Program Verification

CS60030 FORMAL SYSTEMS

PALLAB DASGUPTA,

FNAE, FASc, A K Singh Distinguished Professor in Al, Dept of Computer Science & Engineering Indian Institute of Technology Kharagpur Email: pallab@cse.iitkgp.ac.in Web: http://cse.iitkgp.ac.in/~pallab

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Software Verification

Is a software program free from bugs?

- What kind of bugs?
 - Lint checking Divide by zero, Variable values going out of range
 - User specified bugs Assertions

Challenges:

- Real valued variables
 - Huge state space if we have to consider all values
- Size of the program is much smaller than the number of paths to be explored
 - Branchings, Loops

We need to extract an abstract state machine from a program

Abstraction: Sound versus Complete

Sound Abstraction

If the abstraction shows no bugs, then the original program also doesn't have bugs

Complete Abstraction

If the abstraction shows a bug, then the original program has a bug

Due to undecidability of static analysis problems, we cant have a general procedure that is both sound and complete.

Techniques

Abstract Static Analysis

- Abstract interpretation
- Numerical abstract domains

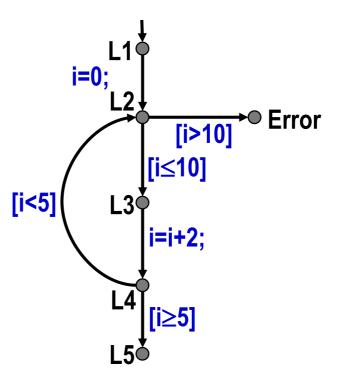
Software Model Checking

- Explicit and symbolic model checking
- Predicate abstraction and abstraction refinement

Example

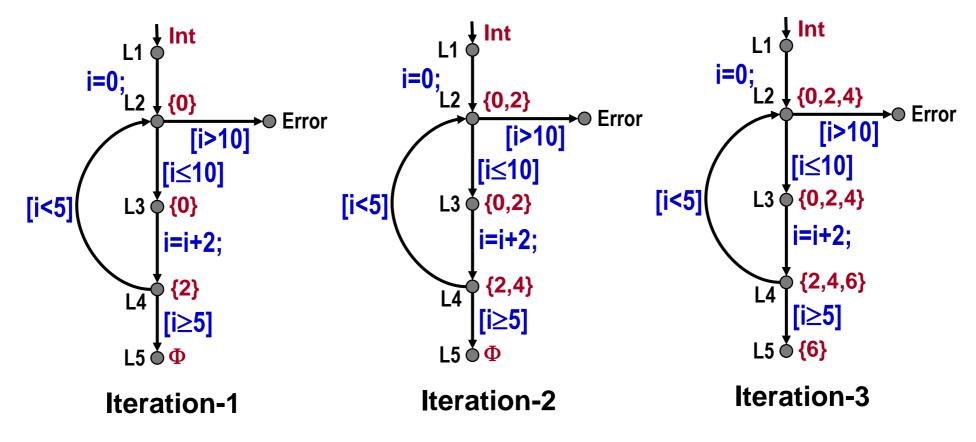
Sample program: int i=0 do { assert(i <= 10); i = i+2; } while (i < 5);</pre>

Control Flow Graph (CFG):



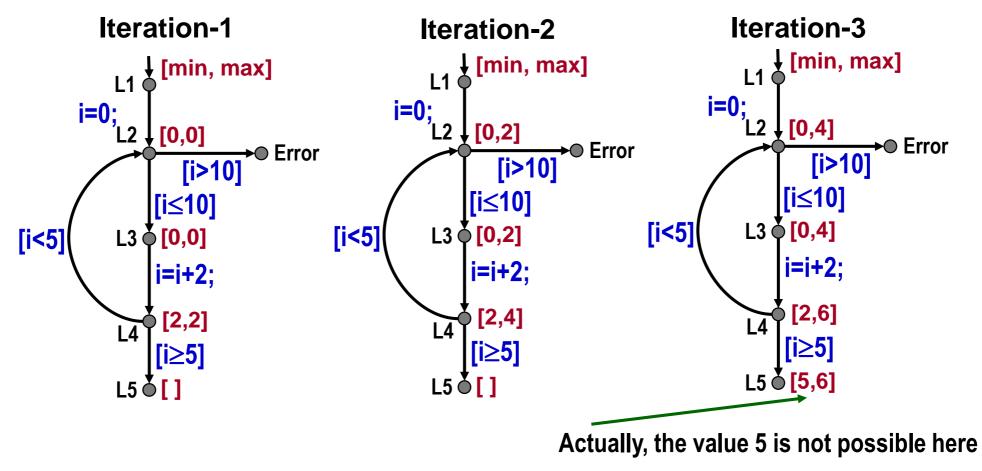
Concrete Interpretation

Philosophy: Collect the set of possible values of i until a fixed point is reached Sample program: int i=0 do { assert(i <= 10); i = i+2; } while (i < 5);</pre>



Abstract Interpretation

Philosophy: Use an abstract domain instead of value sets Example: We may use value intervals instead of value sets Sample program: int i=0 do { assert(i <= 10); i = i+2; } while (i < 5);</pre>



Numerical Abstract Domains

The class of invariants that can be computed, and hence the properties that can be proved, varies with the expressive power of a domain

- An abstract domain can be more *precise* than another
- The information loss between different domains may be incomparable

Examples:

- The domain of Signs has three values: {Pos, Neg, Zero}
- *Intervals* are more expressive than signs. Signs can be modeled as [min,0], [0,0], and [0,max]
- The domain of Parities abstracts values as Even and Odd
- Signs or Intervals cannot be compared with Parities.

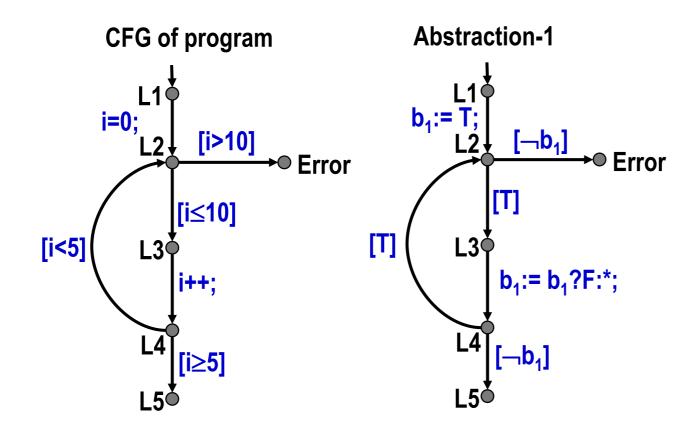
Predicate Abstraction

- A sound approximation R' of the transition relation R is constructed using predicates over program variables
- A predicate P partitions the states of a program into two classes: one in which P evaluates to true and one in which it evaluates to false
 - Each class is an abstract state
 - Let A and B be abstract states. A transition is defined from A to B if there is a state in A with a transition to a state in B
 - This construction yields an existential abstraction of a program, which is sound for reachability properties
 - The abstract program corresponding to R' is represented by a *Boolean program*, one with only Boolean data types, and the same control flow constructs as C programs

Predicate Abstraction

<u>Sample program:</u> int i=0 do { assert(i <= 10); i++; } while (i < 5);

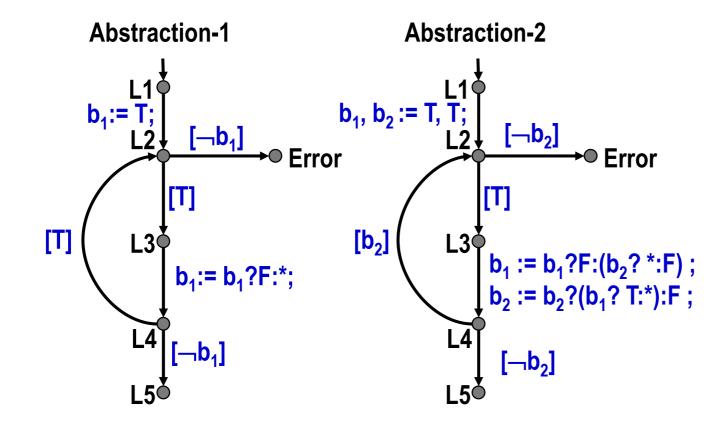
Abstraction-1 uses the predicate (i=0) (represented by the variable b₁)



In Abstraction-1 the Error location is reachable, but the counter-example cant be reconstructed in the real program

Predicate Abstraction

Abstraction-2 refines Abstraction-1 using the additional predicate (i<5) (represented by the variable b₂)



Sample program: int i=0 do { assert(i <= 10); i++; } while (i < 5);</pre>

In Abstraction-2 the location L2 is reached with b_2 every time. Hence the Error location is unreachable.

Model Checking with Predicate Abstraction

- A heavy-weight formal analysis technique
- Recent successes in software verification, e.g., SLAM at Microsoft
- The abstraction reduces the size of the model by removing irrelevant details
- The abstract model is then small enough for an analysis with a BDD-based Model Checker
- Idea: only track predicates on data, and remove data variables from model
- Mostly works with control-flow dominated properties

Source of these slides: D. Kroening: SSFT12 – Predicate Abstraction: A Tutorial

Outline

- Introduction Existential Abstraction
- Predicate Abstraction for Software
- Counterexample Guided Abstraction Refinement
- Computing Existential Abstractions of Programs
- Checking the Abstract Model
- Simulating the Counterexample Refining the Abstraction

Predicate Abstraction as Abstract Domain

• We are given a set of predicates over S, denoted by Π_1, \ldots, Π_n .

• An abstract state is a valuation of the predicates:

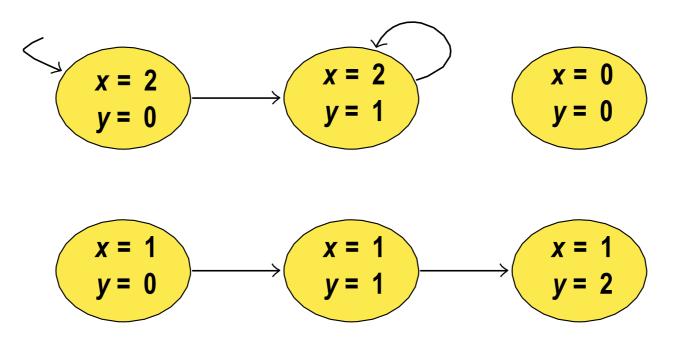
$$S = B^n$$

• The abstraction function:

 $\alpha(s) = (\Pi_1(s), \ldots, \Pi_n(s))$

Predicate Abstraction: the Basic Idea

Concrete states over variables *x*, *y*:



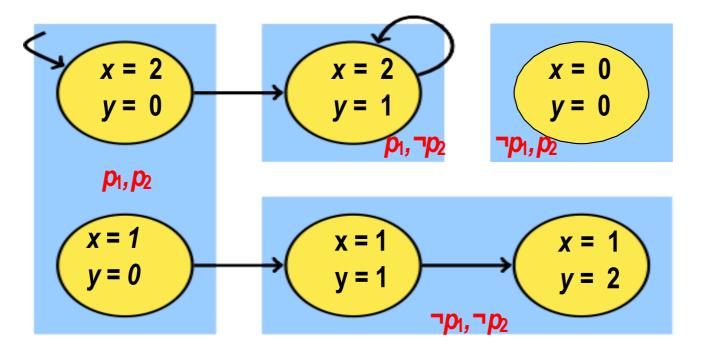
Predicates:

p1
$$\iff x > y$$

p2 $\iff y = 0$

Predicate Abstraction: The Basic Idea

Concrete states over variables *x*, *y*:



Predicates:

$$p_1 \iff x > y$$
$$p_2 \iff y = 0$$

Abstract Transitions?

Definition (Existential Abstraction)

A model $\hat{M} = (\hat{S}, \hat{S}_0, \hat{T})$ is an *existential abstraction* of $M = (S, S_0, T)$ with respect to $\alpha : S \rightarrow \hat{S}$ iff

- $\exists s \in S_0. \alpha(s) = \hat{s} \implies \hat{s} \in \hat{S}_0$ and
- $\exists (s, s^t) \in T. \alpha(s) = \hat{s} \land \alpha(s^t) = \hat{s}^t \implies (\hat{s}, \hat{s}^t) \in \hat{T}.$

¹Clarke, Grumberg, Long: *Model Checking and Abstraction*, ACM TOPLAS, 1994

Minimal Existential Abstractions

There are obviously many choices for an existential abstraction for a given α .

Definition (Minimal Existential Abstraction)

A model $\hat{M} = (\hat{S}, \hat{S}_0, \hat{T})$ is the *minimal existential abstraction* of $M = (S, S_0, T)$ with respect to $\alpha : S \rightarrow \hat{S}$ iff

- $\exists s \in S_0. \alpha(s) = \hat{s} \quad \Leftrightarrow \quad \hat{s} \in \hat{S}_0 \text{ and}$
- $\exists (s, s^t) \in T. \alpha(s) = \hat{s} \wedge \alpha(s^t) = \hat{s}^t \iff (\hat{s}, \hat{s}^t) \in \hat{T}.$

This is the most precise existential abstraction.

Existential Abstraction

We write $\alpha(\pi)$ for the abstraction of a path $\pi = s_0, s_1, \ldots$:

$$\alpha(\pi) = \alpha(s_0), \alpha(s_1), \ldots$$

Existential Abstraction

We write $\alpha(\pi)$ for the abstraction of a path $\pi = s_0, s_1, \ldots$:

 $\alpha(\pi) = \alpha(s_0), \alpha(s_1), \ldots$

Lemma

Let \hat{M} be an existential abstraction of M. The abstraction of every path (trace) π in M is a path (trace) in \hat{M} .

 $\pi \in M \implies \alpha(\pi) \in \hat{M}$

Proof by induction. We say that \hat{M} overapproximates M.

Abstracting Properties

Reminder: we are using

- a set of atomic propositions (predicates) A, and
- a state-labelling function $L : S \rightarrow P$ (A)

in order to define the meaning of propositions in our properties.

We define an abstract version of it as follows:

• First of all, the negations are pushed into the atomic propositions.

E.g., we will have $x = 0 \in A$ and $x \neq 0 \in A$

Abstracting Properties

• An abstract state s is labelled with *a ∈A* iff all of the corresponding concrete states are labelled with *a*.

 $a \in \mathcal{L}(\hat{s}) \iff \forall s | \alpha(s) = \hat{s}. a \in \mathcal{L}(s)$

• This also means that an abstract state may have neither the label x = 0 nor the label $x \neq 0$ – this may happen if it concretizes to concrete states with different labels!

The keystone is that existential abstraction is **conservative** for certain properties:

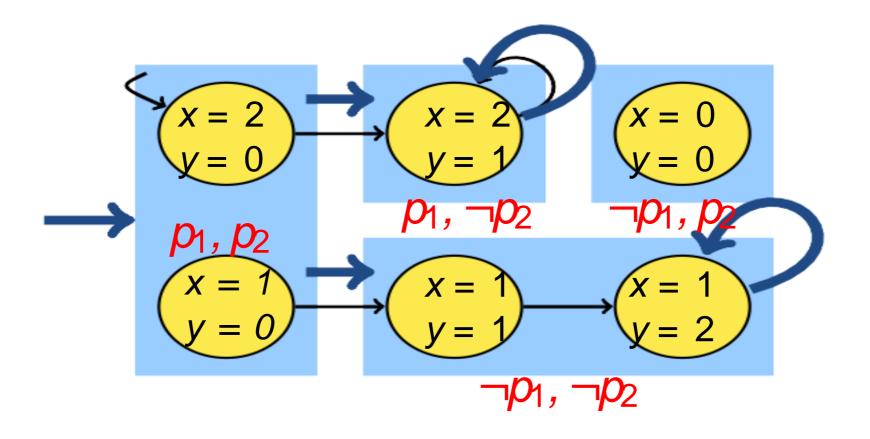
Theorem (Clarke/Grumberg/Long 1994)

Let φ be a \forall CTL* formula where all negations are pushed into the atomic propositions, and let \hat{M} be an existential abstraction of M. If φ holds on \hat{M} , then it also holds on M. $\hat{M} \models \varphi \implies M \models \varphi$

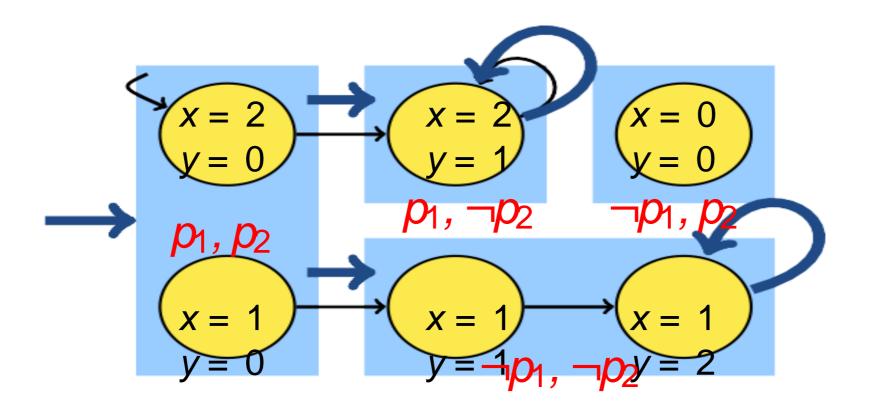
We say that an existential abstraction is conservative for ∀CTL* properties. The same result can be obtained for LTL properties.

The proof uses the lemma and is by induction on the structure of φ . The converse usually does not hold.

Back to the Example

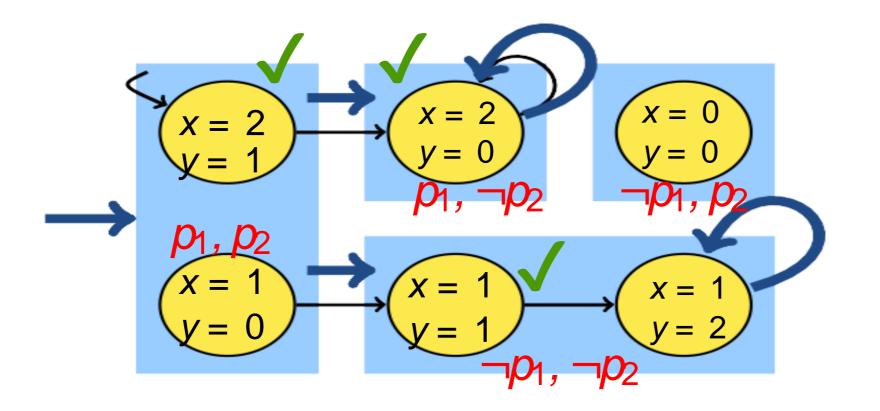


Let's try a Property



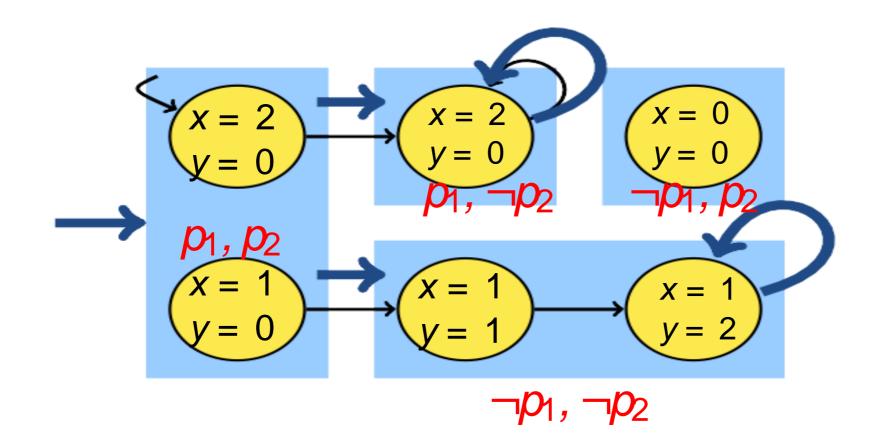
Property: $x > y \lor y \neq 0 \iff p_1 \lor \neg p_2$

Let's try a Property

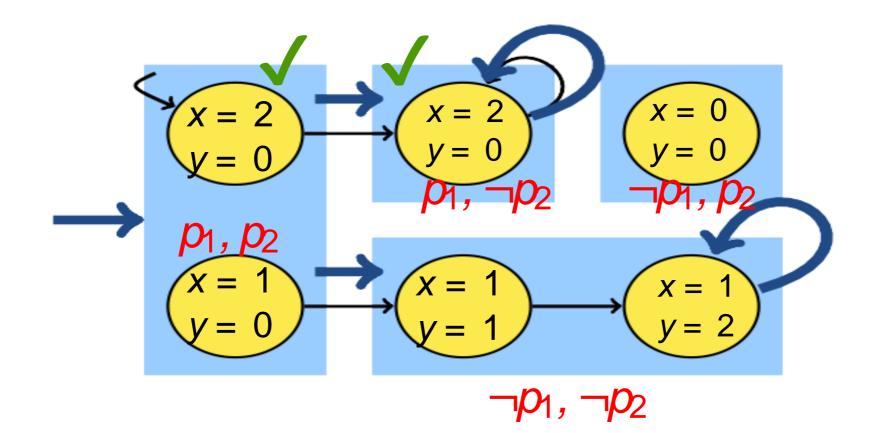


Property:

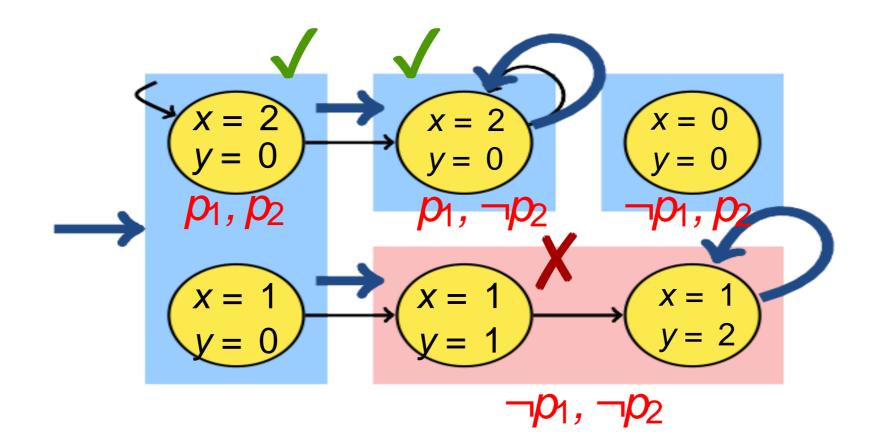
$$x > y \lor y \neq 0 \iff p_1 \lor \neg p_2$$



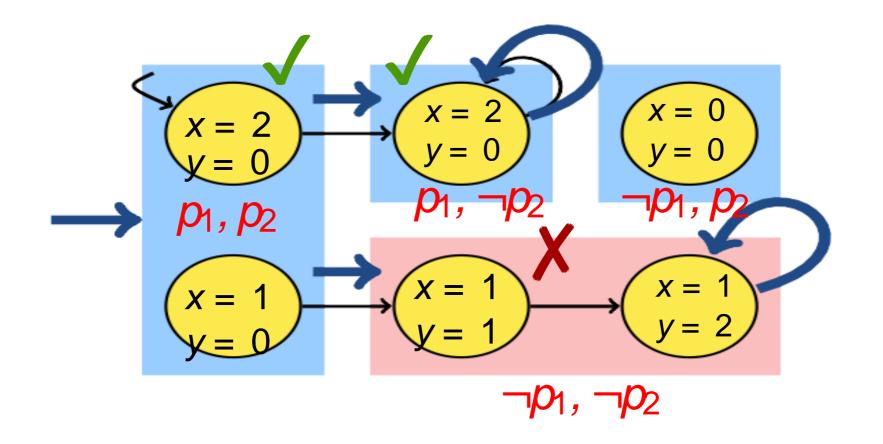
Property: $x > y \iff p_1$



Property: $x > y \iff p_1$



Property: $x > y \iff p_1$



Property: $x > y \iff p_1$

But: the counterexample is spurious

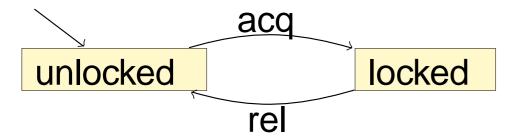
SLAM

- Microsoft blames most Windows crashes on third party device drivers
- The Windows device driver API is quite complicated
- Drivers are low level C code
- SLAM: Tool to automatically check device drivers for certain errors
- SLAM is shipped with Device Driver Development Kit
- Full detail available at
 <u>http://research.microsoft.com/slam/</u>

SLIC

- Finite state language for defining properties
 - $\circ~$ Monitors behavior of C code
 - Temporal safety properties (security automata)
 - \circ familiar C syntax
- Suitable for expressing control-dominated properties
 - \circ e.g., proper sequence of events
 - $\circ~$ can track data values

SLIC Example

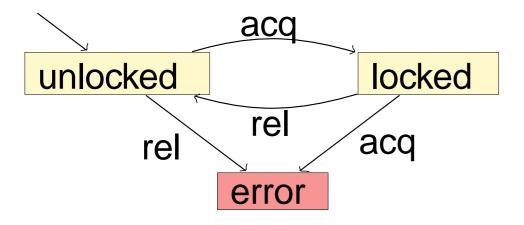


```
state {
  enum { Locked, Unlocked}
    s = Unlocked;
}
```

```
KeAcquireSpinLock.entry {
    if (s==Locked) abort;
    else s = Locked;
}
```

```
KeReleaseSpinLock.entry {
    if (s==Unlocked) abort;
    else s = Unlocked;
}
```

SLIC Example



```
state {
  enum { Locked, Unlocked}
    s = Unlocked;
  }
```

```
KeAcquireSpinLock.entry {
    if (s==Locked) abort;
    else s = Locked;
}
```

```
KeReleaseSpinLock.entry {
    if (s==Unlocked) abort;
    else s = Unlocked;
}
```

Refinement Example

do {

KeAcquireSpinLock();
nPacketsOld = nPackets;
if (request) {
 request = request->Next;
 KeReleaseSpinLock();
 nPackets++;
}

} while(nPackets != nPacketsOld);

KeReleaseSpinLock();

do {

KeAcquireSpinLock();
nPacketsOld = nPackets;
if (request) {
 request = request->Next;
 KeReleaseSpinLock();
 nPackets++;
}

} while(nPackets != nPacketsOld);

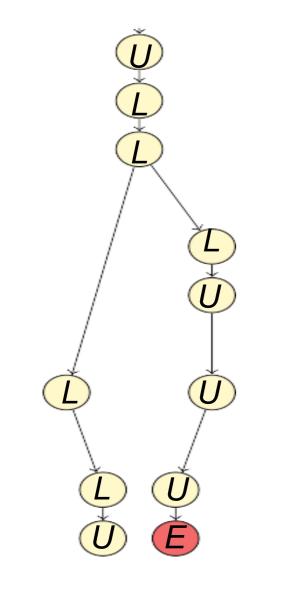
do {

KeAcquireSpinLock();

if (*) {

KeReleaseSpinLock();

} } while(*);



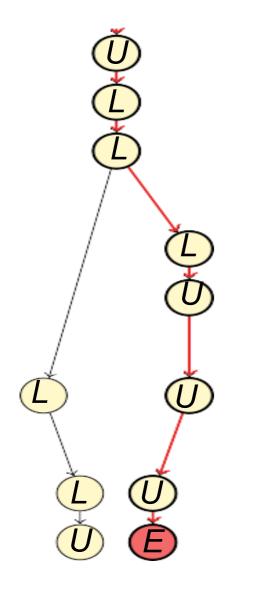
do {

KeAcquireSpinLock();

if (*) {

KeReleaseSpinLock (); }

} while(*);



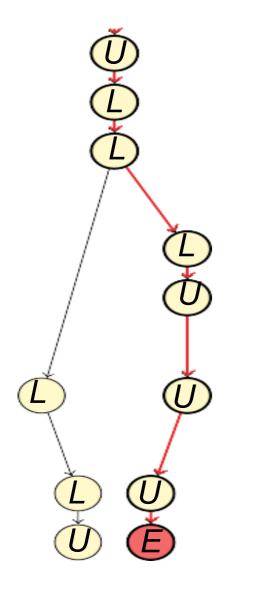
do {

KeAcquireSpinLock();

if (*) {

KeReleaseSpinLock();
}

} while(*);



do $\{$

KeAcquireSpinLock();

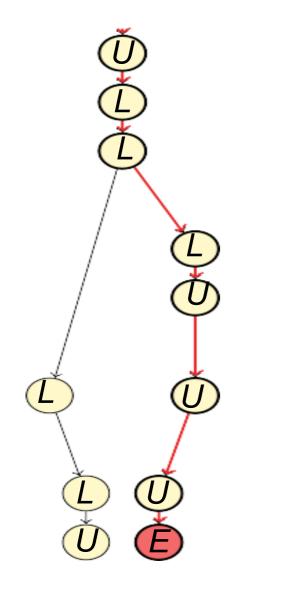
if (*) {

KeReleaseSpinLock(); }

} while(*);

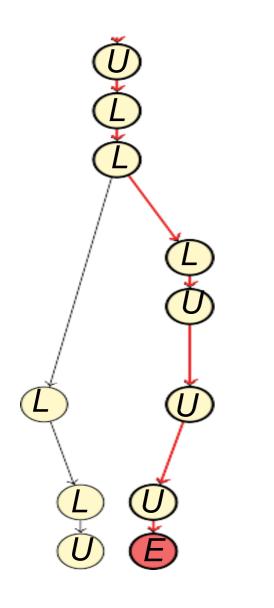
KeReleaseSpinLock();

Is this path concretizable?



do {

KeAcquireSpinLock(); nPacketsOld = nPackets; if (request) { request = request -> Next; KeReleaseSpinLock(); nPackets++; } } while(nPackets != nPacketsOld);



do {

KeAcquireSpinLock();

nPacketsOld = nPackets;

if (request) {

request = request -> Next;

KeReleaseSpinLock();

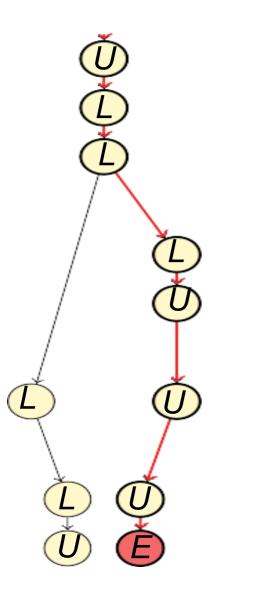
nPackets++;

} while(nPackets != nPacketsOld);

KeReleaseSpinLock();

}

This path is spurious!



do {

KeAcquireSpinLock();

nPacketsOld = nPackets;

if (request) {

request = request -> Next;

KeReleaseSpinLock();

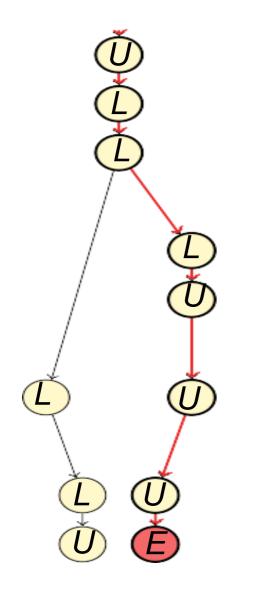
nPackets++;

} while(nPackets != nPacketsOld);

KeReleaseSpinLock();

}

Let's add the predicate nPacketsOld==nPackets



do $\{$

KeAcquireSpinLock();

nPacketsOld = nPackets;

b=true;

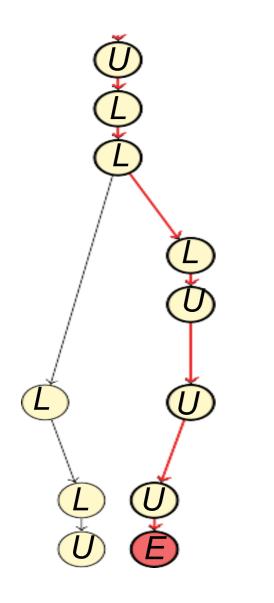
if (request) {
 request = request -> Next;
 KeReleaseSpinLock(); nPackets++;

} while(nPackets != nPacketsOld);

KeReleaseSpinLock();

}

Let's add the predicate nPacketsOld==nPackets



do {

KeAcquireSpinLock();

nPacketsOld = nPackets;

if (request) $\{$

request = request -> Next;

KeReleaseSpinLock();

nPackets++;

} while(nPackets != nPacketsOld);

KeReleaseSpinLock();

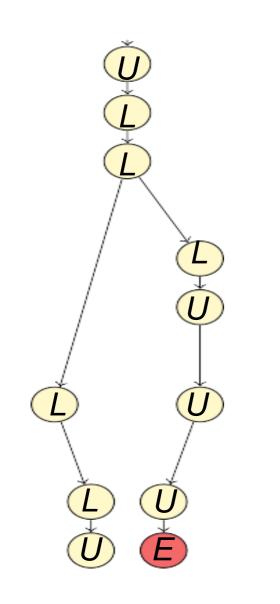
}

b=true;

b=b?false:*;

!b

Let's add the predicate nPacketsOld==nPackets

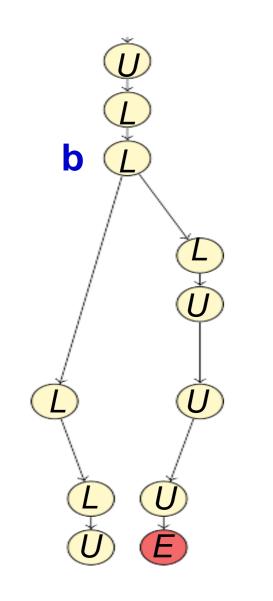


do {

KeAcquireSpinLock (); b=true;

if (*) {
 KeReleaseSpinLock ();

b=b?false:*; } while <u>!b</u>));

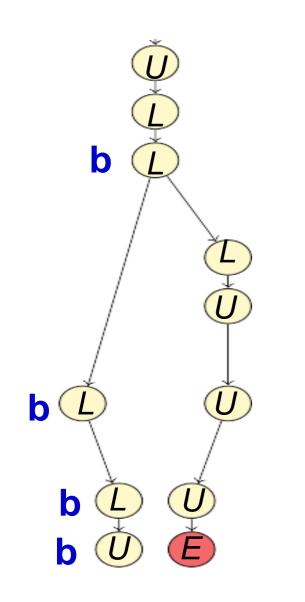


do {

KeAcquireSpinLock (); b=true;

if (*) {
 KeReleaseSpinLock ();

b=b?false:*; } while <u>!b</u>));

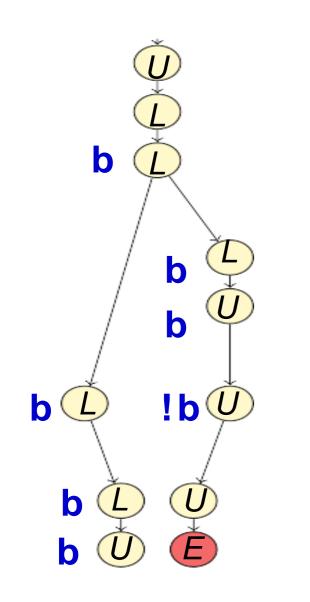


do {

KeAcquireSpinLock (); b=true;

if (*) {
 KeReleaseSpinLock ();

b=b?false:*; } } while !b);

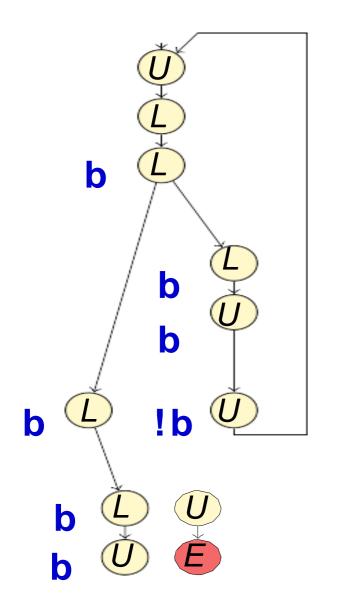


do {

KeAcquireSpinLock (); b=true;

if (*) {
 KeReleaseSpinLock ();

b=b?false:*; } while !b);



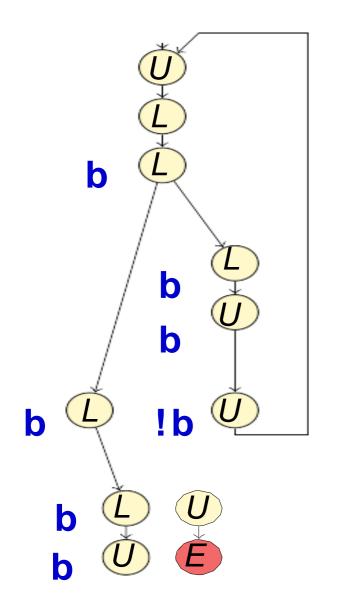
do {

KeAcquireSpinLock (); b=true;

if (*) {
 KeReleaseSpinLock ();

b=b?false:*;
}

} while_{!b});



do {

KeAcquireSpinLock (); b=true;

if (*) {
 KeReleaseSpinLock ();

b=b?false:*;

} while <mark>!b</mark>);

}

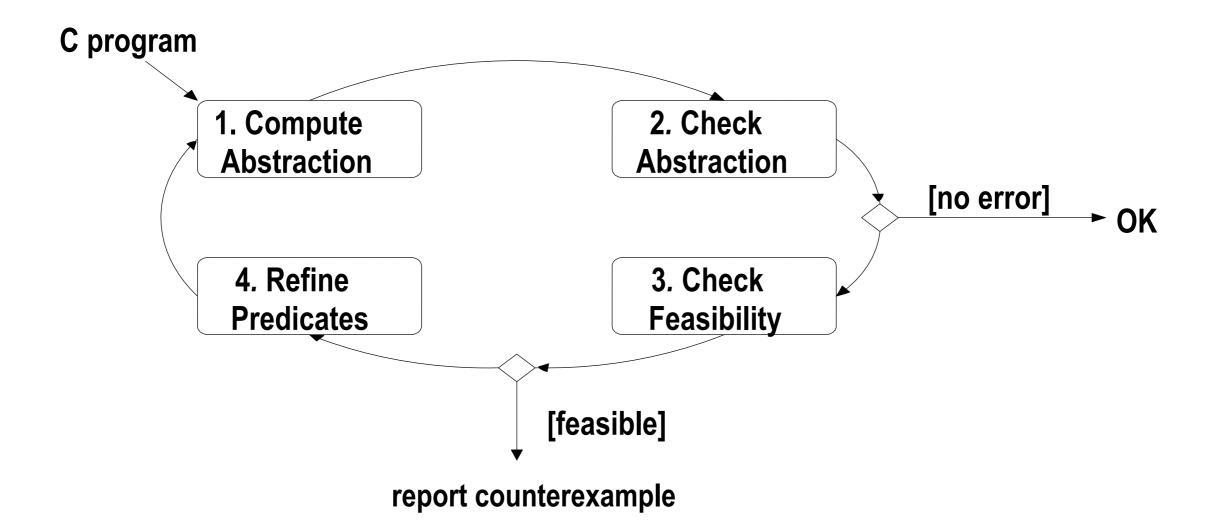
KeReleaseSpinLock ();

The property holds!

Counterexample-guided Abstraction Refinement

- > "CEGAR"
- > An iterative method to compute a sufficiently precise abstraction
- Initially applied in the context of hardware [Kurshan]

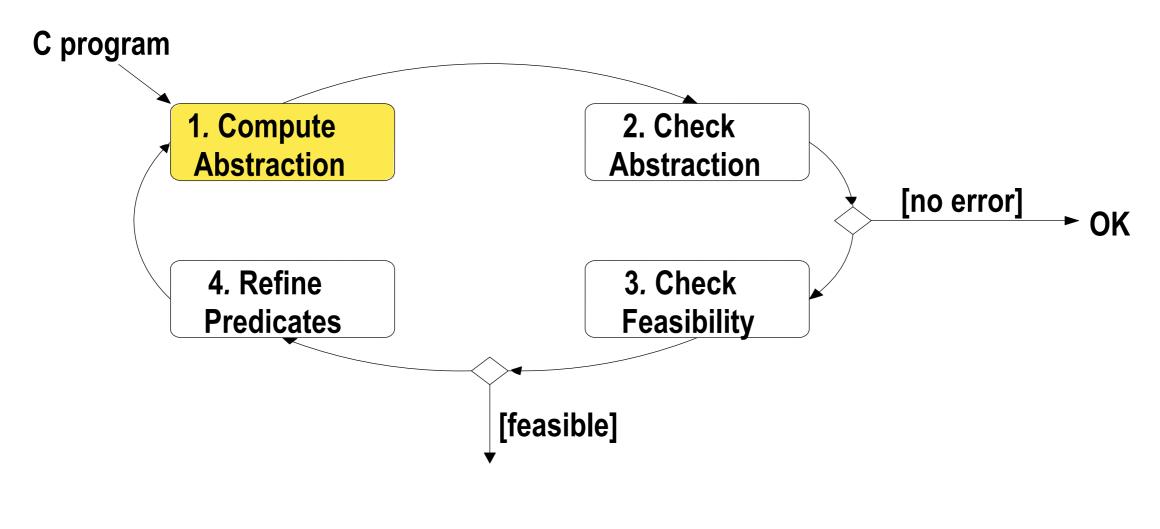
CEGAR Overview



Counterexample-guided Abstraction Refinement

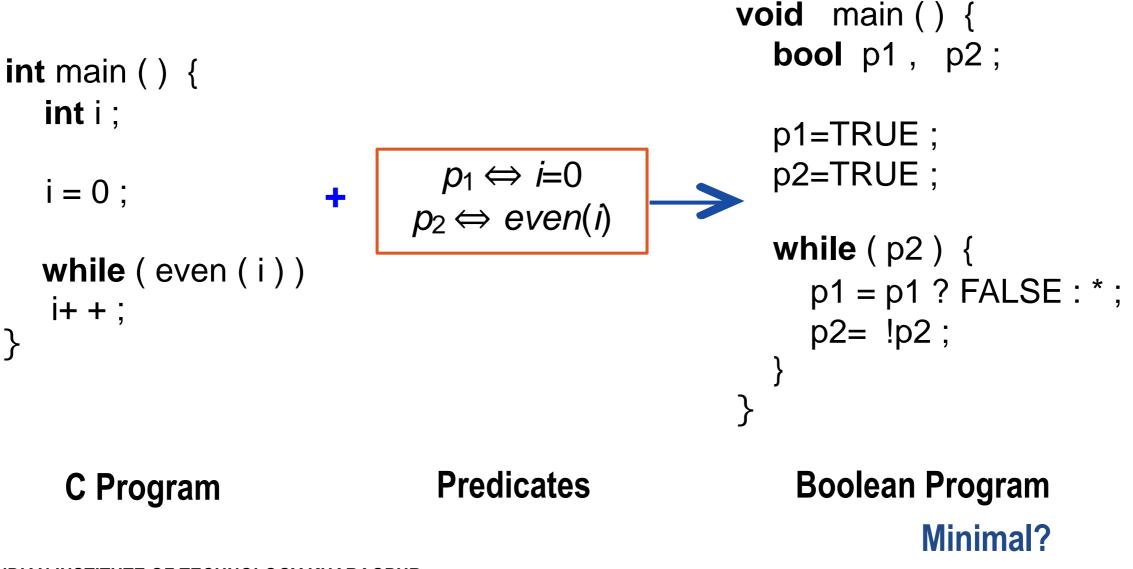
- Claims:
 - 1. This never returns a false error.
 - 2. This never returns a false proof.
 - 3. This is complete for finite-state models.
 - 4. But: no termination guarantee in case of infinite-state systems

Computing Existential Abstractions of Programs



report counterexample

Computing Existential Abstractions of Programs



INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Predicate Images

Reminder:

$$Image(X) = \{s' \in S \mid \exists s \in X.T(s,s')\}$$

We need:

$$\widehat{Image}(\hat{X}) = \{\hat{s}' \in \hat{S} \mid \exists \hat{s} \in \hat{X}. \, \hat{T}(\hat{s}, \hat{s}')\}$$

$\widehat{Image}(\widehat{X})$ is equivalent to:

 $\left\{\hat{s}, \hat{s}' \in \hat{S}^2 \middle| \exists s, s' \in S^2 \,.\, \alpha(s) = \hat{s} \land \alpha(s') = \hat{s}' \land T(s, s') \right\}$

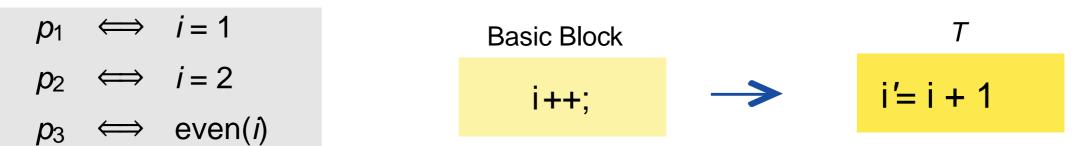
This is called the predicate image of T.

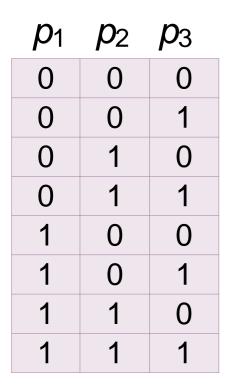
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

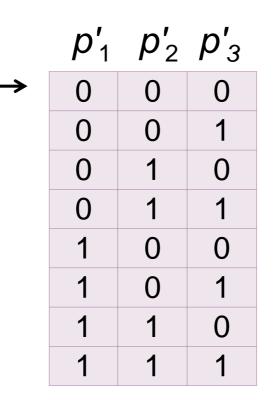
- Let's take existential abstraction seriously
- Basic idea: with *n* predicates, there are $2^n \cdot 2^n$ possible abstract transitions
- Let's just check them!

Enumeration: Example

Predicates



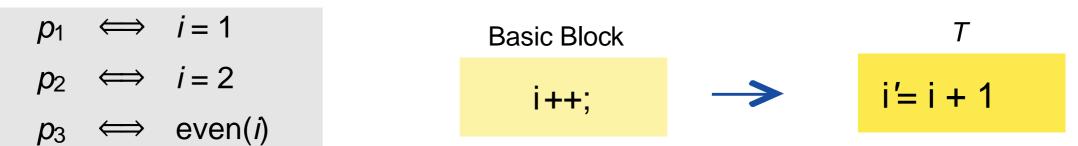


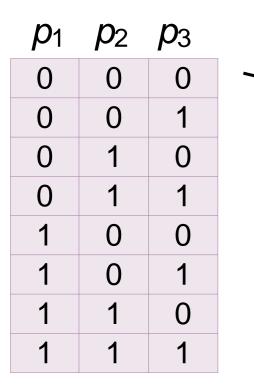


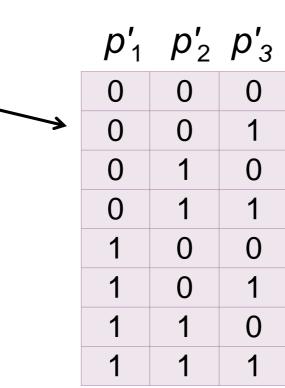
Query to Solver
$i \neq 1 \land i \neq 2 \land even(i) \land$
$i' = i + 1 \wedge$
i' ≠ 1 ∧ i' ≠ 2 ∧ even(i')

Enumeration: Example

Predicates







Query to Solver
$i \neq 1 \land i \neq 2 \land even(i) \land$
i' = i + 1∧ i' ≠ 1 ∧ i' ≠ 2 ∧ even(i')

Enumeration: Example

Predicates

$$p_1 \iff i = 1$$

$$p_2 \iff i = 2$$

$$p_3 \iff \text{even}(i)$$

p_1	p_2	p_3
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

<i>p</i> ′ ₁	<i>p</i> ′ ₂	<i>p</i> ′ ₃
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Query to Solver

... and so on ...

Predicate Images

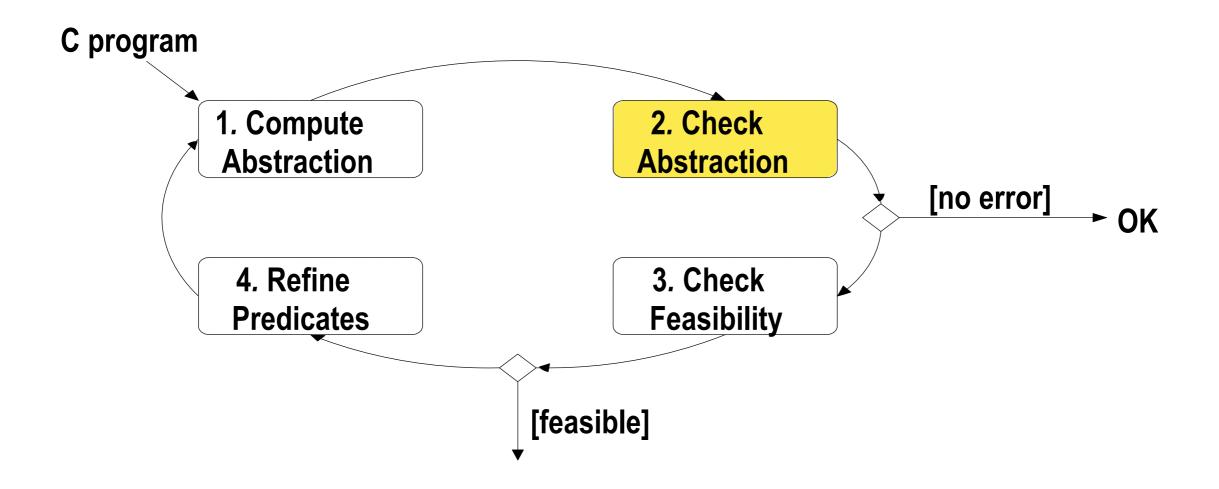
☑ Computing the minimal existential abstraction can be way too slow

- Use an over-approximation instead
 - ✓ Fast(er) to compute

But has additional transitions

- Examples:
 - Cartesian approximation (SLAM)
 - FastAbs (SLAM)
 - Lazy abstraction (Blast)
 - Predicate partitioning (VCEGAR)

Checking the Abstract Model



report counterexample

Checking the Abstract Model

- No more integers!
- But:
 - All control flow constructs, including function calls
 - (more) non-determinism
- ✓ BDD-based model checking now scales

VAR b0_argc_ge_1 : **boolean**; **VAR** b1 _argc_le_2147483646 : **boolean** ; VAR b2 : boolean ; **VAR** b3_nmemb_ge_r : **boolean**; VAR b4 : boolean ; **VAR** b5_i_g e_8 : **boolean**; **VAR** b6_i_g e_s : **boolean**; VAR b7 : boolean ; VAR b8 : boolean ; **VAR** b9_s_g t_0 : **boolean** ; **VAR** b10_s_g t_1 : **boolean** ;

- -- argc >= 1
- -- argc <= 2147483646
- -- argv[argc] == NULL
- -- nmemb >= r
- -- p1 == &array[0]
- -- i >= 8
- -- i >= s
- -- 1 + i >= 8
- -- 1 + i >= s
- -- s > 0
- -- s > 1

. . .


```
-- program counter : 56 is the "terminating" PC
VAR PC : 0..56 ;
ASSIGN init (PC) := 0 ; -- initial PC
```

```
ASSIGN next (PC) : = case

PC = 0 : 1 ; -- other

PC = 1 : 2 ; -- other

...

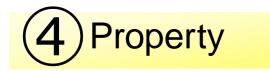
PC=19: case -- goto ( with guard )

guard19 : 26 ;

1 : 20 ;

esac ;
```

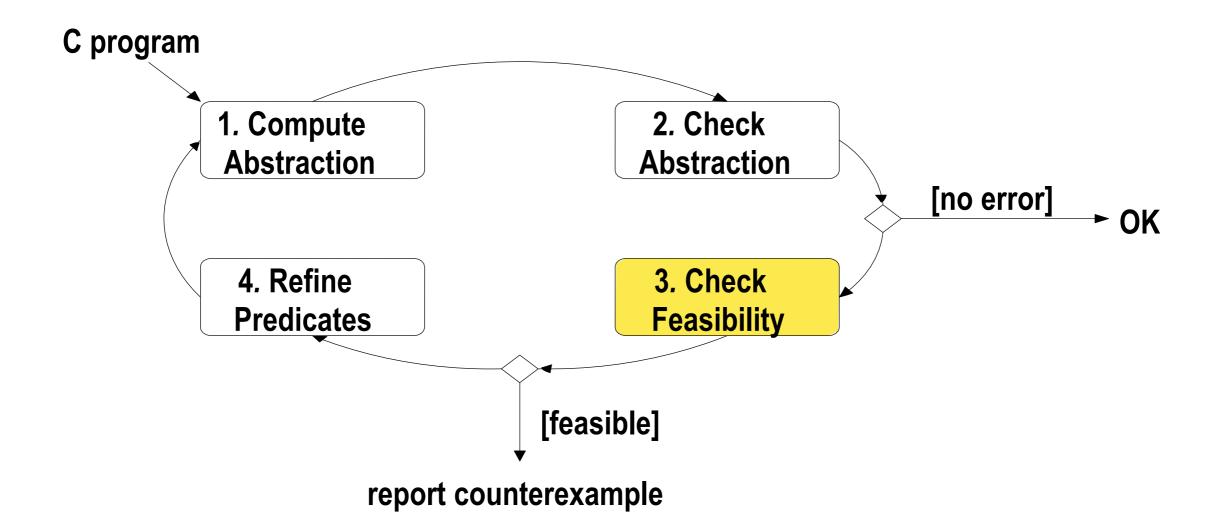
```
Data
 TRANS (PC=0) \rightarrow next(b0_argc_ge_1)=b0_argc_ge_1
                & next(b1_argc_le_213646)=b1_argc_le_21646
                & next(b2)=b2
                & (!b30 / b36) / b42)
                & (!b17 / !b30 / b48)
                & (!b30 / !b42 / !b42 / b54)
                 & (!b17 / !b30
                & (!b54 / b60)
TRANS (PC=1) -> next(b0_argc_ge_1)=b0_argc_ge_1
                & next(b1_argc_le_214646)=b1_argc_le_214746
                & next(b2)=b2
                & next(b3_nmemb_ge_r)=b3_nmemb_ge_r
                & next(b4)=b4
                & next(b5_i_ge_8)=b5_i_ge_8
                & next(b6_i_ge_s)=b6_i_ge_s
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
```



- -- the specification
- file main.c line 20 column 12
 function c :: very buggy function
 SPEC AG ((PC=51) -> ! b23)

- If the property holds, we can terminate
- If the property fails, SMV generates a counterexample with an assignment for all variables, including the PC

Simulating the Counterexample



Lazy Abstraction

- The progress guarantee is only valid if the minimal existential abstraction is used.
- Thus, distinguish spurious transitions from spurious prefixes.
- Refine spurious transitions separately to obtain minimal existential abstraction
- SLAM: Constrain

Lazy Abstraction

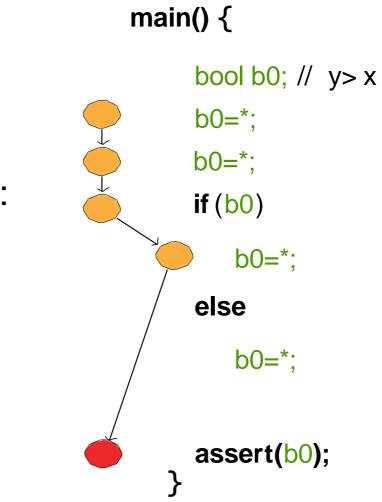
- One more observation:
 Each iteration only causes only minor changes in the abstract model
- Thus, use "incremental Model Checker", which retains the set of reachable states between iterations (BLAST)

int main() { int x, y; y=1; x=1; **if** (y>x) y——; else **y++**; assert(y>x); }

main() { bool b0; // y>x b0=*; b0=*; **Predicate: if** (**b**0) y>x b0=*; else b0=*; assert(b0); }

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

int main() { int x, y; y=1; x=1; **Predicate: if** (y>x) **y>x** y——; else **y++**; assert(y>x); }



int main() { int x, y; y=1; x=1; if (y > x)else y++; assert(y>x); }

We now do a path test, so convert to Static Single Assignment (SSA).

int main() { int x, y; y₁=1; x₁=1; **if** $(y_1 > x_1)$ y₂=y₁−1; /else y++; $assert(y_2 > x_1);$ }

$$y_{1} = 1 \land$$

$$x_{1} = 1 \land$$

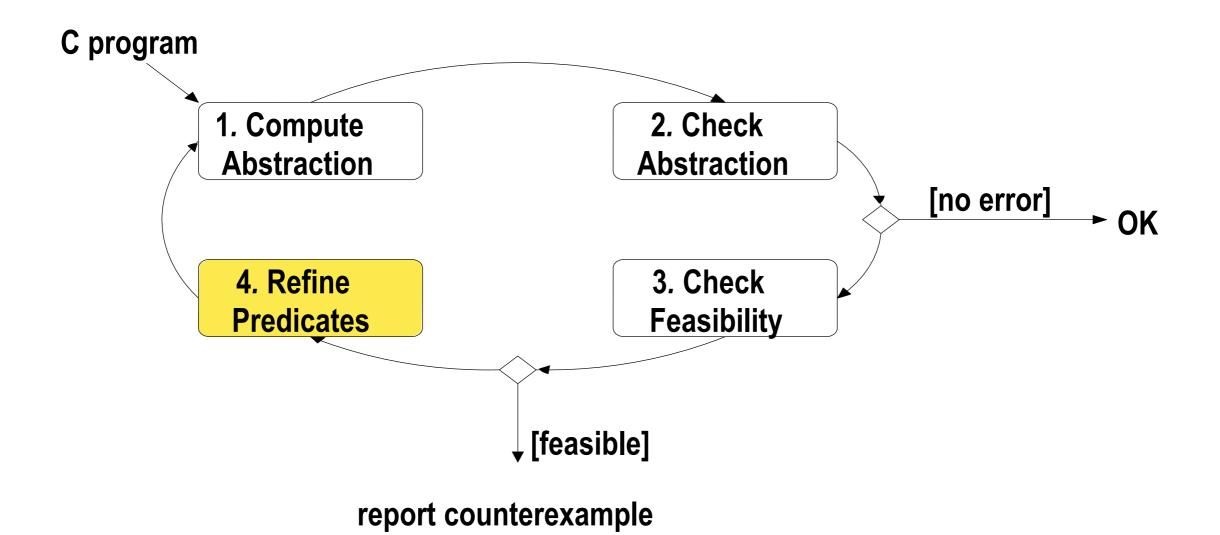
$$y_{1} > x_{1} \land$$

$$y_{2} = y_{1} - 1 \land$$

$$\neg(y_2 > x_1)$$

This is UNSAT, so $\widehat{\pi}$ is spurious.

Refining the Abstraction



Manual Proof!

}

int main() { int x, y; y=1; ${y = 1}$ x=1; ${x = 1 \land y = 1}$ **if** (y>x) y--; else $\{x = 1 \land y = 1 \land \neg y > x\}$ y++; $\{x = 1 \land y = 2 \land y > x\}$ assert(y>x);

This proof uses strongest post-conditions

An Alternative Proof

int main() { int x, y; y=1; $\{\neg y > 1 \Rightarrow y + 1 > 1\}$ x=1; $\{\neg y > x \Rightarrow y + 1 > x\}$ **if** (y>x) y--; else $\{y + 1 > x\}$ y++; $\{y > x\}$ assert(y>x);

We are using weakest pre-conditions here

wp(x:=E, P) = P[x/E] wp(S; T, Q) = wp(S, wp(T, Q)) $wp(if(c) A else B, P) = (C \Rightarrow wp(A, P)) \land (\neg C \Rightarrow wp(B, P))$

The proof for the "true" branch is missing

Refinement Algorithms

Using WP

- **1.** Start with failed guard G
- 2. Compute wp(G) along the path

Using SP

- **1.** Start at the beginning
- **2.** Compute sp(...) along the path
- Both methods eliminate the trace
- Advantages / Disadvantages?