
Dept. of CSE, IIT KGP

DeadlockDeadlock--free Packet Switchingfree Packet Switching
CS60002:CS60002: Distributed SystemsDistributed Systems

PallabPallab DasguptaDasgupta
Dept. of Computer Sc. & Dept. of Computer Sc. & EnggEngg.,.,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Dept. of CSE, IIT KGP

Store and forward deadlockStore and forward deadlock

s t u v

Buffer-size = 5

Node s sending 5 packets to v through t
Node v sending 5 packets to s through u

Dept. of CSE, IIT KGP

ModelModel

•• The network is a graph G = (V, E)The network is a graph G = (V, E)
•• Each node has Each node has BB buffersbuffers

MovesMoves::

•• Generation.Generation. A node A node uu creates a new packet creates a new packet pp and places it in and places it in
an empty buffer in an empty buffer in uu. Node . Node uu is the source of is the source of pp..

•• Forwarding.Forwarding. A packet A packet pp is forwarded from a node is forwarded from a node uu to an to an
empty buffer in the next node empty buffer in the next node ww on its route.on its route.

•• Consumption.Consumption. A packet A packet p p occupying a buffer in its destination occupying a buffer in its destination
node is removed from the buffer.node is removed from the buffer.

Dept. of CSE, IIT KGP

RequirementsRequirements

The packet switching controller has the following requirements:The packet switching controller has the following requirements:

1.1. The consumption of a packet (at its destination) is always The consumption of a packet (at its destination) is always
allowed.allowed.

2.2. The generation of a packet in a node where all buffers are The generation of a packet in a node where all buffers are
empty is always allowed.empty is always allowed.

3.3. The controller uses only local information, that is, whether a The controller uses only local information, that is, whether a
packet can be accepted in a node packet can be accepted in a node uu depends only on depends only on
information known to information known to uu or contained in the packetor contained in the packet

Dept. of CSE, IIT KGP

SolutionsSolutions

•• Structured solutionsStructured solutions
–– BufferBuffer--graph based schemesgraph based schemes

•• The destination schemeThe destination scheme
•• The hopsThe hops--soso--far schemefar scheme
•• Acyclic orientation based schemeAcyclic orientation based scheme

•• Unstructured solutionsUnstructured solutions
–– Forward count and backward count schemesForward count and backward count schemes
–– Forward state and backward state schemesForward state and backward state schemes

Dept. of CSE, IIT KGP

Buffer GraphBuffer Graph

•• A buffer graph (for, A buffer graph (for, G, BG, B) is a directed graph) is a directed graph BGBG on the on the
buffers of the network, such thatbuffers of the network, such that

1.1. BGBG is acyclic (contains no directed cycle);is acyclic (contains no directed cycle);
2.2. bcbc is an edge of is an edge of BGBG ifif b b and and c c are buffers in the same node, are buffers in the same node,

or buffers in two nodes connected by a channel in G; andor buffers in two nodes connected by a channel in G; and
3.3. for each path for each path ππ ∈∈ P there exists a path in P there exists a path in BGBG whose image whose image

is is ππ. .
–– P is the collection of all paths followed by the packets P is the collection of all paths followed by the packets –– this this

collection is determined by the routing algorithm.collection is determined by the routing algorithm.

Dept. of CSE, IIT KGP

Suitable buffer and guaranteed pathSuitable buffer and guaranteed path

Let Let p p be a packet in node be a packet in node uu with destination with destination vv..

–– A buffer A buffer bb in in uu is suitable for is suitable for pp if there is a path in if there is a path in BG BG from from
bb to a buffer to a buffer cc in in v,v, whose image is a path that whose image is a path that pp can follow can follow
in in GG..

–– One such path in One such path in BGBG will be designated as the guaranteed will be designated as the guaranteed
path and path and nbnb((pp, b, b) denotes the next buffer on the guaranteed) denotes the next buffer on the guaranteed
path.path.

–– For each newly generated packet For each newly generated packet pp in in uu there exists a there exists a
designated suitable buffer, designated suitable buffer, fbfb((pp) in) in uu..

Dept. of CSE, IIT KGP

The bufferThe buffer--graph controllergraph controller

1.1. The generation of a packet The generation of a packet pp in in uu is allowed is allowed iffiff the buffer the buffer fbfb((pp))
is free. If the packet is generated it is placed in this buffer.is free. If the packet is generated it is placed in this buffer.

2.2. The forwarding of a packet The forwarding of a packet pp from a buffer in from a buffer in uu to a buffer in to a buffer in ww
is allowed is allowed iffiff nbnb((pp, b, b) (in) (in ww) is free. If the forwarding takes) is free. If the forwarding takes
place place pp is placed in is placed in nbnb((pp, b, b).).

The bufferThe buffer--graph controller is a deadlockgraph controller is a deadlock--free controller.free controller.

Dept. of CSE, IIT KGP

The Destination SchemeThe Destination Scheme

•• Uses Uses N N buffers in each node buffers in each node u, u, with a buffer with a buffer bbuu[[vv] for each] for each
possible destination possible destination vv
–– It is assumed that the routing algorithm forwards all packets wiIt is assumed that the routing algorithm forwards all packets with th

destination destination vv via a directed tree via a directed tree TTvv rooted towards rooted towards vv..

The buffer graph is defined by The buffer graph is defined by BG = BG = ((B, EB, E), where), where bbuu[[vv11]]bbww[[vv22]] ∈∈ EE
iffiff vv11 = = vv22 and and uwuw is an edge of is an edge of TTv1v1..

There exists a deadlockThere exists a deadlock--free controller for arbitrary connected free controller for arbitrary connected
networks that uses N buffers in each node and allows packets to networks that uses N buffers in each node and allows packets to be be
routed via arbitrarily chosen sink treesrouted via arbitrarily chosen sink trees

Dept. of CSE, IIT KGP

The HopsThe Hops--soso--far Schemefar Scheme

•• Node Node uu contains contains k + k + 1 buffers 1 buffers bbuu[0], …, [0], …, bbuu[[kk].].
•• It is assumed that each packet contains a hopIt is assumed that each packet contains a hop--count indicating count indicating

how many hops the packet has made from its sourcehow many hops the packet has made from its source

The buffer graph is defined by The buffer graph is defined by BG = BG = ((B, EB, E), where), where bbuu[[ii]]bbww[[jj]] ∈∈ EE
iffiff i + i + 11 = j= j and and uwuw is an edge of the network.is an edge of the network.

There exists a deadlockThere exists a deadlock--free controller for arbitrary connected free controller for arbitrary connected
networks that uses D+1 buffers in each node (where D is the networks that uses D+1 buffers in each node (where D is the
diameter of the networkdiameter of the network),), and requires packets to be sent via and requires packets to be sent via
minimumminimum--hop paths.hop paths.

Dept. of CSE, IIT KGP

Acyclic Orientation based SchemeAcyclic Orientation based Scheme

GoalGoal: To use only a few buffers per node: To use only a few buffers per node

•• An acyclic orientation of An acyclic orientation of GG is a directed acyclic graph obtained by is a directed acyclic graph obtained by
directing all edges of directing all edges of GG

•• A sequence A sequence GG11, …, G, …, GBB of acyclic orientations of of acyclic orientations of GG is an is an acyclic acyclic
orientation coverorientation cover of size of size BB for the collection for the collection PP of paths if each path of paths if each path
ππ ∈∈ PP can be written as a concatenation of can be written as a concatenation of BB paths paths ππ11, , ……, , ππBB, , where where
ππII is a path in is a path in GGii..

–– A packet is always generated in node A packet is always generated in node uu in buffer in buffer bbuu[1][1]
–– A packet in buffer A packet in buffer bbuu[[ii] that must be forwarded to node] that must be forwarded to node ww is placed in is placed in

buffer buffer bbww[[ii] if the edge between] if the edge between uu and and ww is directed towards is directed towards ww in in GGii, and , and
to to bbww[[ii + 1] if the edge is directed towards + 1] if the edge is directed towards uu in in GGii..

If an acyclic orientation cover for P of size B exists, then theIf an acyclic orientation cover for P of size B exists, then there re
exists a deadlockexists a deadlock--free controller using only B buffers in each node.free controller using only B buffers in each node.

Dept. of CSE, IIT KGP

Forward and BackwardForward and Backward--count Controllerscount Controllers

ForwardForward--count Controllercount Controller::
•• For a packet For a packet p,p, let let sspp be the number of hops it still has to make to be the number of hops it still has to make to

its destination (0 its destination (0 ≤≤ sspp ≤≤ kk))
•• For a node For a node u,u, ffuu denotes the number of free buffers in denotes the number of free buffers in u u (0 (0 ≤≤ ffuu ≤≤ BB))

The controller accepts a packet The controller accepts a packet pp in node in node uu iffiff sspp < f< fuu..

If B > k then the above controller is a deadlockIf B > k then the above controller is a deadlock--free controllerfree controller

BackwardBackward--count Controllercount Controller::
•• For a packet For a packet p,p, let let ttpp be the number of hops it has made from its be the number of hops it has made from its

sourcesource

The controller accepts a packet The controller accepts a packet pp in node in node uu iffiff ttpp > k > k –– ffuu..

Dept. of CSE, IIT KGP

Forward and BackwardForward and Backward--state Controllersstate Controllers

ForwardForward--state Controllerstate Controller::
•• For a node For a node uu define (as a function of the state of define (as a function of the state of uu) the state vector) the state vector

as (as (jj00, …, , …, jjkk), where), where jjss is the number of packets is the number of packets pp in in uu with with sspp = s= s. .

The controller accepts a packet The controller accepts a packet pp in node in node uu with state (with state (jj00, …, , …, jjkk)) iffiff::

If B > k then the above controller is a deadlockIf B > k then the above controller is a deadlock--free controllerfree controller

BackwardBackward--state Controllerstate Controller::
•• Define the state vector as (Define the state vector as (ii00, …, , …, iikk), where), where iitt is the number of is the number of

packets in node packets in node uu that have made that have made tt hops. hops.

The controller accepts a packet The controller accepts a packet pp in node in node uu with state (with state (ii00, …, , …, iikk)) iffiff: :

∑
=

−<≤≤∀
k

is
sp jBisii :,0

∑
=

+−>≤≤∀
j

t
tp kBijkjtj

0
:,

Dept. of CSE, IIT KGP

ForwardForward--state versus Forwardstate versus Forward--countcount

•• ForwardForward--state controller is more liberal than the state controller is more liberal than the
forwardforward--count controllercount controller

•• Every move allowed by the forwardEvery move allowed by the forward--count controller is count controller is
also allowed by the forwardalso allowed by the forward--state controllerstate controller

	Deadlock-free Packet Switching��CS60002: Distributed Systems
	Store and forward deadlock
	Model
	Requirements
	Solutions
	Buffer Graph
	Suitable buffer and guaranteed path
	The buffer-graph controller
	The Destination Scheme
	The Hops-so-far Scheme
	Acyclic Orientation based Scheme
	Forward and Backward-count Controllers
	Forward and Backward-state Controllers
	Forward-state versus Forward-count

