
Dept. of CSE, IIT KGP

Wave and Traversal AlgorithmsWave and Traversal Algorithms
CS60002:CS60002: Distributed SystemsDistributed Systems

PallabPallab DasguptaDasgupta
Dept. of Computer Sc. & Dept. of Computer Sc. & EnggEngg.,.,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Dept. of CSE, IIT KGP

Wave AlgorithmsWave Algorithms

•• A A wave algorithmwave algorithm is a distributed algorithm that is a distributed algorithm that
satisfies the following three requirements:satisfies the following three requirements:

–– Termination:Termination: Each computation is finiteEach computation is finite

–– Decision:Decision: Each computation contains at least one Each computation contains at least one
decide eventdecide event

–– Dependence:Dependence: In each computation each decide event is In each computation each decide event is
causally preceded by an event in each processcausally preceded by an event in each process

Dept. of CSE, IIT KGP

The Echo Algorithm The Echo Algorithm –– a wave algorithma wave algorithm

varvar recrecpp : integer: integer init 0; init 0; // Counts no of // Counts no of recvdrecvd mesgsmesgs
fatherfatherpp : process: process init init udefudef;;

For the initiatorFor the initiator
begin begin forallforall q q ∈∈ NeighNeighpp do send do send 〈〈 toktok 〉〉 to to qq ;;

while while recrecpp < < ##NeighNeighpp dodo
begin receive begin receive 〈〈 toktok 〉〉 ; ; recrecpp = = recrecpp + + 1 end ;1 end ;
decidedecide

endend

For nonFor non--initiatorsinitiators
begin receive begin receive 〈〈 toktok 〉〉 from neighbor from neighbor qq ; ; fatherfatherpp = q = q ; ; recrecpp = = recrecpp + 1 ;+ 1 ;

forallforall q q ∈∈ NeighNeighpp, q , q ≠≠ fatherfatherpp do send do send 〈〈 toktok 〉〉 to to qq ;;
while while recrecpp < #< #NeighNeighpp dodo

begin receive begin receive 〈〈 toktok 〉〉 ; ; recrecpp = = recrecpp + + 1 end ;1 end ;
send send 〈〈 toktok 〉〉 to to fatherfatherpp

endend

Dept. of CSE, IIT KGP

Traversal AlgorithmsTraversal Algorithms

•• A A traversal algorithmtraversal algorithm is an algorithm with the is an algorithm with the
following three properties:following three properties:

–– In each computation there is one initiator, which starts In each computation there is one initiator, which starts
the algorithm by sending out exactly one messagethe algorithm by sending out exactly one message

–– A process, upon receipt of a message, either sends out A process, upon receipt of a message, either sends out
one message or decidesone message or decides

–– The algorithm terminates in the initiator and when this The algorithm terminates in the initiator and when this
happens, each process has sent a message at least happens, each process has sent a message at least
onceonce

Dept. of CSE, IIT KGP

Sequential Polling Sequential Polling –– a traversal algorithma traversal algorithm

varvar recrecpp : integer: integer init 0; init 0; // For initiator only// For initiator only

For the initiatorFor the initiator
begin begin while while recrecpp < < ##NeighNeighpp dodo

begin begin send send 〈〈 toktok 〉〉 to to qqrecprecp + + 11 ; ;
receive receive 〈〈 toktok 〉〉 ; ; recrecpp = = recrecpp + + 1 1

end ;end ;
decidedecide

endend

For nonFor non--initiatorsinitiators
begin receive begin receive 〈〈 toktok 〉〉 from from qq ; send ; send 〈〈 toktok 〉〉 to to qq ; end; end

Dept. of CSE, IIT KGP

Classical DepthClassical Depth--first Searchfirst Search

varvar usedusedpp[[qq]] : : booleanboolean init false for each init false for each q q ∈∈ NeighNeighpp ;;
fatherfatherpp : process init : process init udefudef ;;

// For the initiator only // For the initiator only –– execute onceexecute once
begin begin fatherfatherpp = p = p ; choose ; choose q q ∈∈ NeighNeighpp ;;

usedusedpp[[qq] = true ; send] = true ; send 〈〈 toktok 〉〉 to to qq ;;
endend

Dept. of CSE, IIT KGP

Classical DepthClassical Depth--first Search contd..first Search contd..

// For each process, upon receipt of // For each process, upon receipt of 〈〈 toktok 〉〉 from from qq00::
begin if begin if fatherfatherpp = = udefudef then then fatherfatherpp = q= q00 ;;

if if ∀∀q q ∈∈ NeighNeighpp: : usedusedpp[[qq]]
then then decidedecide

else if else if ∃∃q q ∈∈ NeighNeighpp: (: (q q ≠≠ fatherfatherpp ∧∧ ¬¬usedusedpp[[qq])])
then begin if then begin if fatherfatherpp ≠≠ qq00 ∧∧ ¬¬usedusedpp[[qq00]]

then then q = qq = q00

else choose else choose q q ∈∈ NeighNeighpp \\ { { fatherfatherpp } with } with ¬¬usedusedpp[[qq] ;] ;
usedusedpp[[qq] =] = true true ; send ; send 〈〈 toktok 〉〉 to to qq

endend
else begin else begin usedusedpp[[fatherfatherpp] = true ;] = true ;

send send 〈〈 toktok 〉〉 to to fatherfatherpp

endend
endend

Dept. of CSE, IIT KGP

Classical DepthClassical Depth--first Search Algorithmfirst Search Algorithm

•• The classical depthThe classical depth--first search algorithm computes a first search algorithm computes a
depthdepth--first search spanning tree using first search spanning tree using 2|E|2|E| messages messages
and and 2|E|2|E| time unitstime units

Dept. of CSE, IIT KGP

Awerbuch’sAwerbuch’s DFS AlgorithmDFS Algorithm

•• Prevents the transmission of the token through a frond edgePrevents the transmission of the token through a frond edge

•• When process When process pp is first visited by the token is first visited by the token
–– pp informs each neighbor informs each neighbor r,r, except its father, of the visit by except its father, of the visit by

sending a sending a 〈〈visvis〉〉 message to message to rr
–– The forwarding of the token is suspended until The forwarding of the token is suspended until pp has received has received

an an 〈〈ackack〉〉 message from each neighbormessage from each neighbor

•• When later, the token arrives at When later, the token arrives at rr, , r r will not forward the token will not forward the token
to to p,p, unless unless p p is is rr’’ss fatherfather

•• AwerbuchAwerbuch’’ss algorithm computes a depthalgorithm computes a depth--first search tree in first search tree in
4N 4N –– 2 2 time units and uses time units and uses 4.4.|E| messages|E| messages

Dept. of CSE, IIT KGP

Cidon’sCidon’s DFS AlgorithmDFS Algorithm

•• The token is forwarded immediatelyThe token is forwarded immediately

•• The following situation is important:The following situation is important:
–– ProcessProcess pp has been visited by the token and has sent a has been visited by the token and has sent a 〈〈visvis〉〉

message to its neighbor message to its neighbor rr
–– The token reaches The token reaches r r before the before the 〈〈visvis〉〉 message from message from pp
–– In this case In this case r r may forward the token to may forward the token to p p along a frond edgealong a frond edge

•• The situation is handled as follows:The situation is handled as follows:
–– Process Process p p records to which neighbor it most recently sent the records to which neighbor it most recently sent the

token token –– normally it expects to get it back from the samenormally it expects to get it back from the same
–– If it gets it back from some other neighbor it If it gets it back from some other neighbor it ignores the tokenignores the token, ,

but marks the edge but marks the edge rprp as used, as if it received a as used, as if it received a 〈〈visvis〉〉 message message
from from pp

–– When When r r eventually receives the eventually receives the 〈〈visvis〉〉 message from message from pp it behaves it behaves
as if it never had sent the token to as if it never had sent the token to pp

•• CidonCidon’’ss algorithm computes a DFS tree in 2algorithm computes a DFS tree in 2N N –– 2 2 time units time units
and uses and uses 4.4.|E| messages|E| messages

	Wave and Traversal Algorithms��CS60002: Distributed Systems
	Wave Algorithms
	The Echo Algorithm – a wave algorithm
	Traversal Algorithms
	Sequential Polling – a traversal algorithm
	Classical Depth-first Search
	Classical Depth-first Search contd..
	Classical Depth-first Search Algorithm
	Awerbuch’s DFS Algorithm
	Cidon’s DFS Algorithm

