
Tutorial 1 : SAT AND BDD HANDS-ON

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

PALLAB DASGUPTA,

FNAE, FASc,

A K Singh Distinguished Professor in AI,

Dept of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Email: pallab@cse.iitkgp.ac.in

Web: http://cse.iitkgp.ac.in/~pallab

CS60030 Formal Systems

Hands-on Session (pre-requisites)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
2

 SAT solvers (Zchaff or MiniSAT) installed in the machines.

 Download Zchaff from http://cse.iitkgp.ac.in/~bdcaa/fs2020/ , Unzip and make.

 BDD solvers (CUDD) installed in the machines.

 Download CUDD version 3.0.0 from http://davidkebo.com/cudd and Untar.

 Run the following

 ./configure

 make

 make check

 sudo make install

 Include CUDD include libraries in C/C++ path

 export CPATH=/<path-to-cudd>/:/<path-to-cudd>/cudd:/<path-to-cudd>/util/

 To build add -lcudd -lutil -lm to the gcc command

 To visualize install graphviz and run command : dot –Tpng your_filename.dot –o output.png

http://cse.iitkgp.ac.in/~bdcaa/fs2020/
http://davidkebo.com/cudd

Conjunctive Normal Form

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
3

 In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a

conjunction of one or more clauses, where a clause is a disjunction of literals.

 For example,

(C  A)  (C  B)  (A B  C)

 The input of SAT solvers are a set of clauses in CNF.

 We need to model the problem with a set of literals and express the constraints in terms of clauses

made of those literals.

 Tseytin transformation takes an input of an arbitrary combinatorial logic circuit and produces a

Boolean formula in CNF, which can be solved by a SAT-solver.

Circuit to CNF Representation

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
4

AND Gate to CNF:

C  A  B

 (C  A  B)  (A  B  C)

 (C  (AB))  ((AB) C)

 (C  A)  (C  B) 

(A B  C)

Characteristic function

DIMACS Format

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
5

 A file format which the SAT-solver takes as its input.

 A file can start with some comment lines. These are just text lines that start with a lower case "c". Example:

c This is a comment line

 After the initial comments, the next line of the file must tell how many variables (V a positive integer) and how

many clauses (N a positive integer) in this CNF format:

p cnf V N

 The next N lines of the file each specify one single clause. DIMACS format assumes your variables are x1, x2,

x3 ….. xn. You specify a positive literal (like x2 or x7) in this clause with a positive integer (in this case, 2 or 7).

 Specify a negative, complemented literal with a negative integer(so x5 is -5 and x23 is -23).

 End each clause line with a 0.

 (x1 + x3) (x2 + x3 + x1) in DIMACS format looks like the following snippet.

c Comment line begins by ‘c’

c This is second comment line

p cnf 3 2

1 -3 0

2 3 -1 0

Equivalence Checking of Two Circuits Using SAT

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
6

 Transform the circuits into CNF.

 Are these two circuits equivalent?

x4 x6 x7

0 0 0

0 1 1

1 0 1

1 1 0

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
7

Convert the Circuits to CNF

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
8

CNF Formulations of the Circuits

1. X3⇔X2

(X2  X3)  (X2  X3)

2. X4⇔ X1  X3

(X1  X3  X4)  (X1  X4)  (X3  X4)

3. X5⇔ X1  X2
(X1  X2 X5)  (X1  X5)  (X2 X4)

4. X6⇔X5

(X6  X5)  (X6  X5)

5. X4 ⊕ X6

(X4  X6)  (X4  X6)

Gate Level Circuit to BDDs

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

 Each input of the circuit is a BDD.

 Each gate becomes an operator that produces a new BDD.

 Example:

X1 X2

0 1 1 0

+ =

1 0
f = x1 + x2

BDD for f

X2

X1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
10

Using CUDD

 CUDD is a a C/C++ library for creating different types of decision diagrams (BDDs, ZDDs, ADDs).

 In order to use CUDD you must include two header files

#include “cudd.h”

#include “util.h”

 You should link libcudd.a, libmtr.a, libst.a, and libutil.a to your executable.

gcc -o main main.c -lcudd -lutil –lm

 To use the functions in the CUDD package, one has first to Initialize a DdManager using Cudd_Init()

DdManager *manager;

manager = Cudd_Init(0,0,CUDD_UNIQUE_SLOTS,CUDD_CACHE_SLOTS,0);

 The constant 1 is returned by Cudd_ReadOne. The BDD logic 0 is obtained by complementation (Cudd_Not)

of the constant 1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
11

Using CUDD

 CUDD has a built-in garbage collection system. When a BDD is not used anymore, its memory can be reclaimed.

 To facilitate the garbage collector, we need to “reference” and “dereference” each node in our BDD:
Cudd_Ref(DdNode*)

Cudd_RecursiveDeref(DdNode*)

 The DdNode is the core building block of BDDs. New DdNodes can be created using the Cudd_bddNewVar function.

DdNode *bdd = Cudd_bddNewVar(DdManager*)

 Sample Program

// This program creates a single BDD variable

int main (int argc, char *argv[])

{
DdManager *gbm; /* Global BDD manager. */

char filename[30];

gbm = Cudd_Init(0,0,CUDD_UNIQUE_SLOTS,CUDD_CACHE_SLOTS,0);

DdNode *bdd = Cudd_bddNewVar(gbm); /*Create a new BDD variable*/

Cudd_Ref(bdd); /*Increases the reference count of a node*/

bdd = Cudd_BddToAdd(gbm, bdd); /*Convert BDD to ADD for display */

sprintf(filename, "./bdd/graph.dot"); /*Write .dot filename*/

write_dd(gbm, bdd, filename); /*Write the dd to a file*/

Cudd_Quit(gbm);

return 0;
}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
12

BDD of Boolean functions

 CUDD has inbuilt functions for expressing Boolean operations.

Cudd_bddXor(DdManager*, DdNode*, DdNode*)

Cudd_bddAnd(DdManager*, DdNode*, DdNode*)

Cudd_bddOr(DdManager*, DdNode*, DdNode*)

Cudd_bddXnor(DdManager*, DdNode*, DdNode*)

Cudd_bddNand(DdManager*, DdNode*, DdNode*)

Cudd_bddNor(DdManager*, DdNode*, DdNode*)

Cudd_Not(DdNode*)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
13

Implementing XOR Using CUDD

int main (int argc, char *argv[])

{

char filename[30];

DdManager *gbm; /* Global BDD manager. */

gbm = Cudd_Init(0,0,CUDD_UNIQUE_SLOTS,CUDD_CACHE_SLOTS,0);

DdNode *bdd, *x1, *x2;

x1 = Cudd_bddNewVar(gbm); /*Create a new BDD variable x1*/

x2 = Cudd_bddNewVar(gbm); /*Create a new BDD variable x2*/

bdd = Cudd_bddXor(gbm, x1, x2); /*Perform XOR*/

Cudd_Ref(bdd); /*Update the reference count*/

bdd = Cudd_BddToAdd(gbm, bdd);

sprintf(filename, "./bdd/graph.dot"); /*Write .dot filename*/

write_dd(gbm, bdd, filename);

Cudd_Quit(gbm);

return 0;

}

Comparing Logic Implementations

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

 Are two Boolean logics F and G the same?

 Build BDD for F.

 Build BDD for G.

 Compare pointers to roots of F, G.

 If pointers are same, F == G.

 What inputs make functions F, G give different answers?

 Build BDD for F.

 Build BDD for G.

 Build the BDD for H = F xor G.

 Check if H is satisfiable or not.

Tautology Checking and Satisfiability with BDDs

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
15

 Tautology Checking

 The function will be reduced to one node pointing to 1.

 Satisfiability Checking

 Any path from root to “1” leaf is solution!

Observe the two circuits

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
16

Circuit-1 Circuit-2

Inputs A and B are equivalent to inputs P and Q.

Assignments on SAT

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
17

1. Represent Circuit-1 and Circuit-2 in Conjunctive Normal Form (CNF).

2. Represent Circuit-1 and Circuit-2 in DIMACS format.

3. Check whether the two circuits are equivalent or not.

4. If not equivalent find the input condition(s) for which the output is SAT.

Assignments on BDD

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
18

1. Represent Circuit-1 and Circuit-2 in as BDDs.

2. Check whether the two circuits are equivalent or not.

3. Find the input condition(s) for which the output is 1.

Graph Coloring : SAT Formulation

We are given a graph G = (V,E)

A coloring of the n vertices of the graph with k colors is a map; f: V{1, .., k}

• f(v) denotes the color of vertex v

A coloring is a proper coloring, if, adjacent vertices must receive different colors.

PROBLEM

• To find the minimum k such that
a proper k-coloring of G is possible

In how many ways can we color the n vertices with k colors?

Each vertex may receive one of the k colors

Number of colorings (not necessarily proper colorings) = kn

2 4

1

3

5

6

2 4

1

3

5

6

19

Graph Colouring

Types of Constraints:

1. Vertex Constraints: A vertex must get exactly one color.

2. Edge Constraints: No two adjacent vertices should be colored with the

same color

Boolean State Encoding:

• Each color is given a number “i” – assume N colors

• Each vertex is given a number “j”

• For “k” colors, each vertex has “i” Boolean variables. Vertex “j” has

variables numbered as [(j-1)*N + i]: For N = 3 colors, Vertex V3 is

represented as the three Boolean variables x7, x8 and x9

respectively representing that the vertex V3 is colored by colors “1”,

“2” or “3”.

V1 V2

V3 V4

e1

e2

e3 e4

e5

Vertex Constraints:

For Vertex V1:

Assign it a color : (x1 ꓦ x2 ꓦ x3)

Exactly one color : (¬x1 ꓦ ¬x2) ⋀ (¬x1 ꓦ ¬x3) (¬x2 ꓦ ¬x3)

Edge Constraints:

For Vertex V1: edge e1

Color 1: (¬x1 ꓦ ¬x4)

Color 2: (¬x2ꓦ ¬x5)

Color 3: (¬x3ꓦ ¬x6)

What about with two colors?

V1 V2

V3 V4

e1

e2

e3 e4

e5

Graph Colouring

Frequency Allocation

In mobile telephony, the frequency allocation problem is stated as follows. There are a number of

transmitters deployed and each of them can transmit on any of a given set of frequencies. Different

transmitters have different frequency sets. Some transmitters are so close that they cannot

transmit at the same frequency, because then they would interfere with each other. You are given

the frequency range of each transmitter and the pairs of transmitters that can interfere if they use

the same frequency. The problem is to determine if there is any possible choice of frequencies so

that no transmitter interferes with any other.

Minimum Vertex Cover

A vertex cover of a graph G is a set S of vertices such that S contains at least one endpoint of

every edge of G.

PROBLEM: To find the minimum size vertex cover

2 4

1

3

5

6

2 4

1

3

5

6

Airline Operation

An airline company operates flights between various small (Class C/D/E) and large airports (Class

B – like Chicago ORD). It wants to identify the least number of airport hubs from which it needs to

operate its large aircrafts like the Boeing 747/777/787 or A-380/A-350. Come up with a SAT

formulation that can help them.

• You want the minimum number of airport hubs to operate from, so that all small airports

are covered.

• We discriminate between airports (some cannot act as hubs) - Large aircrafts cannot

land at all airports.

• By minimizing these hubs, the aircraft saves on operating costs.

Perfect Matching

Matching: A choice of edges, every vertex has

at most one edge of the matching incident on it.

Perfect Matching: A matching that covers all vertices

2 4

1

3

5

6

2 4

1

3

5

6

2 4

1

3

5

6

2 4

1

3

5

6

Perfect MatchingPerfect MatchingA MatchingNOT a Matching

4

1

3

5

(1) (2) (3) (4)

2 4

1

3

5

6

2 4

1

3

5

6

Scheduling a Conference

Scheduling Speakers at a conference. There are N speakers and N time slots planned for a

conference. Every speaker has a set of time slots in which there are available/unavailable. You wish

to check if there is a way to assign a speaker to a preferred time slot, such that every speaker is

able to speak at the conference.

