1. Write a recursive function, $\operatorname{ipow}(\mathbf{x}, \mathbf{n})$, to return the value of $\mathbf{x}^{\mathbf{n}}$, where \boldsymbol{n} is a non-negative integer, using repeated squaring, that is:

$$
x^{2 n}=\left(x^{n}\right) \times\left(x^{n}\right) \quad \text { and } \quad x^{2 n+1}=(x) \times\left(x^{2 n}\right)
$$

(a) Write a main program that reads a floating point number, x , and an integer, n , and calls the function to return and print the nth power of x.
(b) In the function use a global variable, count, to count the number of multiplications performed.
2. You are given a fair dice and asked to compute the probability of having k sixes in n rolls of the dice. The probability is given by the Binomial term:

$$
P(k, n)={ }^{n} C_{k} p^{k}(1-p)^{n-k}
$$

The probability of getting a six in a single roll of the dice is $p=1 / 6$. The probability of getting at most k sixes in n rolls of the dice is given by:

$$
P(\leq k, n)=\sum_{j=0}^{k}{ }^{n} C_{j} p^{j}(1-p)^{n-j}
$$

(a) For computing $\mathrm{P}(\leq \mathrm{k}, \mathrm{n})$, we need the value of ${ }^{n} C_{j}$ while computing the $j^{\text {th }}$ term of the summation. We know that ${ }^{n} C_{j}=\frac{n-j+1}{j}{ }^{n} C_{j-1}$ and therefore it is easy to compute ${ }^{n} C_{j}$ from ${ }^{n} C_{j-1}$ which was anyway computed for the $(\mathrm{j}-1)^{\text {th }}$ term. Write a function, getterm, which returns the value of ${ }^{n} C_{0}$ when called the first time, ${ }^{n} C_{1}$ when called the second time, ${ }^{n} C_{2}$ when called the third time (use a static variable).
(b) Write a function for computing $\mathrm{P}(\leq \mathrm{k}, \mathrm{n})$ using the function getterm and a main() to read the values of k and n and print the value of $\mathrm{P}(\leq \mathrm{k}, \mathrm{n})$.
3. Polynomials. A polynomial $\mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{X}+\mathrm{a}_{2} \mathrm{X}^{2}+\ldots+\mathrm{a}_{\mathrm{k}} \mathrm{X}^{k}$ of degree k can be represented by a single dimensional array, A[] , of $k+1$ floating pointing numbers, where $\mathrm{A}[j]=\mathrm{a} j$. Write the following functions in C :

Function Prototype	Description
void read_poly(FILE *fp, float A[], int k)	Reads coefficients of a polynomial of degree k from a file into array A
float eval_poly(float A[], int k, float x)	Returns the value of polynomial A for given value of x
void add_poly(float A[], float B[], float C[], int k)	Adds polynomials A and B into C
void mul_poly(float A[], float B[], float C[], int k)	Multiplies polynomials A and B into C
void print_poly(float A[], int k)	Prints the polynomial

Write a program, asg11.c, which does the following:
(a) It opens a file, input.dat, using the following code:

```
FILE *fp, *fopen();
fp = fopen("input.dat", "r");
if (fp == NULL) { printf("Unable to open file.\n");
    exit(0); }
```

(b) It reads the value of k (assume that it is always less than 10) from the file.
(c) It uses the function read_poly() to read polynomials A and B of degree k from the file.
(d) It uses the function add_poly() to find the polynomial C representing the sum of A and B
(e) It uses the function mul_poly() to find polynomial D representing the product of A and B.
(f) It uses the function print_poly() to print the polynomials, A, B, C, and D into the terminal.
(g) It reads a value of x from the terminal.
(h) It uses eval_poly() to compute the values of the polynomials, A, B, C, and D. These values are then printed into the terminal.

For the polynomials, $p(x)=3 x^{4}+5 x^{2}-7.5 x+20$ and $q(x)=8 x^{4}+9.2 x^{3}-14$, the sample format of the input file is as follows (the first line has the value of k):

4
20-7.5 503
-14009.28
4. The ministry of magic produces coins of denomination 3,5 and 10 respectively. The function, canchange (k), returns -1 if it is not possible to pay a value of k using these coins. Otherwise it returns the minimum number of coins needed to make the payment.

For example, canchange (7) will return -1. On the other hand, canchange (14) will return 4 because 14 can be paid as $3+3+3+5$ and there is no other way to pay with fewer coins.

A code skeleton for the function is given below as a hint. This is not complete, and has missing statements and missing expressions, indicated with question marks.

```
int canchange(int k)
{
        int a= ?? ;
        if (k==0) return 0;
        if ( ?? ) return 1;
        if (k < 3) ??;
    a = canchange( ?? );
    if (a > 0) return ?? ;
    a = canchange(k - 5);
    if (a > 0) return ??;
    a = canchange( ?? );
    if (a > 0) return ?? ;
    ??
}
```

(a) Complete the function and write a main() to read an input number, call the function with it, and print the value it returns.
(b) Modify the function of part (a) to write a function to print the change. For example, if we call the function printchange (14) it should print $3+3+3+5$. The function prototype is:

```
int printchange(int k)
```

