HANDS ON 3 : CBMC

CS60030 Formal Systems

FNAE, FASc,

A K Singh Distinguished Professor in Al,
Dept of Computer Science & Engineering
Indian Institute of Technology Kharagpur
Email: pallab@cse.iitkgp.ac.in

Web: http:licse.iitkgp.ac.in/~pallab

Protocol

Formulas cployred -7

Extended Query-Driven

Vahdatlon Prop05|t|onal Automatic model Plaﬁo.rmmaqrams

et Bnares s AlgoOrithms Abstraction vew

Towards Constralnt . . Ouantmcat\on ® abstraction Detection
Gag?f?éent SpeCIficatlon 0 e QUE‘Fy Memory
Performance Complexﬂ:y Malwar I Networked
Dependencies

Generation Reactlve mference

SCheduIlnq Lanqua es Measurement Counterexamp\es DynamIC I Byzantine e Computer

semanic case Al Environment [} Godel R u nt' me A y S I S 21:\2\:%; \F;Irg;flgq Reductions
Specticzions T %Lani:ﬁgrs ‘:ez"sizu t. 4 Abstrace™ Quantified
LTL Componen Binary A Stract good Interpolation Refinement
ﬂemble MOdEIS Integrity weax gg unit . solvers
LOQICB' G | d Apphcat\on
Representation SAT T&eting Parameterized Programy ™ e (: g
Fault-tolerant Programs

Environments SUCCinCt t'me te m S D| Stn buted

Conference Fault-Tolerant Watermarking
e zgzmzwggbsy
R e Stat \/ Reguiar Development FUZZY comozunaty

Precise St atIC . Temporal

Nets Design J) Boolean
Safet Cnmputatlons 0 wa re Queries Reachability
B Network c language Treewidth
verage Virtual Seamless
Efficient

m. _"_'“
o —

-,

T

FORMAL METHODS FOR SAFETY CRITICAL SYSTEMS

Introduction

1. CBMC is a Bounded Model Checker for C and C++ programs.

2. CBMC verifies memory safety (which includes array bounds checks and checks for the
safe use of pointers), checks for exceptions, checks for various variants of undefined

behavior, and user-specified assertions

3. Download CBMC from the following link.

Click on the os compatible version and install

Check by executing .Icbmc test_file.c

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

http://www.cprover.org/cbmc/

CBMC Tool flow : Summary

1. Parse, build CFG
2. Unwind CFG, form formula

3. Formula is solved by SATISMT

flattenﬂ CNF

C/C++ |parse| parse | | CFG un-__f sormula
ol SMT

Source tree wind
ey L

Checking Simple Programs

Example Problem Write the C code for the following
statement and check using CBMC. The
second statement fails. Can you add a

Set of Statements C Program condition such that the assertion holds?
int main(){
X = 2*: intx,vy, z 1l x=y-2; 2. y=2*x
Z = X+1; — X = 2*X; Z=XtY; y=y+2;
{z1=0} Z = X+1; {z>0} z=yl2;
assert(z != 0) assert (z > x)

|

Run using : .Icbmc file_name.c --trace

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Program Verification Problems

Verify the following programs discussed in tutorial 4.

L1: x=1;

L2: if(y <=10) L1: a=b=i=0;
L3: y = 10; L2 : while (a <= 10) {
} L3: az=b+i;

L3 :else{ L4 : b=a+]l;
L5: while (x < y){ L5 : I=i+1;
L6 : X=2*X: L6: }
L7 : y=y-1; L7: if(b>20){
) L8 : error: exit(-1);
) 19: }
L8 :x=y+1,

L9 :assert (x > 0);

Jcbmc file name.c --trace --unwind <trace number>

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

(3n + 1) Conjecture

Apply the following operations on any positive integer i

If i is even, 1=1/2
ifiisodd,i=3*+1
If (1 ==1) break;
else goto 1

Wb

For any initial value of i, it will eventually converge to 1. This is known as the Collatz
conjecture or (3n+1) conjecture.

The number of steps i takes to converge to one is called the total stopping time of I.

Prove that for i<20000, the total stopping time is always less than 280.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

	Slide 1
	Introduction
	CBMC Tool flow : Summary
	Checking Simple Programs
	Program Verification Problems
	(3n + 1) Conjecture

