathematical techniques to secure information
- Goals
 - Confidentiality of Information
 - Authentication
 - Data integrity

Dept. of CSE, IIT KGP

A Simple Model of Cryptographic System

- P is plaintext
- C is ciphertext
- K_c and K_D are encryption and decryption keys
- E and D are encryption and decryption algorithms
- $C = E_{KC}(P)$ $P = D_{KD}(C) = D_{KD}(E_{KC}(P))$

Intruder Intruder **K**_C **K**_D Encryption Decryption **Ciphertext C** Algorithm Algorithm E D **Plaintext P Plaintext P**

- Has knowledge of E,D and other information
- Does not know the Key
- The objective of intruder is to interpret the ciphertext
- Also it can perform some malicious communication

- Conventional Systems
 - Plain-text a text written in some language. Use a secret mapping procedure to map a letter (or a set of letters) to some other letter (s) in the same alphabet

– Example: "adr" → "pgk"

Conventional Cryptography

- The Caeser Cipher
 - C=E(P)=(P+3)mod 26
 - P=D(C)=(C-3)mod26
 - 3 can be replaced by any k, (0<k<26) k is the key
- Simple Substitution
 - Eliminate positional correlation of caeser cipher
 - Cipher line can be any permutation of the alphabets
 - frequency distribution of letters are not changed- lattack
- Polyalphabetic Ciphers
 - periodic sequence of n substitution alphabet ciphers
 - **11**, **3**, **4**, **5**, **6**

Modern Cryptography

- The plain-text is in binary
- Private key Cryptosystem
 - Same key is used for encryption and decryption
 - Keys are kept secret
 - e.g. DES, AES
- Public key Cryptosystem
 - Encryption and decryption keys are different
 - Decryption keys is kept secret i.e. private and the Encryption key is public
 - e.g. RSA

Private Key Cryptography

- Alice and Bob share a secret key
- If Alice wants to send Bob a message M, she encrypts M with the secret key shared between them
- Bob decrypts the message with the same key
- No other person can decrypt the message as only Alice and Bob know the secret key

Dept. of CSE, IIT KGP

Data Encryption Standard (DES)

- Encrypts 64 bit blocks with 56 bit key to 64 bit blocks of ciphertext
- Major operations used are permutation and substitution
- Three main stages
 - Initial Permutation
 - 16 rounds of substitution are performed
 - Final Permutation
- Each round uses a round-key generated from the initial key
- Decryption uses the same algorithm but the steps and keys are applied in reverse order
- The crux of the system is the length of the key (56 bits), the intruder has to search 2⁵⁶ values

Public Key Cryptography

- Each user generates a pair of keys
- If Alice wants to send Bob a message M, she encrypts M with Bob's public key
- Bob decrypts the message with its private key
- No other person can decrypt the message as only Bob knows his private key

The Rivest-Shamir-Adleman Method

- Select 2 large primes p, q and compute n=p * q
- Φ(n) = (p-1) * (q-1)
- select e, relatively prime to Φ(n) i.e. GCD (e, Φ(n)) = 1
- Find d = $e^{-1} \mod \Phi(n)$
- Encryption key known to sender is a pair (e, n)
- Decryption key known to receiver is a pair (d, n)
- Encryption is performed as follows C=M^e mod n
- Decryption is performed as
 M = C^d mod n = M^{ed} mod n

Authentication in Distributed Systems

- Goal The application of cryptographic methods in performing authenticated communication between two entities
- Authentication in DS To verify the identity of the communicating entities to each other
- System Model
 - A set of computers connected by a network
 - No shared memory
 - Communication solely by passing messages to each other

Authentication Services

- Authenticated Interactive Communication
 - Both the parties should involve in the communication
 - Synchronous in nature
- Authenticated One Way Communication
 - Sender and Receiver need not to synchronize
 - Asynchronous in nature
 - Example: Electronic Mailing System
- Signed Communication
 - Message is signed by the sender
 - Sender's identity and content of the message can be authenticated to a third party

Potential Threats

- An intruder
 - Can gain access to any point in the network
 - Can copy or alter parts of the message
 - Can replay back an old message
 - Can transmit erroneous messages
- Intruder can have knowledge about
 - The authentication protocol
 - Message types
 - Message sequences and purposes
- An Intruder
 - May involved in an on-going transaction
 - Can try to prevent a secure authenticated communication

Authentication Servers

- A secret conversation key is required in setting up authenticated communication
- AS is responsible for distributing this secret key
- Each user X registers its secret key KX with AS
- KX is only known to X and AS
- AS uses this KX to securely communicate the secret conversation key to X

Establishing Interactive Connections

- If A wants to set up a secure authenticated interactive communication with B
 - It has to send a message M to B
 - M must have the following properties
 - Only B should understand M
 - B should to able to verify that M is a legitimate message from A and it is not a replay from an intruder

A Protocol for Private Key Systems

- Symmetric in nature A single secret key is used for both encryption and decryption
- A & B both share a secret conversation key with AS
- Issues Involved
 - How A can get the conversation key from AS?
 - How A can send the received conversation key to B?

Obtaining a Conversation Key

- $A \rightarrow AS : A, B, I_A$ (1)
- $AS \rightarrow A : E_{KA}(I_A, B, CK, E_{KB}(CK, A))$ (2)

 $E_{KA}(I_A, B, CK, E_{KB}(CK, A))$

Communicating the Conversation Key

•
$$A \rightarrow B : E_{KB} (CK, A)$$
 (3)

• To prevent foul play by the intruder

•
$$\mathbf{B} \rightarrow \mathbf{A} : \mathbf{E}_{\mathsf{CK}}(\mathbf{I}_{\mathsf{B}})$$
 (4)

•
$$A \rightarrow B : E_{CK}(I_B - 1)$$
 (5)

Compromising the Conversation Key

- Intruder C has recorded all the messages 3 5
- $C \rightarrow B : E_{KB} (CK, A)$ (3)
- $B \rightarrow A : E_{CK}(I_B)$ (4)
- $A \rightarrow B : E_{CK} (I_B 1)$ (5)

Compromise of a Conversation Key

- Denning Sacco's Remedy
 - Incorporate Time-stamp in the messages
 - The new protocol

```
\begin{array}{l} \mathsf{A} \rightarrow \mathsf{AS}: \mathsf{A}, \, \mathsf{B} \\ \mathsf{AS} \rightarrow \mathsf{A}: \mathsf{E}_{\mathsf{KA}} \left(\mathsf{B}, \, \mathsf{CK}, \, \mathsf{T}, \, \mathsf{E}_{\mathsf{KB}} \left(\mathsf{CK}, \, \mathsf{T}, \, \mathsf{A}\right)\right) \\ \mathsf{A} \rightarrow \mathsf{B} \quad : \mathsf{E}_{\mathsf{KB}} \left(\mathsf{CK}, \, \mathsf{T}, \, \mathsf{A}\right) \end{array}
```

Check at B: | **CLOCK**_B - **T** $| < \Delta t1 + \Delta t2$

∆t1 : Max discrepancy with the server's clock
∆t1 : Expected Network Delay

A Protocol for Public Key Systems

- For X, The encryption key PKX is known publicly
- The decryption key SKX is secret
- Main Issue:
 - No explicit conversation key is required for communication
 - Public encryption keys are used
 - Handshake protocol
 - A knows the public encryption key of B
 - A doesn't know the public encryption key of B. However it is known to AS

Handshake Protocol: Public Key is known

- $A \rightarrow B : E_{PKB}(I_A, A)$
- The intruder can replay such a message
- To verify B sends the following
- $B \rightarrow A : E_{PKA} (I_A, I_B)$
- $A \rightarrow B : E_{PKB}(I_B)$

Handshake Protocol: Public Key is not known

- $A \rightarrow AS : A, B$
- $AS \rightarrow A : E_{SKAS} (PKB, B)$
- The second message is a *signed* message and only AS can create it
- D_{PKAS} (E_{SKAS} (m)) = m

Performing One-Way Communication

- Asynchronous
- Main Issue is to ensure that the receiver is able to verify the authenticity of the sender and the message

A Protocol for Private Key Systems

- $A \rightarrow AS : A, B, I_A$ (1)
- $AS \rightarrow A : E_{KA}(I_A, B, CK, E_{KB}(CK, A))$ (2)

 $E_{KA}(I_A, B, CK, E_{KB}(CK, A))$

A Protocol for Private Key Systems

- E_{KB}(CK, A) is used to authenticate the identity of the sender
- This template is put at the header of the message (mail)
- The mail has the following format -

 $A \rightarrow B : E_{KB} (CK, A); E_{CK} (M)$

A Protocol for Public Key Systems

- A and B know their public encryption keys
 Otherwise A can take it from AS and send to B
- The mail has the following format -

$$\mathsf{A} \rightarrow \mathsf{B} : \mathsf{E}_{\mathsf{PKB}} \ (\mathsf{A}, \mathsf{I}, \mathsf{E}_{\mathsf{SKA}} \ (\mathsf{B})); \ \mathsf{E}_{\mathsf{PKB}} \ (\mathsf{I}, \mathsf{M})$$

- E_{SKA} (B) helps B to authenticate the identity of the sender
- Only A can create E_{SKA} (B)
- Nonce identifier 'I' is used to verify the integrity i.e. to connect the header with that of the mail message

Dept. of CSE, IIT KGP