Distributed Deadlock Detection

CS60002: Distributed Systems

Pallab Dasgupta
Dept. of Computer Sc. & Engg.,
Indian Institute of Technology Kharagpur

AR LT,
L i
P Tl
= 3
- 3 (A
=]
L1 »
4 a
a &
| el

Preliminaries

« The System Model

— The system has only reusable resources
— Processes are allowed only exclusive access to resources
— There is only one copy of each resource

e Resource vs. Communication Deadlocks

A Graph-Theoretic Model
— Wait-For Graphs

Deadlock Handling Strategies

« Deadlock Prevention
e Deadlock Avoidance

« Deadlock Detection

Issues In Deadlock Detection & Resolution

« Detection
— Progress: No undetected deadlocks
— Safety: No false deadlocks

* Resolution

Control Organization for Deadlock Detection

« Centralized Control

 Distributed Control
« Hierarchical Control

Centralized Deadlock-Detection Algorithms

« The Completely Centralized Algorithm

« The Ho-Ramamoorthy Algorithms

— The Two-Phase Algorithm
— The One-phase Algorithm

Distributed Deadlock-Detection Algorithms

« A Path-Pushing Algorithm

— The site waits for deadlock-related information from other sites

— The site combines the received information with its local TWF
graph to build an updated TWF graph

— Forall cycles ‘EX->T1 -> T2 -> Ex’ which contains the node
‘EX’, the site transmits them in string form ‘Ex, T1, T2, Ex’ to all
other sites where a sub-transaction of T2 is waiting to receive a
message from the sub-transaction of T2 at that site

Chandy et al.'s Edge-Chasing Algorithm

To determine if a blocked process is deadlocked

if P, is locally dependent on itself
then declare a deadlock

else for all P,and P, such that
(a) P; is locally dependent upon P;, and
(b) P;is waiting on P, and
(c) P,and P, are on different sites,
send probe (i, j, k) to the home site of P,

Algorithm Contd..

On the receipt of probe (i, |, k), the site takes the following
actions:

if (a) P, is blocked, and
(b) dependent, (i) is false, and
(c) P has not replied to all requests of P,
then begin
dependent, (i) = true;
if k = i then declare that P, is deadlocked
else for all P, and P such that
(i) P, is locally dependent upon P, and
(i) P, is waiting on P,,, and
(iii) P, and P, are on different sites,
send probe (i, m, n) to the home site of P,

end

Dept. of CSE, IIT KGPJ

Other Edge - Chasing Algorithms

 The Mitchell — Merritt Algorithm

« Sinha - Niranjan Algorithm

Chandy et al.’s Diffusion Computation Based Algo

Initiate a diffusion computation for a blocked process P;:

send query (i, i, j) to each process P, in the dependent set DS, of P;
num; (i) := |DS); wait(i):= true

When a blocked process P, receives a query (i, |, k):
if this is the engaging query for process P, then
send query (i, k, m) to all P_, in its dependent set DS;
num,(i) := |DS,|; wait, (i) := true
else if wait,(i) then send a reply (i, k, j) to P,.

When a process P, receives a reply (i, }, k):
if wait, (i) then begin num, (i) := num,(i) — 1,
if num, (i) =0
then if i = k then declare a deadlock

else send reply (i, k, m) to the process P_which sent the engaging
query

Dept. of CSE, IIT KGPJ

A Global State Detection Algorithm — Data Structures

wait;: boolean (:= false) /* records the current status */

t.:integer (:= 0) /* current time ¥/
in (i) : set of nodes whose requests are outstanding at i
out (i) : set of nodes on which i is waiting

p; - integer (:= 0) /* number of replies required for unblocking */

w;: real (:= 1.0) /" weight to detect termination of deadlock
detection algorithm */

A Global State Detection Algorithm

« REQUEST_SEND (i):
[*executed by node | when it blocks on a p, - out of - g, request */
For every node j on which i is blocked do
out (i) < out (i) U {j}; send REQUEST (i) to j;
set p; to the number of replies needed; wait; := true

« REQEST_RECEIVE ()):
[* executed by node i when it receives a request made by j */

in (i) < in (i) U {j};
« REPLY_SEND (j):

[* executed by node i when it replies to a request by j */
in (i) < in (i) - {J}; send REPLY (i) to j;

Dept. of CSE, IIT KGPJ

A Global State Detection Algorithm (Contd..)

« REPLY_RECEIVE ()):
[*executed by node i when it receives a reply from j to its request
if valid reply for the current request then begin
out (i) — out (i) - {j}; p;— p;— 1;
ifp,=0 —
{ wait, < false;
For all k € out (i), send CANCEL (i) to k;
out (i) — @}
end

« CANCEL_RECEIVE (j):
[* executed by node i when it receives a cancel from j */

if j € in (i) then in (i) < in (i) - {j};

Dept. of CSE, IIT KGPJ

	Distributed Deadlock Detection��CS60002: Distributed Systems
	Preliminaries
	Deadlock Handling Strategies
	Issues in Deadlock Detection & Resolution
	Control Organization for Deadlock Detection
	Centralized Deadlock-Detection Algorithms
	Distributed Deadlock-Detection Algorithms
	Chandy et al.’s Edge-Chasing Algorithm
	Algorithm Contd..
	Other Edge - Chasing Algorithms
	Chandy et al.’s Diffusion Computation Based Algo
	A Global State Detection Algorithm – Data Structures
	A Global State Detection Algorithm
	A Global State Detection Algorithm (Contd..)

