Deadlock-free Packet Switching

CS60002: Distributed Systems

Pallab Dasgupta
Dept. of Computer Sc. & Engg.,
Indian Institute of Technology Kharagpur

ATV T,
o ik
- &
£ 3 [
= ]
L1 »
- | a
a . |
_.-.--___ e . A1)




Store and forward deadlock

Buffer-size =5

Node s sending 5 packets to v through t
Node v sending 5 packets to s through u

Dept. of CSE, IIT KGPJ




Model

« The network is agraph G =(V, E)
« Each node has B buffers

Moves:

e Generation. A node u creates a new packet p and places it in
an empty buffer in u. Node u is the source of p.

 Forwarding. A packet p is forwarded from a node u to an
empty buffer in the next node w on its route.

e Consumption. A packet p occupying a buffer in its destination
node is removed from the buffer.




Requirements

The packet switching controller has the following requirements:

1. The consumption of a packet (at its destination) is always
allowed.

2. The generation of a packet in a node where all buffers are
empty is always allowed.

3. The controller uses only local information, that is, whether a
packet can be accepted in a node u depends only on
information known to u or contained in the packet




Solutions

e Structured solutions
— Buffer-graph based schemes
 The destination scheme
 The hops-so-far scheme
« Acyclic orientation based scheme

e Unstructured solutions
— Forward count and backward count schemes
— Forward state and backward state schemes




Buffer Graph

A buffer graph (for, G, B) is adirected graph BG on the
buffers of the network, such that

1.
2.

BG is acyclic (contains no directed cycle);

bc is an edge of BG if b and ¢ are buffers in the same node,
or buffers in two nodes connected by a channel in G; and

for each path 7z € P there exists a path in BG whose image
IS .

— Pis the collection of all paths followed by the packets — this
collection is determined by the routing algorithm.




Suitable buffer and guaranteed path

Let p be a packet in node u with destination v.

— A buffer b in u is suitable for p if there is a path in BG from
b to a buffer c in v, whose image is a path that p can follow
in G.

— One such path in BG will be designated as the guaranteed
path and nb(p, b) denotes the next buffer on the guaranteed
path.

— For each newly generated packet p in u there exists a
designated suitable buffer, fb(p) in u.




The buffer-graph controller

1. The generation of a packet p in u is allowed iff the buffer fo(p)
Is free. If the packet is generated it is placed in this buffer.

2. The forwarding of a packet p from a buffer in u to a buffer in w
Is allowed iff nb(p, b) (in w) is free. If the forwarding takes
place p is placed in nb(p, b).

The buffer-graph controller is a deadlock-free controller.




The Destination Scheme

Uses N buffers in each node u, with a buffer b [v] for each
possible destination v

— Itis assumed that the routing algorithm forwards all packets with
destination v via a directed tree T, rooted towards V.

The buffer graph is defined by BG = (B, E), where b [v,]b,[V,] € E
iff v, =v, and uw is an edge of T,.

There exists a deadlock-free controller for arbitrary connected
networks that uses N buffers in each node and allows packets to be
routed via arbitrarily chosen sink trees




The Hops-so-far Scheme

 Node u contains k + 1 buffers b,[0], ..., b [K].

e Itis assumed that each packet contains a hop-count indicating
how many hops the packet has made from its source

The buffer graph is defined by BG = (B, E), where b[i]b,[]] € E
iff 1 +1=j)and uw is an edge of the network.

There exists a deadlock-free controller for arbitrary connected
networks that uses D+1 buffers in each node (where D is the

diameter of the network), and requires packets to be sent via
minimum-hop paths.




Acyclic Orientation based Scheme

Goal: To use only a few buffers per node

« An acyclic orientation of G is a directed acyclic graph obtained by
directing all edges of G

« Asequence G, ..., G of acyclic orientations of G is an acyclic
orientation cover of size B for the collection P of paths if each path

x € P can be written as a concatenation of B paths =, ..., zz, where
mis apath in G..

— A packet is always generated in node u in buffer b [1]

— A packet in buffer b[i] that must be forwarded to node w is placed in
buffer b,[i] if the edge between u and w is directed towards w in G;, and
to b, [i + 1] if the edge is directed towards u in G;.

If an acyclic orientation cover for P of size B exists, then there
exists a deadlock-free controller using only B buffers in each node.

Dept. of CSE, IIT KGPJ




Forward and Backward-count Controllers

Forward-count Controller:

« For apacketp, let s, be the number of hops it still has to make to
its destination (0 <s, <k)

« For anode u, f, denotes the number of free buffers inu (0 <f, <B)

The controller accepts a packet p in node u iff s, <f,.

If B > k then the above controller is a deadlock-free controller

Backward-count Controller:

« For apacketp, let t, be the number of hops it has made from its
source

The controller accepts a packet p in node u iff t, >k —f,.

Dept. of CSE, IIT KGPJ




Forward and Backward-state Controllers

Forward-state Controller:

« For anode u define (as a function of the state of u) the state vector
as (o, ---» Jx). where |4 is the number of packets p in u with s, =s.

The controller accepts a packet p in node u with state (j,, ..., J,) iff:
Kk
Vi0<i<s, ! <B—ZjS

If B > k then the above controller is a deadlock-free controller

Backward-state Controller:

« Define the state vector as (i, ..., I,), where i, is the number of
packets in node u that have made t hops.

The controller accepts a packet p in node u with state (i, ..., 1,) iff:

J
Vit, <j<k:j>Di,-B+k
t=0

Dept. of CSE, IIT KGPJ




Forward-state versus Forward-count

e Forward-state controller is more liberal than the
forward-count controller

« Every move allowed by the forward-count controller is
also allowed by the forward-state controller




	Deadlock-free Packet Switching��CS60002: Distributed Systems
	Store and forward deadlock
	Model
	Requirements
	Solutions
	Buffer Graph
	Suitable buffer and guaranteed path
	The buffer-graph controller
	The Destination Scheme
	The Hops-so-far Scheme
	Acyclic Orientation based Scheme
	Forward and Backward-count Controllers
	Forward and Backward-state Controllers
	Forward-state versus Forward-count

