
Dept. of CSE, IIT KGP

Routing AlgorithmsRouting Algorithms
CS60002:CS60002: Distributed SystemsDistributed Systems

PallabPallab DasguptaDasgupta
Dept. of Computer Sc. & Dept. of Computer Sc. & EnggEngg.,.,
Indian Institute of Technology KharagpurIndian Institute of Technology Kharagpur

Dept. of CSE, IIT KGP

Main FeaturesMain Features

•• Table ComputationTable Computation
–– The routing tables must be computed when the network is The routing tables must be computed when the network is

initialized and must be brought upinitialized and must be brought up--toto--date if the topology of date if the topology of
the network changesthe network changes

•• Packet ForwardingPacket Forwarding
–– When a packet is to be sent through the network, it must be When a packet is to be sent through the network, it must be

forwarded using the routing tablesforwarded using the routing tables

Dept. of CSE, IIT KGP

Performance IssuesPerformance Issues

CorrectnessCorrectness: : The algorithm must deliver every packet to its The algorithm must deliver every packet to its
ultimate destinationultimate destination

ComplexityComplexity: : The algorithm for the computation of the tables The algorithm for the computation of the tables
must use as few messages, time, and storage as possiblemust use as few messages, time, and storage as possible

EfficiencyEfficiency:: The algorithm must send packets through The algorithm must send packets through goodgood
paths paths

RobustnessRobustness: : In the case of a topological change, the algorithm In the case of a topological change, the algorithm
updates the routing tables appropriatelyupdates the routing tables appropriately

FairnessFairness:: The algorithm must provide service to every user in The algorithm must provide service to every user in
the same degreethe same degree

Dept. of CSE, IIT KGP

Good paths …Good paths …

Minimum hopMinimum hop: : The cost of a path is the number of hopsThe cost of a path is the number of hops

Shortest pathShortest path: : Each channel has a nonEach channel has a non--negative cost negative cost –– the path the path
cost is the sum of the cost of the edges. Packets are routed cost is the sum of the cost of the edges. Packets are routed
along shortest paths.along shortest paths.

Minimum delay/congestionMinimum delay/congestion:: The bandwidth of a path is the The bandwidth of a path is the
minimum among the bandwidths of the channels on that path. minimum among the bandwidths of the channels on that path.

Most robust pathMost robust path: : Given the probability of packet drops in each Given the probability of packet drops in each
channel, packets are to be routed along the most reliable channel, packets are to be routed along the most reliable
paths. paths.

Dept. of CSE, IIT KGP

DestinationDestination--based Forwardingbased Forwarding

// A packet with destination d was received or generated at node// A packet with destination d was received or generated at node uu
ifif d = ud = u

thenthen deliver the packet locallydeliver the packet locally
elseelse send the packet to send the packet to table_lookuptable_lookupuu((dd))

Dept. of CSE, IIT KGP

FloydFloyd--WarshallWarshall AlgorithmAlgorithm

beginbegin
S = S = ΦΦ;;
forallforall u, v u, v dodo

if if u = v u = v then then DD[[u, vu, v] = 0] = 0
else if else if uvuv ∈∈ EE then D[then D[u, vu, v] =] = wwu,vu,v

else D[else D[u, vu, v] =] = ∞∞ ;;
while S while S ≠≠ V do V do // Loop invariant: // Loop invariant: ∀∀u, vu, v: : DD[[u, vu, v] =] = ddSS((uu, v, v))

begin pick begin pick ww from V from V \\ S;S;
forallforall u u ∈∈ VV dodo

forallforall v v ∈∈ VV dodo
DD[[u, vu, v] = min{] = min{ DD[[u, vu, v],], DD[[u, wu, w] +] + DD[[w, vw, v] }] }

S = S U { S = S U { w w }}
endend

endend
The algorithm computes the distance between each pair The algorithm computes the distance between each pair
of nodes in O(Nof nodes in O(N33) steps) steps

Dept. of CSE, IIT KGP

The simple distributed algorithmThe simple distributed algorithm

// For node u …// For node u …
varvar SSuu : set of nodes;: set of nodes;

DDuu : array of weights;: array of weights;
NbNbuu : array of nodes;: array of nodes;

begin begin
SSuu = = ΦΦ;;
forallforall v v ∈∈ V V dodo

if if v = u v = u then then
begin begin DDuu[[vv] = 0;] = 0; NbNbuu[[vv] =] = udefudef endend

else if else if v v ∈∈ NeighNeighuu thenthen
begin begin DDuu[[vv] =] = wwu,vu,v; ; NbNbuu[[vv] = v end] = v end

else begin else begin DDuu[[vv] =] = ∞∞ ; ; NbNbuu[[vv] =] = udefudef end;end;

Dept. of CSE, IIT KGP

The simple distributed algorithm The simple distributed algorithm contdcontd……

while Swhile Suu ≠≠ V doV do
begin pick begin pick ww from V from V \\ SSuu; ; //// All nodes must pick the same wAll nodes must pick the same w

if if u = wu = w
then then broadcast the table broadcast the table DDww
else else receive the table receive the table DDww

forallforall v v ∈∈ VV dodo
if if DDuu[[ww] +] + DDww[[vv] <] < DDuu[[vv] then] then
beginbegin

DDuu[[vv] =] = DDuu[[ww] +] + DDww[[vv] ;] ;
NbNbuu[[vv] =] = NbNbuu[[ww]]

end ;end ;
SSuu = S= Suu U { U { w w }}

endend
endend

Dept. of CSE, IIT KGP

Important property of the simple algorithmImportant property of the simple algorithm

Let Let S S and and ww be given and suppose thatbe given and suppose that
(1) for all (1) for all uu, , DDuu[[ww] =] = ddSS((uu, w, w) and) and
(2) if (2) if ddSS((uu, w, w) <) < ∞∞ and and u u ≠≠ ww, then , then NbNbuu[[ww] is the first] is the first

channel of a shortest Schannel of a shortest S--path to path to ww

Then the directed graph Then the directed graph TTww = (= (VVww, , EEww), where), where
((u u ∈∈ VVww ⇔⇔ DDuu[[ww] <] < ∞∞) and) and

((uxux ∈∈ EEww ⇔⇔ ((uu ≠≠ ww ∧∧ NbNbuu[[ww] =] = xx))))
is a tree rooted towards is a tree rooted towards w.w.

Dept. of CSE, IIT KGP

Toueg’sToueg’s improvementimprovement

•• Toueg’sToueg’s observation:observation:

–– A node A node uu for which for which DDuu[[ww] =] = ∞∞ at the start of the at the start of the ww--pivot pivot
round does not change its tables during the round does not change its tables during the ww--pivot round.pivot round.

–– If If DDuu[[ww] =] = ∞∞ then then DDuu[[ww] +] + DDww[[vv] <] < DDuu[[vv] is false for every] is false for every vv..

–– Consequently, only the nodes that belong to Consequently, only the nodes that belong to TTww need to need to
receive receive ww’s’s table, and the broadcast operation can be done table, and the broadcast operation can be done
efficiently by sending the table efficiently by sending the table DDww only via the channels only via the channels
that belong to the tree that belong to the tree TTww

Dept. of CSE, IIT KGP

The The ChandyChandy--MisraMisra AlgorithmAlgorithm

varvar DDuu[[vv00] : weight] : weight init init ∞∞ ;;
NbNbuu[[vv00] : node] : node init init udefudef ;;

For node For node vv00 only:only:
begin begin DDv0v0[[vv00] = 0 ;] = 0 ;

forallforall w w ∈∈ NeighNeighv0v0 do send do send 〈〈mydistmydist, , vv00, 0, 0〉〉 to to ww
endend

Processing a Processing a 〈〈mydistmydist, , vv00, , dd〉〉 message from neighbor message from neighbor w w by by uu::
{ { 〈〈mydistmydist, , vv00, , dd〉〉 ∈∈ MMwuwu }}
begin receive begin receive 〈〈mydistmydist, , vv00, , dd〉〉 from from ww ;;

if if d + d + ωωuwuw < D< Duu[[vv00] then] then
begin begin DDuu[[vv00] =] = d + d + ωωuwuw ; ; NbNbuu[[vv00] =] = ww ;;

forallforall x x ∈∈ NeighNeighuu do send do send 〈〈mydistmydist, , vv00, , DDuu[[vv00]] 〉〉 to to xx
endend

endend

Dept. of CSE, IIT KGP

The The NetchangeNetchange AlgorithmAlgorithm

•• Computes routing tables according to Computes routing tables according to minimumminimum--hop hop measuremeasure
•• Assumptions:Assumptions:

–– N1:N1: The nodes know the size of the network (The nodes know the size of the network (NN))
–– N2:N2: The channels satisfy the FIFO assumptionThe channels satisfy the FIFO assumption
–– N3:N3: Nodes are notified of failures and repairs of their adjacent Nodes are notified of failures and repairs of their adjacent

channelschannels
–– N4:N4: The cost of a path equals the number of channels in the pathThe cost of a path equals the number of channels in the path

•• Requirements:Requirements:
R1.R1. If the topology of the network remains constant after a finite If the topology of the network remains constant after a finite

number of topological changes, then the algorithm terminates number of topological changes, then the algorithm terminates
after a finite number of steps.after a finite number of steps.

R2.R2. When the algorithm terminates, the tables When the algorithm terminates, the tables NbNbuu[[vv] satisfy] satisfy
(a) if (a) if v = u v = u then then NbNbuu[[vv] =] = locallocal ;;
(b) if a path from (b) if a path from u u to to v v ≠≠ uu exists then exists then NbNbuu[[vv] =] = ww, where , where ww is the is the

first neighbor of first neighbor of uu on a shortest path from on a shortest path from u u to to v v ;;
(c) if no path from (c) if no path from uu to to vv exists then exists then NbNbuu[[vv] =] = udefudef..

Dept. of CSE, IIT KGP

The The NetchangeNetchange AlgorithmAlgorithm

varvar NeighNeighuu : set of nodes ; : set of nodes ; // The neighbors of // The neighbors of uu
DDuu : array of 0 .. N: array of 0 .. N ; ; // // DDuu[[vv] estimates] estimates dd((u,vu,v))
NbNbuu : array of nodes ; : array of nodes ; // // NbNbuu[[vv] is preferred neighbor for] is preferred neighbor for vv
ndisndisuu : array of 0 .. N ;: array of 0 .. N ; // // ndisndisuu[[ww, v, v] estimates] estimates dd((w,vw,v))

Initialization:Initialization:
begin begin forallforall w w ∈∈ NeighNeighuu, v , v ∈∈ VV do do ndisndisuu[[ww, v, v] =] = N N ;;

forallforall v v ∈∈ VV dodo
begin begin DDuu[[vv] =] = NN ; ; NbNbuu[[vv] =] = udefudef end ;end ;

DDuu[[uu] = 0 ;] = 0 ; NbNbuu[[uu] =] = locallocal ;;
forallforall w w ∈∈ NeighNeighuu do send do send 〈〈mydistmydist, , uu, 0, 0〉〉 to to ww

endend

Dept. of CSE, IIT KGP

The The NetchangeNetchange Algorithm contd.Algorithm contd.

Procedure Procedure RecomputeRecompute((v v):):
begin if begin if v = uv = u

then begin then begin DDuu[[vv] = 0 ;] = 0 ; NbNbuu[[vv] =] = locallocal endend
else begin else begin // estimate distance to // estimate distance to vv

d = d = 1 + min{ 1 + min{ ndisndisuu[[w,vw,v] :] : w w ∈∈ NeighNeighuu } ;} ;
if if d < N d < N thenthen
begin begin DDuu[[vv] =] = d d ;;

NbNbuu[[vv] =] = ww with 1 + with 1 + ndisndisuu[[w,vw,v] =] = dd
endend

else begin else begin DDuu[[vv] =] = NN ; ; NbNbuu[[vv] =] = udefudef endend
end ;end ;

if if DDuu[[vv] has changed then] has changed then
forallforall x x ∈∈ NeighNeighuu do send do send 〈〈mydistmydist, , vv, , DDuu[[vv]] 〉〉 to to xx

endend

Dept. of CSE, IIT KGP

The The NetchangeNetchange Algorithm contd.Algorithm contd.

Processing a Processing a 〈〈mydistmydist, , vv, , dd〉〉 message from neighbor message from neighbor ww::
{ A { A 〈〈mydistmydist, , vv, , dd〉〉 is at the head of is at the head of QQwvwv }}
begin receive begin receive 〈〈mydistmydist, , vv, , dd〉〉 from from ww ;;

ndisndisuu[[w,vw,v] =] = d d ; ; RecomputeRecompute((v v))
endend

Upon failure of channel Upon failure of channel uwuw::
begin receive begin receive 〈〈fail, fail, ww〉〉 ; ; NeighNeighuu = = NeighNeighuu \\ {{ww} ;} ;

forallforall v v ∈∈ VV do do RecomputeRecompute((v v))
endend

Upon repair of channel Upon repair of channel uwuw::
begin receive begin receive 〈〈repair, repair, ww〉〉 ; ; NeighNeighuu = = NeighNeighuu U {U {ww} ;} ;

forallforall v v ∈∈ VV dodo
begin begin ndisndisuu[[w,vw,v] =] = N N ; ;

send send 〈〈mydistmydist, , vv, , DDuu[[vv]] 〉〉 to to ww
endend

endend

	Routing Algorithms��CS60002: Distributed Systems
	Main Features
	Performance Issues
	Good paths …
	Destination-based Forwarding
	Floyd-Warshall Algorithm
	The simple distributed algorithm
	The simple distributed algorithm contd…
	Important property of the simple algorithm
	Toueg’s improvement
	The Chandy-Misra Algorithm
	The Netchange Algorithm
	The Netchange Algorithm
	The Netchange Algorithm contd.
	The Netchange Algorithm contd.

