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Introduction

1. CBMC is a Bounded Model Checker for C and C++ programs.

2. CBMC verifies memory safety (which includes array bounds checks and checks for the
safe use of pointers), checks for exceptions, checks for various variants of undefined

behavior, and user-specified assertions

3. Download CBMC from the following link.

Click on the os compatible version and install

Check by executing .Icbmc test_file.c
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http://www.cprover.org/cbmc/

CBMC Tool flow : Summary

1. Parse, build CFG
2. Unwind CFG, form formula

3. Formula is solved by SATISMT
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Checking Simple Programs

Example Problem Write the C code for the following
statement and check using CBMC. The
second statement fails. Can you add a

Set of Statements C Program condition such that the assertion holds?
int main(){
X = 2*: intx,vy, z 1l x=y-2; 2. y=2*x
Z = X+1; — X = 2*X; Z=XtY; y=y+2;
{z1=0} Z = X+1; {z>0} z=yl2;
assert(z != 0) assert (z > x)

|

Run using : .Icbmc file_name.c --trace
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Program Verification Problems

Verify the following programs discussed in tutorial 4.

L1: x=1;

L2: if(y <=10) L1: a=b=i=0;
L3: y = 10; L2 : while (a <= 10) {
} L3: az=b+i;

L3 :else{ L4 : b=a+]l;
L5:  while (x < y){ L5 : I=i+1;
L6 : X=2*X: L6: }
L7 : y=y-1; L7: if(b>20){
) L8 : error: exit(-1);
) 19: }
L8 :x=y+1,

L9 :assert (x > 0);

Jcbmc file name.c --trace --unwind <trace number>
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(3n + 1) Conjecture

Apply the following operations on any positive integer i

If i is even, 1=1/2
ifiisodd,i=3*+1
If (1 ==1) break;
else goto 1

Wb

For any initial value of i, it will eventually converge to 1. This is known as the Collatz
conjecture or (3n+1) conjecture.

The number of steps i takes to converge to one is called the total stopping time of I.

Prove that for i<20000, the total stopping time is always less than 280.
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