
Dept. of CSE, IIT KGP

Logical Clocks and Causal OrderingLogical Clocks and Causal Ordering
CS60002:CS60002: Distributed SystemsDistributed Systems

Pallab Pallab DasguptaDasgupta
Dept. of Computer Sc. & Dept. of Computer Sc. & EnggEngg.,.,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Dept. of CSE, IIT KGP

Why do we need global clocks?Why do we need global clocks?

•• For causally ordering events in a distributed systemFor causally ordering events in a distributed system
–– Example: Example:

•• Transaction T transfers Transaction T transfers RsRs 10,000 from S1 to S210,000 from S1 to S2
•• Consider the situation when:Consider the situation when:

–– State of S1 is recorded after the deduction and state of S2 State of S1 is recorded after the deduction and state of S2
is recorded before the additionis recorded before the addition

–– State of S1 is recorded before the deduction and state of State of S1 is recorded before the deduction and state of
S2 is recorded after the additionS2 is recorded after the addition

•• Should not be confused with the clockShould not be confused with the clock--synchronization synchronization
problem problem

What data is being transmitted? 0101?What data is being transmitted? 0101?

Yes, if this is the clockYes, if this is the clock

If this is the clock, then 01110001If this is the clock, then 01110001

The receiver needs to know the clock of the senderThe receiver needs to know the clock of the sender

Dept. of CSE, IIT KGP

Ordering of EventsOrdering of Events

Lamport’sLamport’s Happened BeforeHappened Before relationshiprelationship::

For two events a and b, For two events a and b, a a →→ bb ifif

a and b are events in the same process and a occurred a and b are events in the same process and a occurred
before b, orbefore b, or
a is a send event of a message m and b is the corresponding a is a send event of a message m and b is the corresponding
receive event at the destination process, orreceive event at the destination process, or
a a →→ c and c c and c →→ b for some event cb for some event c

Dept. of CSE, IIT KGP

Causally Related versus ConcurrentCausally Related versus Concurrent

Causally related events:Causally related events:
Event a causally affects event b if a Event a causally affects event b if a →→ bb

Concurrent events:Concurrent events:
•• Two distinct events a and b are said to be concurrent (denoted Two distinct events a and b are said to be concurrent (denoted

by by a||ba||b) if a) if a →→ b and b b and b →→ aa

e11 e12 e13 e14

e21 e22 e23 e24

P1

P2

e11 and e21 are concurrent

e14 and e23 are concurrent

e22 causally affects e14

A space-time diagram

Dept. of CSE, IIT KGP

Lamport’sLamport’s Logical ClockLogical Clock

Each process i keeps a clock Each process i keeps a clock CCii

•• Each event a in i is timeEach event a in i is time--stamped stamped CCii(a(a), the value of), the value of CCii when when
a occurreda occurred

•• CCii is incremented by 1 for each event in iis incremented by 1 for each event in i

•• In addition, if a is a send of message m from process i to In addition, if a is a send of message m from process i to jj, ,
then on receive of m, then on receive of m,

CCjj = max (= max (CCjj, C, Cii(a)+1)(a)+1)

Dept. of CSE, IIT KGP

How How Lamport’sLamport’s clocks advanceclocks advance

e11 e12 e13 e14

e21 e22 e23 e24

P1

P2
e25

e15 e16 e17

(1)(1) (2)(2) (3)(3) (4)(4) (5)(5) (6)(6) (7)(7)

(1)(1) (2)(2) (3)(3) (4)(4) (7)(7)

Dept. of CSE, IIT KGP

Points to notePoints to note

•• if a if a →→ b, then C(a) < C(b)b, then C(a) < C(b)

•• →→ is a partial orderis a partial order

•• Total ordering possible by arbitrarily ordering concurrent Total ordering possible by arbitrarily ordering concurrent
events by process numbersevents by process numbers

Dept. of CSE, IIT KGP

Limitation of Limitation of Lamport’sLamport’s ClockClock

a a →→ b implies C(a) < C(b)b implies C(a) < C(b)

BUTBUT

C(a) < C(b) doesnC(a) < C(b) doesn’’t imply a t imply a →→ b !!b !!

So not a true clockSo not a true clock !!!!

Dept. of CSE, IIT KGP

Solution: Solution: Vector ClocksVector Clocks

Each process PEach process Pii has a clock has a clock CCii, which is a vector of size n, which is a vector of size n
The clock The clock CCii assigns a vector assigns a vector CCii(a(a) to any event) to any event aa at Pat Pii

Update rulesUpdate rules::

•• CCii[i[i]++ for every event at process i]++ for every event at process i

•• If a is send of message m from i to j with vector timestamp tIf a is send of message m from i to j with vector timestamp tmm, ,
then on receipt of m:then on receipt of m:

CCjj[k[k] =] = max(Cmax(Cjj[k[k], t], tmm[k]) for all k[k]) for all k

Dept. of CSE, IIT KGP

Partial Order between TimestampsPartial Order between Timestamps

For events a and b with vector timestamps For events a and b with vector timestamps ttaa and and ttbb,,

•• Equal:Equal: ttaa = = ttbb iffiff ∀∀i, i, ttaa[i[i] =] = ttbb[i[i]]

•• Not Equal:Not Equal: ttaa ≠≠ ttbb iffiff ∃∃i, i, ttaa[i[i]] ≠≠ ttbb[i[i]]

•• Less or equal:Less or equal: ttaa ≤≤ ttbb iffiff ∀∀i, i, ttaa[i[i]] ≤≤ ttbb[i[i]]

•• Not less or equal:Not less or equal: ttaa ≤≤ ttbb iffiff ∃∃i, i, ttaa[i[i] >] > ttbb[i[i]]

•• Less than:Less than: ttaa < < ttbb iffiff ((ttaa ≤≤ ttbb and and ttaa ≠≠ ttbb))

•• Not less than:Not less than: ttaa < < ttbb iffiff ¬¬((ttaa ≤≤ ttbb and and ttaa ≠≠ ttbb))

•• Concurrent:Concurrent: ttaa || || ttbb iffiff ((ttaa < < ttbb and and ttbb < < ttaa))

Dept. of CSE, IIT KGP

Causal OrderingCausal Ordering

•• a a →→ b b iffiff ttaa < < ttbb

•• Events a and b are causally related Events a and b are causally related iffiff ttaa < < ttbb or or ttbb < < ttaa, else , else
they are concurrentthey are concurrent

•• Note that this is still not a total orderNote that this is still not a total order

Dept. of CSE, IIT KGP

Use of Vector Clocks in Causal Ordering of MessagesUse of Vector Clocks in Causal Ordering of Messages

•• If send(m1) → send(m2), then every recipient of both If send(m1) → send(m2), then every recipient of both
message m1 and m2 must “deliver” m1 before m2. message m1 and m2 must “deliver” m1 before m2.

–– “deliver” “deliver” –– when the message is actually given to the when the message is actually given to the
application for processingapplication for processing

Dept. of CSE, IIT KGP

BirmanBirman--SchiperSchiper--StephensonStephenson ProtocolProtocol

•• To broadcast m from process i, increment To broadcast m from process i, increment CCii(i(i), and), and
timestamp m with timestamp m with VTVTmm = = CCii[i[i]]

•• When j When j ≠≠ ii receives m, j delays delivery of m until receives m, j delays delivery of m until
–– CCjj[i[i] =] = VTVTmm[i[i]] ––1 and1 and
–– CCjj[k[k]] ≥≥ VTVTmm[k[k] for all k] for all k ≠≠ ii
–– Delayed messages are queued in j sorted by vector time. Delayed messages are queued in j sorted by vector time.

Concurrent messages are sorted by receive time.Concurrent messages are sorted by receive time.

•• When m is delivered at j, When m is delivered at j, CCjj is updated according to is updated according to
vector clock rule.vector clock rule.

Dept. of CSE, IIT KGP

Problem of Vector ClockProblem of Vector Clock

•• Message size increases since each message needs to be Message size increases since each message needs to be
tagged with the vectortagged with the vector

•• Size can be reduced in some cases by only sending Size can be reduced in some cases by only sending
values that have changedvalues that have changed

Dept. of CSE, IIT KGP

Global State RecordingGlobal State Recording
CS60002:CS60002: Distributed SystemsDistributed Systems

Pallab Pallab DasguptaDasgupta
Dept. of Computer Sc. & Dept. of Computer Sc. & EnggEngg.,.,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Dept. of CSE, IIT KGP

Global State CollectionGlobal State Collection

•• Applications: Applications:
–– Checking “stable” properties, checkpoint & recoveryChecking “stable” properties, checkpoint & recovery

•• Issues:Issues:
–– Need to capture both node and channel statesNeed to capture both node and channel states
–– system cannot be stoppedsystem cannot be stopped
–– no global clockno global clock

Dept. of CSE, IIT KGP

NotationsNotations

Some notations:Some notations:
–– LSLSii: Local state of process i: Local state of process i
–– send(msend(mijij) : Send event of message) : Send event of message mmijij from process i from process i

to process jto process j
–– rec(mrec(mijij) : Similar, receive instead of send) : Similar, receive instead of send
–– time(x) : Time at which state x was recordedtime(x) : Time at which state x was recorded
–– time (send(m)) : Time at which send(m) occurredtime (send(m)) : Time at which send(m) occurred

Dept. of CSE, IIT KGP

DefinitionsDefinitions

•• send(msend(mijij) є) є LSLSii iffiff time(send(mtime(send(mijij)) <)) < time(LStime(LSii))

•• rec(mrec(mijij) є) є LSLSjj iffiff time(rec(mtime(rec(mijij)) <)) < time(LStime(LSjj))

•• transit(LStransit(LSii, , LSLSjj))
= { = { mmijij | | send(msend(mijij) є) є LSLSii and and rec(mrec(mijij)) ∉∉ LSLSjj }}

•• inconsistent(LSinconsistent(LSii, , LSLSjj))
= { = { mmijij | | send(msend(mijij)) ∉∉ LSLSii and and rec(mrec(mijij) є) є LSLSjj }}

Dept. of CSE, IIT KGP

DefinitionsDefinitions

•• Global state: collection of local statesGlobal state: collection of local states
GS = {LS1, LS2,…, GS = {LS1, LS2,…, LSnLSn}}

•• GS is consistent GS is consistent iffiff
for all i, j, 1 ≤ i, j ≤ n,for all i, j, 1 ≤ i, j ≤ n,

inconsistent(LSiinconsistent(LSi, , LSjLSj) = Ф) = Ф

•• GS is GS is transitlesstransitless iffiff
for all i, j, 1 ≤ i, j ≤ n,for all i, j, 1 ≤ i, j ≤ n,

transit(LSitransit(LSi, , LSjLSj) = Ф) = Ф

•• GS is strongly consistent if it is consistent and GS is strongly consistent if it is consistent and
transitlesstransitless..

Dept. of CSE, IIT KGP

ChandyChandy--Lamport’sLamport’s AlgorithmAlgorithm

•• Uses special marker messages. Uses special marker messages.

•• One process acts as initiator, starts the state collection One process acts as initiator, starts the state collection
by following the marker sending rule below.by following the marker sending rule below.

•• Marker sending rule for process P:Marker sending rule for process P:
–– P records its state and P records its state and
–– For each outgoing channel C from P on which a marker has For each outgoing channel C from P on which a marker has

not been sent already, P sends a marker along C before any not been sent already, P sends a marker along C before any
further message is sent on Cfurther message is sent on C

Dept. of CSE, IIT KGP

ChandyChandy Lamport’sLamport’s Algorithm contd..Algorithm contd..

•• When Q receives a marker along a channel C:When Q receives a marker along a channel C:

–– If Q has not recorded its state then Q records the If Q has not recorded its state then Q records the
state of C as empty; Q then follows the marker state of C as empty; Q then follows the marker
sending rulesending rule

–– If Q has already recorded its state, it records the state If Q has already recorded its state, it records the state
of C as the sequence of messages received along C of C as the sequence of messages received along C
after Q’s state was recorded and before Q received after Q’s state was recorded and before Q received
the marker along Cthe marker along C

Dept. of CSE, IIT KGP

Notable PointsNotable Points

•• Markers sent on a channel distinguish messages sent on Markers sent on a channel distinguish messages sent on
the channel before the sender recorded its states and the the channel before the sender recorded its states and the
messages sent after the sender recorded its statemessages sent after the sender recorded its state

•• The state collected may not be any state that actually The state collected may not be any state that actually
happened in reality, rather a state that “could have” happened in reality, rather a state that “could have”
happenedhappened

•• Requires FIFO channelsRequires FIFO channels

•• Message complexity O(|E|), where E = no. of linksMessage complexity O(|E|), where E = no. of links

Dept. of CSE, IIT KGP

Termination DetectionTermination Detection
CS60002:CS60002: Distributed SystemsDistributed Systems

Pallab Pallab DasguptaDasgupta
Dept. of Computer Sc. & Dept. of Computer Sc. & EnggEngg.,.,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Dept. of CSE, IIT KGP

Termination DetectionTermination Detection

•• ModelModel
–– processes can be active or idleprocesses can be active or idle
–– only active processes send messagesonly active processes send messages
–– idle process can become active on receiving a idle process can become active on receiving a

computation messagecomputation message
–– active process can become idle at any timeactive process can become idle at any time

–– Termination: all processes are idle and no Termination: all processes are idle and no
computation message are in transitcomputation message are in transit

–– Can use global snapshot to detect termination alsoCan use global snapshot to detect termination also

Dept. of CSE, IIT KGP

Huang’s AlgorithmHuang’s Algorithm

•• One controlling agent, has weight 1 initiallyOne controlling agent, has weight 1 initially
•• All other processes are idle initially and has weight 0All other processes are idle initially and has weight 0
•• Computation starts when controlling agent sends a Computation starts when controlling agent sends a

computation message to a processcomputation message to a process
•• An idle process becomes active on receiving a An idle process becomes active on receiving a

computation messagecomputation message
•• B(DW) B(DW) –– computation message with weight DW. Can be computation message with weight DW. Can be

sent only by the controlling agent or an active processsent only by the controlling agent or an active process
•• C(DW) C(DW) –– control message with weight DW, sent by active control message with weight DW, sent by active

processes to controlling agent when they are about to processes to controlling agent when they are about to
become idlebecome idle

Dept. of CSE, IIT KGP

Weight Distribution and RecoveryWeight Distribution and Recovery

•• Let current weight at process = WLet current weight at process = W

•• Send of B(DW):Send of B(DW):
–– Find W1, W2 such that W1 > 0, W2 > 0, W1 + W2 = WFind W1, W2 such that W1 > 0, W2 > 0, W1 + W2 = W
–– Set W = W1 and send B(W2)Set W = W1 and send B(W2)

•• Receive of B(DW):Receive of B(DW):
–– W = W + DW; W = W + DW;
–– if idle, become activeif idle, become active

•• Send of C(DW):Send of C(DW):
–– send C(W) to controlling agentsend C(W) to controlling agent
–– Become idleBecome idle

•• Receive of C(DW):Receive of C(DW):
–– W = W + DWW = W + DW
–– if W = 1, declare “termination”if W = 1, declare “termination”

	Logical Clocks and Causal Ordering��CS60002: Distributed Systems
	Why do we need global clocks?
	Ordering of Events
	Causally Related versus Concurrent
	Lamport’s Logical Clock
	How Lamport’s clocks advance
	Points to note
	Limitation of Lamport’s Clock
	Solution: Vector Clocks
	Partial Order between Timestamps
	Causal Ordering
	Use of Vector Clocks in Causal Ordering of Messages
	Birman-Schiper-Stephenson Protocol
	Problem of Vector Clock
	Global State Recording��CS60002: Distributed Systems
	Global State Collection
	Notations
	Definitions
	Definitions
	Chandy-Lamport’s Algorithm
	Chandy Lamport’s Algorithm contd..
	Notable Points
	Termination Detection��CS60002: Distributed Systems
	Termination Detection
	Huang’s Algorithm
	Weight Distribution and Recovery

