

Assignment Set 5 Prof. Pallab Dasgupta Feb 3, 2020

1. Write a recursive function, ipow(x,n), to return the value of xn, where n is a non-negative

integer, using repeated squaring, that is:

x2n = (xn) × (xn) and x2n+1 = (x) × (x2n)

(a) Write a main program that reads a floating point number, x, and an integer, n, and calls

the function to return and print the nth power of x.

(b) In the function use a global variable, count, to count the number of multiplications

performed.

2. You are given a fair dice and asked to compute the probability of having k sixes in n rolls of

the dice. The probability is given by the Binomial term:

𝑃𝑃(𝑘𝑘,𝑛𝑛) = 𝐶𝐶𝑘𝑘𝑝𝑝𝑘𝑘(1 − 𝑝𝑝)𝑛𝑛−𝑘𝑘
𝑛𝑛

The probability of getting a six in a single roll of the dice is p = 1/6. The probability of getting

at most k sixes in n rolls of the dice is given by:

𝑃𝑃(≤ 𝑘𝑘,𝑛𝑛) = � 𝐶𝐶𝑗𝑗𝑝𝑝𝑗𝑗(1 − 𝑝𝑝)𝑛𝑛−𝑗𝑗
𝑛𝑛

𝑘𝑘

𝑗𝑗=0

(a) For computing P(≤k, n), we need the value of 𝐶𝐶𝑗𝑗
𝑛𝑛 while computing the jth term of the

summation. We know that 𝐶𝐶𝑗𝑗
𝑛𝑛 = 𝑛𝑛−𝑗𝑗+1

𝑗𝑗
𝐶𝐶𝑗𝑗−1

𝑛𝑛 and therefore it is easy to compute 𝐶𝐶𝑗𝑗
𝑛𝑛

from 𝐶𝐶𝑗𝑗−1
𝑛𝑛 which was anyway computed for the (j−1)th term. Write a function, getterm,

which returns the value of 𝐶𝐶0
𝑛𝑛 when called the first time, 𝐶𝐶1

𝑛𝑛 when called the second

time, 𝐶𝐶2
𝑛𝑛 when called the third time (use a static variable).

(b) Write a function for computing P(≤k, n) using the function getterm and a main() to read

the values of k and n and print the value of P(≤k, n).

CS19001 Programming and Data Structures Lab

http://www.nist.gov/dads/HTML/repeatedSquaring.html

3. Polynomials. A polynomial a0 + a1x + a2x2 + ... + akxk of degree k can be represented

by a single dimensional array, A[], of k+1 floating pointing numbers, where A[j] = aj. Write

the following functions in C:

Function Prototype Description

void read_poly(FILE *fp, float A[], int k) Reads coefficients of a polynomial of
degree k from a file into array A

float eval_poly(float A[], int k, float x) Returns the value of polynomial A for
given value of x

void add_poly(float A[], float B[], float C[], int k) Adds polynomials A and B into C

void mul_poly(float A[], float B[], float C[], int k) Multiplies polynomials A and B into C

void print_poly(float A[], int k) Prints the polynomial

Write a program, asg11.c, which does the following:

(a) It opens a file, input.dat, using the following code:
FILE *fp, *fopen();

fp = fopen(“input.dat”, “r”);

if (fp == NULL) { printf(“Unable to open file.\n”);

exit(0); }

(b) It reads the value of k (assume that it is always less than 10) from the file.

(c) It uses the function read_poly() to read polynomials A and B of degree k from the file.

(d) It uses the function add_poly() to find the polynomial C representing the sum of A and B

(e) It uses the function mul_poly() to find polynomial D representing the product of A and B.

(f) It uses the function print_poly() to print the polynomials, A, B, C, and D into the terminal.

(g) It reads a value of x from the terminal.

(h) It uses eval_poly() to compute the values of the polynomials, A, B, C, and D. These

values are then printed into the terminal.

For the polynomials, p(x) = 3x4 + 5x2 − 7.5x + 20 and q(x) = 8x4 + 9.2x3 − 14, the sample

format of the input file is as follows (the first line has the value of k):
4

20 -7.5 5 0 3

-14 0 0 9.2 8

4. The ministry of magic produces coins of denomination 3, 5 and 10 respectively. The function,

canchange(k), returns −1 if it is not possible to pay a value of k using these coins. Otherwise

it returns the minimum number of coins needed to make the payment.

For example, canchange(7) will return −1. On the other hand, canchange(14) will return

4 because 14 can be paid as 3+3+3+5 and there is no other way to pay with fewer coins.

A code skeleton for the function is given below as a hint. This is not complete, and has missing

statements and missing expressions, indicated with question marks.

 int canchange(int k)
 {
 int a= ?? ;
 if (k==0) return 0;
 if (??) return 1;
 if (k < 3) ??;

a = canchange(??);
if (a > 0) return ?? ;

a = canchange(k – 5);
if (a > 0) return ?? ;

a = canchange(??);
if (a > 0) return ?? ;

 ??
 }

(a) Complete the function and write a main() to read an input number, call the function with
it, and print the value it returns.

(b) Modify the function of part (a) to write a function to print the change. For example, if we
call the function printchange(14) it should print 3+3+3+5. The function prototype is:

int printchange(int k)

