The Balanced Sliding Window Protocol

CS60002: Distributed Systems

Pallab Dasgupta Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Dept. of CSE, IIT KGP

Definitions

- Two processes, p and q, each sending an infinite array of words to the other
- For Process p:
 - *in_p*: An infinite array of words to be sent to process q
 - *out_p*: An infinite array of words being received from process q Initially for all i, $out_p[i] = udef$

 s_p : The lowest numbered word that p still expects to receive from q

At any time, p has already written $out_p[0]$ through $out_p[i]$

Required Properties

Safe delivery:

- In every reachable configuration of the protocol $out_p[0 \dots s_p - 1] = in_q[0 \dots s_p - 1]$ and $out_q[0 \dots s_q - 1] = in_p[0 \dots s_q - 1]$

Eventual delivery:

- For every integer $k \ge 0$, a configuration with $s_p \ge k$ and $s_q \ge k$ is eventually reached

The protocol

• The packet, < pack, w, i >, transmits the word $w = in_p[i]$ to q.

- The processes use constants l_p and l_q as follows:
 - Process p can send the word w = in_p[i] (as the packet, < pack, w, i >) only after storing all the words out_p[0] through out_p[i l_p], that is, i < s_p + l_p.
 - When *p* receives < pack, *w*, *i* >, retransmission of words from $in_p[0]$ through $in_p[i - l_q]$ is no longer necessary.

The Sliding Windows

Dept. of CSE, IIT KGP

The Protocol

S_p: $\{a_p \le i < s_p + l_p\}$ begin send < pack, $in_p[i], i > to q$ end

 $\begin{aligned} \mathsf{R}_{p}: \{ < \operatorname{pack}, w, i > \in \mathbf{Q}_{p} \} \\ & \text{begin receive} < \operatorname{pack}, w, i > ; \\ & \text{if } out_{p}[i] = udef \text{ then} \\ & \text{begin } out_{p}[i] = w ; \\ & a_{p} = max\{a_{p}, i - l_{q} + 1 \}; \\ & s_{p} = min\{j / out_{p}[j] = udef \} \\ & \text{end} \\ & // \text{ else ignore} - retransmission} \\ & \text{end} \end{aligned}$

: { < pack,
$$w, i > \in Q_p$$
 }
begin $Q_p = Q_p \setminus \{ < pack, w, i > \}$ end

Dept. of CSE, IIT KGP

Protocol Invariant

$$P \equiv \forall i < s_p : out_p[i] \neq udef$$

$$\land \forall i < s_q : out_q[i] \neq udef$$

$$\land < pack, w, i > \in Q_p \Rightarrow w = in_q[i] \land (i < s_q + l_q)$$

$$\land < pack, w, i > \in Q_q \Rightarrow w = in_p[i] \land (i < s_p + l_p)$$

$$\land out_p[i] \neq udef \Rightarrow out_p[i] = in_q[i] \land (a_p > i - l_q)$$

$$\land out_q[i] \neq udef \Rightarrow out_q[i] = in_p[i] \land (a_q > i - l_p)$$

$$\land a_p \leq s_q$$

$$\land a_q \leq s_p$$

Results

<u>Safety</u>: The protocol satisfies the requirement of safe delivery

Liveness:

- **P** implies $s_p l_q \le a_p \le s_q \le a_q + l_p \le s_p + l_p$
- P implies that the sending of <pack, in_p[s_q], s_q > by p or the sending of <pack, in_q[s_p], s_p > by q is applicable.
 - Hence no deadlock is possible
- The protocol satisfies the requirement of eventual delivery