
Dept. of CSE, IIT KGP

Distributed Deadlock DetectionDistributed Deadlock Detection
CS60002:CS60002: Distributed SystemsDistributed Systems

PallabPallab DasguptaDasgupta
Dept. of Computer Sc. & Engg.,Dept. of Computer Sc. & Engg.,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Dept. of CSE, IIT KGP

PreliminariesPreliminaries

•• The System ModelThe System Model
–– The system has only reusable resourcesThe system has only reusable resources
–– Processes are allowed only exclusive access to resourcesProcesses are allowed only exclusive access to resources
–– There is only one copy of each resource There is only one copy of each resource

•• Resource vs. Communication DeadlocksResource vs. Communication Deadlocks

•• A GraphA Graph--Theoretic ModelTheoretic Model
–– WaitWait--For GraphsFor Graphs

Dept. of CSE, IIT KGP

Deadlock Handling StrategiesDeadlock Handling Strategies

•• Deadlock PreventionDeadlock Prevention

•• Deadlock AvoidanceDeadlock Avoidance

•• Deadlock DetectionDeadlock Detection

Dept. of CSE, IIT KGP

Issues in Deadlock Detection & ResolutionIssues in Deadlock Detection & Resolution

•• DetectionDetection
–– Progress: No undetected deadlocksProgress: No undetected deadlocks
–– Safety: No false deadlocksSafety: No false deadlocks

•• ResolutionResolution

Dept. of CSE, IIT KGP

Control Organization for Deadlock Detection Control Organization for Deadlock Detection

•• Centralized ControlCentralized Control

•• Distributed ControlDistributed Control
•• Hierarchical ControlHierarchical Control

Dept. of CSE, IIT KGP

Centralized DeadlockCentralized Deadlock--Detection Algorithms Detection Algorithms

•• The Completely Centralized Algorithm The Completely Centralized Algorithm

•• The HoThe Ho--RamamoorthyRamamoorthy AlgorithmsAlgorithms

–– The TwoThe Two--Phase AlgorithmPhase Algorithm
–– The OneThe One--phase Algorithmphase Algorithm

Dept. of CSE, IIT KGP

Distributed DeadlockDistributed Deadlock--Detection Algorithms Detection Algorithms

•• A PathA Path--Pushing AlgorithmPushing Algorithm
–– The site waits for deadlockThe site waits for deadlock--related information from other sitesrelated information from other sites

–– The site combines the received information with its local TWF The site combines the received information with its local TWF
graph to build an updated TWF graphgraph to build an updated TWF graph

–– For all cycles ‘EX For all cycles ‘EX --> T1 > T1 --> T2 > T2 --> Ex’ which contains the node > Ex’ which contains the node
‘Ex’, the site transmits them in string form ‘Ex, T1, T2, Ex’ to‘Ex’, the site transmits them in string form ‘Ex, T1, T2, Ex’ to all all
other sites where a subother sites where a sub--transaction of T2 is waiting to receive a transaction of T2 is waiting to receive a
message from the submessage from the sub--transaction of T2 at that sitetransaction of T2 at that site

Dept. of CSE, IIT KGP

ChandyChandy et al.’s Edgeet al.’s Edge--Chasing Algorithm Chasing Algorithm

To determine if a blocked process is deadlockedTo determine if a blocked process is deadlocked

if Pif Pi i is locally dependent on itselfis locally dependent on itself
then then declare a deadlockdeclare a deadlock
else for all else for all PPjj and and PPkk such thatsuch that

(a) P(a) Pii is locally dependent upon is locally dependent upon PPjj, and, and
(b) (b) PPjj is waiting on is waiting on PPkk, and, and
(c) (c) PPjj and and PPkk are on different sites,are on different sites,
send send probe (i, j, k) probe (i, j, k) to the home site of to the home site of PPkk

Dept. of CSE, IIT KGP

Algorithm Contd..Algorithm Contd..

On the receipt of On the receipt of probe (i, j, k), probe (i, j, k), the site takes the following the site takes the following
actions:actions:

if (a) if (a) PPkk is blocked, andis blocked, and
(b) (b) dependentdependentkk(i(i)) is false, andis false, and
(c) (c) PPkk has not replied to all requests of has not replied to all requests of PPjj,,

then beginthen begin
dependentdependentkk(i(i)) = true;= true;
if k = i then declare that if k = i then declare that PPii is deadlockedis deadlocked
else for all Pelse for all Pm m and and PPnn such thatsuch that

(i) (i) PPkk is locally dependent upon Pis locally dependent upon Pmm, and , and
(ii) P(ii) Pm m is waiting on is waiting on PPnn, and , and
(iii) P(iii) Pm m and and PPnn are on different sites,are on different sites,

send send probe (i, m, n) probe (i, m, n) to the home site of to the home site of PPnn

end.end.

Dept. of CSE, IIT KGP

Other Edge Other Edge -- Chasing AlgorithmsChasing Algorithms

•• The Mitchell The Mitchell –– Merritt AlgorithmMerritt Algorithm

•• SinhaSinha –– NiranjanNiranjan Algorithm Algorithm

Dept. of CSE, IIT KGP

ChandyChandy et al.’s Diffusion Computation Based et al.’s Diffusion Computation Based AlgoAlgo

•• Initiate a diffusion computation for a blocked process PInitiate a diffusion computation for a blocked process Pii::
send query (send query (i, i, ji, i, j) to each process) to each process PPjj in the dependent set in the dependent set DSDSii of Pof Pii;;
numnumii (i) := |(i) := |DSDSii|; |; waitwaitii(i(i):= true):= true

•• When a blocked process When a blocked process PPkk receives a query (receives a query (i, j, k):i, j, k):
if this is the engaging query for process if this is the engaging query for process PPkk thenthen

send send query (i, k, m) query (i, k, m) to all Pto all Pm m in itsin its dependent setdependent set DSDSkk;;
numnumkk(i(i) := |) := |DSDSkk|; |; waitwaitkk(i(i) := true) := true

else if else if waitwaitkk(i(i)) then send a then send a reply (i, k, j) reply (i, k, j) to to PPjj..

•• When a process When a process PPkk receives a reply (receives a reply (i, j, ki, j, k):):
if if waitwaitkk(i(i)) then begin then begin numnumkk (i) := (i) := numnumkk(i(i)) –– 1;1;

if if numnumkk (i) = 0(i) = 0
then if then if i = ki = k then then declare a deadlockdeclare a deadlock

else send else send reply (i, k, m) reply (i, k, m) to the process to the process PPmmwhichwhich sent the engaging sent the engaging
query query

Dept. of CSE, IIT KGP

A Global State Detection Algorithm A Global State Detection Algorithm –– Data StructuresData Structures

waitwaitii : : booleanboolean (:= false) /* records the current status */(:= false) /* records the current status */

ttii :: integer (:= 0) /* current time */integer (:= 0) /* current time */

in (i) in (i) : set of nodes whose requests are outstanding at i: set of nodes whose requests are outstanding at i

out (i)out (i) : set of nodes on which i is waiting: set of nodes on which i is waiting

ppii : integer (:= 0) /* number of replies required for unblocking *: integer (:= 0) /* number of replies required for unblocking */ /

wwii : real (:= 1.0) /* weight to detect termination of deadlock : real (:= 1.0) /* weight to detect termination of deadlock
detection algorithm */detection algorithm */

Dept. of CSE, IIT KGP

A Global State Detection AlgorithmA Global State Detection Algorithm

•• REQUEST_SEND (i):REQUEST_SEND (i):
/*executed by node i when it blocks on a p/*executed by node i when it blocks on a pi i -- out of out of -- qqii request */request */

For every node j on which i is blocked doFor every node j on which i is blocked do
out (i) out (i) ←← out (i) U {j}; out (i) U {j}; send REQUEST (i) to j;
set pset pi i to the number of replies needed; to the number of replies needed; waitwaitii := true:= true

•• REQEST_RECEIVE (j): REQEST_RECEIVE (j):
/* executed by node i when it receives a request made by j *//* executed by node i when it receives a request made by j */
in (i) ← in (i) U {j};

•• REPLY_SEND (j):REPLY_SEND (j):
/* executed by node i when it replies to a request by j *//* executed by node i when it replies to a request by j */
in (i) ← in (i) - {j}; send REPLY (i) to j;

Dept. of CSE, IIT KGP

A Global State Detection Algorithm (Contd..)A Global State Detection Algorithm (Contd..)

•• REPLY_RECEIVE (j):REPLY_RECEIVE (j):
/*executed by node i when it receives a reply from j to its requ/*executed by node i when it receives a reply from j to its requestest
if valid reply for the current request then beginif valid reply for the current request then begin

outout (i) (i) ← out (i) out (i) –– {j}; p{j}; pii ← ppii –– 1; 1;
if if ppi i = 0 = 0 →

{ { waitwaitii ←← false;false;
For all k For all k ∈ out (i), out (i), sendsend CANCEL (i) to k;CANCEL (i) to k;
outout (i) (i) ←← ФФ }}

end end

•• CANCEL_RECEIVE (j):CANCEL_RECEIVE (j):
/* executed by node i when it receives a cancel from j *//* executed by node i when it receives a cancel from j */
if if j j ∈∈ in (i) then in in (i) then in (i) (i) ←← in (i) in (i) -- {j}; {j};

	Distributed Deadlock Detection��CS60002: Distributed Systems
	Preliminaries
	Deadlock Handling Strategies
	Issues in Deadlock Detection & Resolution
	Control Organization for Deadlock Detection
	Centralized Deadlock-Detection Algorithms
	Distributed Deadlock-Detection Algorithms
	Chandy et al.’s Edge-Chasing Algorithm
	Algorithm Contd..
	Other Edge - Chasing Algorithms
	Chandy et al.’s Diffusion Computation Based Algo
	A Global State Detection Algorithm – Data Structures
	A Global State Detection Algorithm
	A Global State Detection Algorithm (Contd..)

