Leader Election

CS60002: Distributed Systems

Pallab Dasgupta
Dept. of Computer Sc. & Engg.,
Indian Institute of Technology Kharagpur

ATV T,
o ik
- &
£ 3 [
=]
L1 »
- | a
a . |
_.-.--___ e . A1)

Leader Election in Rings

e Models

— Synchronous or Asynchronous
— Anonymous (no unique id) or Non-anonymous (unique
ids)

— Uniform (no knowledge of N, the number of processes) or
non-uniform (knows N)

« Known Impossibility Result:

— There is no synchronous, non-uniform leader election
protocol for anonymous rings

Dept. of CSE, IIT KGPJ

Election in Asynchronous Rings

« LeLann’s and Chang-Robert’s Algorithms
— send own id to node on left

— if an id received from right, forward id to left node
only if received id greater than own id, else ignore

— if own id received, declares itself “leader”

« Works on unidirectional rings

« Message complexity = O(n?)

Hirschberg-Sinclair Algorithm

« Qperates in phases, requires bidirectional ring

* Inthe kh phase, send own id to 2k processes on both sides of
yourself (directly send only to next processes with id and k in it)

 |Ifid received, forward if received id greater than own id, else ignore

« Last process in the chain sends areply to originator if its id less
than received id

 Replies are always forwarded

« A process goes to (k+1)t" phase only if it receives a reply from both
sides in kth phase

 Process receiving its own id — declare itself “leader”. At most Ign
rounds

Dept. of CSE, IIT KGPJ

Features: Hirschberg-Sinclair

« Message Complexity: O(n Ign)
e Lots of other algorithms exist for rings

e Lower Bound Result:

— Any comparison-based leader election algorithm in a
ring requires ‘Q(n Ilgn) messages

The Echo Algorithm — a wave algorithm

var rec, . integer init O; // Counts no of recvd mesgs
father, . process init udef;

For the initiator
begin forall g € Neigh, do send (tok) to q ;
while rec, <#Neigh, do
begin receive (tok) ; rec, =rec, + 1 end ;
decide
end

For non-initiators
begin receive (tok) from neighbor q ; father, =q ;rec, =rec, +1;
forall g € Neigh,, q =father, do send (tok)to q ;
while rec, < #Neigh do
begin receive (tok) ; rec, =rec, + 1 end ;
send (tok) to father,

end

Dept. of CSE, IIT KGPJ

Extinction on The Echo Algorithm

var caw, . process init udef; // Currently active wave
rec, . integer init O; /I No of (tok, caw,) received
father, :process initudef; // Fatherin wave caw,
Irec, . iInteger init O; /l No of {Idr, .) received
win . process init udef ; // Identity of leader

P
begin if p is initiator then
begin caw, = p ;
forall g € Neigh, do send (tok,p)toq;
end ;
while Irec, < #Neigh, do
begin receive msg from q ;
if msg ={Idr, r) then
begin if Irec, = 0 then
forall g € Neigh, do send (ldr,r)to q ;
Irec, =Irec, +1;win =r;
end ;

Dept. of CSE, IIT KGPJ

Extinction on Echo Algorithm contd..

else /[mesg is a {tok, r) message
begin if r <caw, then // Reinitialize the algorithm
begin caw, =p ; rec, =0 ; father,=q ;
forall s € Neigh,, s #q do send (tok,r)tos
end ;
iIf r = caw, then
beginrec, =rec, +1;
if rec, = #Neigh, then
If caw, = p
then forall s € Neigh, do send (ldr,p) to s
else send (tok, caw,) to father,
end ;
II'lf r > caw, then the message is ignored — extinction
end
end ;
iIf win, = p then state, = leader else state, = lost

Dept. of CSE, IIT KEPJ

Features

 If Ais acentralized wave algorithm using M messages
per wave, the algorithm Ex(A) elects a leader using at
most NM messages

	Leader Election��CS60002: Distributed Systems
	Leader Election in Rings
	Election in Asynchronous Rings
	Hirschberg-Sinclair Algorithm
	Features: Hirschberg-Sinclair
	The Echo Algorithm – a wave algorithm
	Extinction on The Echo Algorithm
	Extinction on Echo Algorithm contd..
	Features

