
Dept. of CSE, IIT KGP

Leader ElectionLeader Election
CS60002:CS60002: Distributed SystemsDistributed Systems

PallabPallab DasguptaDasgupta
Dept. of Computer Sc. & Dept. of Computer Sc. & EnggEngg.,.,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Dept. of CSE, IIT KGP

Leader Election in RingsLeader Election in Rings

•• ModelsModels
–– Synchronous or AsynchronousSynchronous or Asynchronous
–– Anonymous (no unique id) or NonAnonymous (no unique id) or Non--anonymous (unique anonymous (unique

ids)ids)
–– Uniform (no knowledge of Uniform (no knowledge of NN, the number of processes) or , the number of processes) or

nonnon--uniform (knows uniform (knows NN))

•• Known Impossibility Result:Known Impossibility Result:
–– There is no synchronous, nonThere is no synchronous, non--uniform leader election uniform leader election

protocol for anonymous ringsprotocol for anonymous rings

Dept. of CSE, IIT KGP

Election in Asynchronous RingsElection in Asynchronous Rings

•• LeLann’sLeLann’s and Changand Chang--Robert’s AlgorithmsRobert’s Algorithms
–– send own id to node on leftsend own id to node on left
–– if an id received from right, forward id to left node if an id received from right, forward id to left node

only if received id greater than own id, else ignoreonly if received id greater than own id, else ignore
–– if own id received, declares itself “leader”if own id received, declares itself “leader”

•• Works on unidirectional ringsWorks on unidirectional rings

•• Message complexity = O(nMessage complexity = O(n22))

Dept. of CSE, IIT KGP

HirschbergHirschberg--Sinclair AlgorithmSinclair Algorithm

•• Operates in phases, requires bidirectional ringOperates in phases, requires bidirectional ring

•• In the In the kkthth phase, send own id to 2phase, send own id to 2kk processes on both sides of processes on both sides of
yourself (directly send only to next processes with id and yourself (directly send only to next processes with id and kk in it)in it)

•• If id received, forward if received id greater than own id, elseIf id received, forward if received id greater than own id, else ignoreignore

•• Last process in the chain sends a reply to originator if its id Last process in the chain sends a reply to originator if its id less less
than received idthan received id

•• Replies are always forwardedReplies are always forwarded

•• A process goes to (k+1)A process goes to (k+1)thth phase only if it receives a reply from both phase only if it receives a reply from both
sides in sides in kkthth phasephase

•• Process receiving its own id Process receiving its own id –– declare itself “leader”. At most declare itself “leader”. At most lglgnn
roundsrounds

Dept. of CSE, IIT KGP

Features: HirschbergFeatures: Hirschberg--Sinclair Sinclair

•• Message Complexity: O(Message Complexity: O(n n lglgnn))

•• Lots of other algorithms exist for ringsLots of other algorithms exist for rings

•• Lower Bound Result:Lower Bound Result:

–– Any Any comparisoncomparison--basedbased leader election algorithm in a leader election algorithm in a
ring requires ring requires ΏΏ((n n lglgnn) messages) messages

Dept. of CSE, IIT KGP

The Echo Algorithm The Echo Algorithm –– a wave algorithma wave algorithm

varvar recrecpp : integer: integer init 0; init 0; // Counts no of // Counts no of recvdrecvd mesgsmesgs
fatherfatherpp : process: process init init udefudef;;

For the initiatorFor the initiator
begin begin forallforall q q ∈∈ NeighNeighpp do send do send 〈〈 toktok 〉〉 to to qq ;;

while while recrecpp < < ##NeighNeighpp dodo
begin receive begin receive 〈〈 toktok 〉〉 ; ; recrecpp = = recrecpp + + 1 end ;1 end ;
decidedecide

endend

For nonFor non--initiatorsinitiators
begin receive begin receive 〈〈 toktok 〉〉 from neighbor from neighbor qq ; ; fatherfatherpp = q = q ; ; recrecpp = = recrecpp + 1 ;+ 1 ;

forallforall q q ∈∈ NeighNeighpp, q , q ≠≠ fatherfatherpp do send do send 〈〈 toktok 〉〉 to to qq ;;
while while recrecpp < #< #NeighNeighpp dodo

begin receive begin receive 〈〈 toktok 〉〉 ; ; recrecpp = = recrecpp + + 1 end ;1 end ;
send send 〈〈 toktok 〉〉 to to fatherfatherpp

endend

Dept. of CSE, IIT KGP

Extinction on The Echo AlgorithmExtinction on The Echo Algorithm

varvar cawcawpp : process init : process init udefudef ; ; // Currently active wave// Currently active wave
recrecpp : integer: integer init 0; init 0; // No of // No of 〈〈 toktok, , cawcawpp 〉〉 receivedreceived
fatherfatherpp : process: process init init udefudef; ; // Father in wave // Father in wave cawcawpp
lreclrecpp : integer: integer init 0; init 0; // No of // No of 〈〈 ldrldr, , .. 〉〉 receivedreceived
winwinpp : process init : process init udefudef ; ; // Identity of leader// Identity of leader

begin if begin if pp is initiator thenis initiator then
begin begin cawcawpp = p = p ; ;

forallforall q q ∈∈ NeighNeighpp do send do send 〈〈 toktok, , pp 〉〉 to to qq ;;
end ;end ;

while while lreclrecpp < < ##NeighNeighpp dodo
begin receive begin receive msgmsg from from qq ;;
if if msgmsg = = 〈〈 ldrldr, , rr 〉〉 thenthen

begin if begin if lreclrecpp = 0 then= 0 then
forallforall q q ∈∈ NeighNeighpp do send do send 〈〈 ldrldr, , rr 〉〉 to to qq ;;

lreclrecpp = = lreclrecpp + 1 ; + 1 ; winwinpp = r= r ;;
end ;end ;

Dept. of CSE, IIT KGP

Extinction on Echo Algorithm contd..Extinction on Echo Algorithm contd..

else else // // mesgmesg is a is a 〈〈 toktok, , rr 〉〉 messagemessage
begin if begin if r < r < cawcawpp thenthen // Reinitialize the algorithm// Reinitialize the algorithm

begin begin cawcawpp = p = p ; ; recrecpp == 0 ; 0 ; fatherfatherpp = q= q ;;
forallforall s s ∈∈ NeighNeighpp, s , s ≠≠ q q do send do send 〈〈 toktok, , rr 〉〉 to to ss

end ;end ;
if if r = r = cawcawpp thenthen

begin begin recrecpp = = recrecpp + + 1 ;1 ;
if if recrecpp = #= #NeighNeighpp thenthen

if if cawcawpp = p= p
then then forallforall s s ∈∈ NeighNeighpp do send do send 〈〈 ldrldr, , pp 〉〉 to to ss
else send else send 〈〈 toktok, , cawcawpp 〉〉 to to fatherfatherpp

end ;end ;
// If // If r > r > cawcawpp then the message is ignored then the message is ignored –– extinction extinction

endend
end ;end ;
if if winwinpp = p = p then then statestatepp = leader = leader else else statestatepp = lost= lost

endend

Dept. of CSE, IIT KGP

FeaturesFeatures

•• If A is a centralized wave algorithm using M messages If A is a centralized wave algorithm using M messages
per wave, the algorithm Ex(A) elects a leader using at per wave, the algorithm Ex(A) elects a leader using at
most NM messagesmost NM messages

	Leader Election��CS60002: Distributed Systems
	Leader Election in Rings
	Election in Asynchronous Rings
	Hirschberg-Sinclair Algorithm
	Features: Hirschberg-Sinclair
	The Echo Algorithm – a wave algorithm
	Extinction on The Echo Algorithm
	Extinction on Echo Algorithm contd..
	Features

