Program Verification

CS60030 FORMAL SYSTEMS

FNAE, FASc,

A K Singh Distinguished Professor in Al,
Dept of Computer Science & Engineering
Indian Institute of Technology Kharagpur
Email: pallab@cse.iitkgp.ac.in

Web: http://cse.iitkgp.ac.in/~pallab

ory

esS
icien

'|'_T'L

Logical

A Ouery Dr ven

Valdato Proposmonal A Automatic model o c D|aqrams

aws‘.yna?.“é';ds"grokcton AIqorlthms Abstraction Moduar

Constraint .f. Quantification t. abstraction Detection OueryM mory
i
I C a | O n nference
Dy i m| = o aGlepe.ratlon Reactlve
Hardware Provnnq Reductions
- S I S analysis Revisited
‘]‘)6tzéntflers O Fgr‘:gu Quantlfled
Component Binary AbStraCt good Interpolat on Reﬂnemenl

Generahzed App:f“l;l: MOdeIS - Integnty e unit .
» Representatlon SAT T é‘stln G L Parameterized Pg?ocg:?rm

n[nu]t:, SUCCInCt tlme Fault-tolerant
erence u F WalemaquS tems
eciiErt - 9, Fameucn Dlstrlb

Untrusted Col
ise

Stath) mi (emporal i il DeveloDment Fuzzy Compatbhty

B C°mputa'°"s Software Queres St

Coverage Virtual language Tree

FORMAL METHODS FOR SAFETY CRITICAL SYSTEMS

Software Verification

Is a software program free from bugs?

m What kind of bugs?
e Lint checking - Divide by zero, Variable values going out of range
e User specified bugs — Assertions

Challenges:

m Real valued variables
e Huge state space if we have to consider all values

m Size of the program is much smaller than the number of paths to be explored
e Branchings, Loops

We need to extract an abstract state machine from a program

Abstraction: Sound versus Complete

m Sound Abstraction

If the abstraction shows no bugs, then the original program also doesn’t have bugs

m Complete Abstraction

If the abstraction shows a bug, then the original program has a bug

Due to undecidability of static analysis problems, we cant have a general procedure that is both sound and
complete.

Techniques

Abstract Static Analysis

m Abstract interpretation

m Numerical abstract domains

Software Model Checking

m Explicit and symbolic model checking

m Predicate abstraction and abstraction refinement

Example

Sample program:

int i=0

do {
assert(i <=10);
i = i+2;

} while (i < 5);

Control Flow Graph (CFG):

119

L2+

i=0;

>10] >® Error
[i<10]

[i<5] L30
i=i+2;

L4 i)

L56

Sample program:

Concrete Interpretation

int i=0
Philosoph do{
ilosophy: .
rt(i <=10);
Collect the set of possible values of i until iafsiiz-(')
a fixed point is reached o
} while (i < 5);
|
1 ilnt L1 ilnt i nt
i=0; i=0;
L2 § {0} L2 } {0,2} {0,2,4}
> »® E - @ Error
[>10] @ Error [>10] @ Error [>10]
[i<10] [i<10] | i<10]
[i<5]| L3Q{0} [i<5]| L39{0.2} i ©1{0,2,4}
i=i+2; i=i+2; i=i+2;
{2} 9 (2,4} {2,4,6}
L4 L4 _
[i>5] [i>5] | >5]
L56 @ L50 @ © {6}
lteration-1 lteration-2 lteration-3

6

Abstract Interpretation

Philosophy:

Use an abstract domain instead of value sets
Example: We may use value intervals instead of value sets

[i<5]

lteration-1

1 i[min, max]

i=0;

L2 } [0,0]

[i>10]
[i<10]
L39[0,0]
i=i+2;
[2,2]
[i>5]
L5]

»®@ Error

L4

[i<5]

Iteration-2
L1 i[mln, max]

i=0;
L2

110,2]
[i>10]
[i<10]
L39[0,2]
i=i+2;

©[2,4]

»@ Error

Sample program:
int i=0
do {

assert(i <=10);
i = i+2;
} while (i < 5);

lteration-3

L1

i=0;
L2

i[min, max]

4[0,4]
[i>10]

»@ Error

Actially, the value 5 is not possible here

Z

Numerical Abstract Domains

The class of invariants that can be computed, and hence the properties that can be proved, varies with the
expressive power of a domain

m An abstract domain can be more precise than another
m The information loss between different domains may be incomparable

Examples:

m The domain of Signs has three values: {Pos, Neg, Zero}

m Intervals are more expressive than signs. Signs can be modeled as [min,0], [0,0], and [0,maXx]
m The domain of Parities abstracts values as Even and Odd

m Signs or Intervals cannot be compared with Parities.

Predicate Abstraction

« Asound approximation R’ of the transition relation R is constructed using predicates over program variables

« Apredicate P partitions the states of a program into two classes: one in which P evaluates to true and one in

which it evaluates to false

* Each class is an abstract state
* Let A and B be abstract states. A transition is defined from A to B if there is a state in A with a transition to a
state in B

 The abstract program corresponding to R’ is represented by a Boolean program, one with only Boolean data

types, and the same control flow constructs as C programs

Predicate Abstraction

Abstraction-1 uses the predicate (i=0)
(represented by the variable b,)

CFG of program

i=0;

[i<5]

L1$

L24 [i>10]

*® Error

[i<10]
L39O

L4

[T]

Abstraction-1

b,:=

19

T.

L2,w [—b,]

[T]
L3¢

*® Error

b,:=b,?F:%

L4] —b,]

L50

Sample program:

int i=0

do {
assert(i <=10);
i++;

} while (i <5);

In Abstraction-1 the Error location is
reachable, but the counter-example
cant be reconstructed in the real
program

10

Predicate Abstraction

Abstraction-2 refines Abstraction-1 using the
additional predicate (i<5) (represented by the variable b,)

Abstraction-1

by:=

[T]

119

Abstraction-2

L1

=T, b] b,, by:=T, T, b}
L2g 120 *® Error L2g 1 *® Error
[T] [T]
L3¢ b]{ L3¢
o oE. ’ b, := b, 2F:(b,? *:F) ;
b1-- b1?F. y
b, :=b,?(b,? T:*):F ;
L4 L4
| [P | [-b]
L5 L5

Sample program:

int i=0

do {
assert(i <=10);
i++;

} while (i <5);

In Abstraction-2 the location L2 is
reached with b, every time. Hence the
Error location is unreachable.

11

Model Checking with Predicate Abstraction

* Aheavy-weight formal analysis technique

« Recent successes in software verification, e.g., SLAM at Microsoft

« The abstraction reduces the size of the model by removing irrelevant details

* The abstract model is then small enough for an analysis with a BDD-based Model Checker
« ldea: only track predicates on data, and remove data variables from model

* Mostly works with control-flow dominated properties

Source of these slides: D. Kroening: SSFT12 — Predicate Abstraction: A Tutorial

Outline

 Introduction Existential Abstraction

* Predicate Abstraction for Software

« Counterexample Guided Abstraction Refinement
« Computing Existential Abstractions of Programs
« Checking the Abstract Model

« Simulating the Counterexample Refining the Abstraction

Predicate Abstraction as Abstract Domain

We are given a set of predicates over S, denoted by 4,...,M,.

An abstract state is a valuation of the predicates:

S= B

The abstraction function:

a(s) = (My(s), - . ., My(s))

Predicate Abstraction: the Basic Idea

Concrete states over variables x, y:

T

Predicates:
p1 &= x>y
p2 &= y=0

Predicate Abstraction: The Basic Idea

Concrete states over variables x, y:

Predicates:
Pe=x>y
pe=y=0

Abstract Transitions?

Existential Abstraction®

Definition (Existential Abstraction)

Amodel M = (S, So, T) is an existential abstraction of

M = (S, So, T) with respectto a : S — S iff

- 3s€Spa(s)=85 = 3e€Syand A
« 3(s,sh eT.a(s)=8Aa(sh=8 = (5,8) eT.

1Clarke, Grumberg, Long: Model Checking and Abstraction, ACM TOPLAS, 1994

Minimal Existential Abstractions

There are obviously many choices for an existential abstraction for a
given Q.

Definition (Minimal Existential Abstraction)

Amodel M = (S,So, T) is the minimal existential abstraction of
M = (S, So, T) with respecttoa : S — Siff
e 3se€Sp.a(s)=5 &S §e$Syand A
+ A(s,sheTas)=s Aa(sh)=st & (5,sHeT.

This is the most precise existential abstraction.

Existential Abstraction

We write a(m) for the abstraction of a path m= so, s1, .. .:

a(m = a(so),a(s1),...

Existential Abstraction

We write a(m) for the abstraction of a path m= so, s1, .. .:
a(m) = a(so),a(s1),...
_emma

et M be an existential abstraction of M . The abstraction of every
path (trace) min M Is a path (trace) in M .

mTeM = qa(m eM

Proot by induction.
We say that M overapproximates M .

Abstracting Properties

Reminder: we are using
« aset of atomic propositions (predicates) A, and
« astate-labelling functionL : S — P (A)
in order to define the meaning of propositions in our properties.

Abstracting Properties

We define an abstract version of it as follows:

* First of all, the negations are pushed into the atomic propositions.

E.g., we will have
x=0cAandx#0€A

Abstracting Properties

« An abstract state sis labelled with a €A iff all of the corresponding concrete states are
labelled with a.

aelLs) & Vsla(s)= s.a€eL(s)

» This also means that an abstract state may have neither the label x = 0 nor the label x # 0-
this may happen if it concretizes to concrete states with different labels!

Conservative Abstraction

The keystone is that existential abstraction is conservative for certain properties:

Theorem (Clarke/Grumberg/Long 1994)

Let @ be a VCTL* formula where all negations are pushed into the
atomic propositions, and let M be an existential abstraction of M . If ¢
holds on M, then it also holds on M.

MEFe = MFo

We say that an existential abstraction is conservative for VCTL* properties. The same result can be
obtained for LTL properties.

The proof uses the lemma and is by induction on the structure of ¢. The converse usually does
not hold.

Back to the Example

D G D

— P1, P2 —lp1,

P1, iz

—Ipl, P2

Let’s try a Property

Property:
X>YyVy#0 < p1V ap

Let’s try a Property

Property:
X>YyV y#0 < p1V ap

Another Property

Property:
X > y — p1

Another Property

Property:
X >y — m

N
Q.
[
a 1,
Q.
a :

X >y ——

Property:

>
-
| —
()
Q.
@)
| —
al
-
()]
£
i
@)
-
<€

Another Property

Property:

x>y &= p But: the counterexample Is spurious

SLAM

« Microsoft blames most Windows crashes on third party device drivers

« The Windows device driver APl is quite complicated

* Drivers are low level C code

« SLAM: Tool to automatically check device drivers for certain errors
 SLAM is shipped with Device Driver Development Kit

* Full detail available at

http://research.microsoft.com/slam/

SLIC

Finite state language for defining properties
o Monitors behavior of C code
o Temporal safety properties (security automata)

o familiar C syntax

« Suitable for expressing control-dominated properties
o e.g., proper sequence of events

o can track data values

SLIC Example
state {

enum { Locked, Unlocked}
s = Unlocked,;

/
o acq_ KeAcq]:Jir(eSpill_’lLokcI;.)entbry {
if (s==Locked) abort;
unlocked 4 locked else s = Locked:
rel 2

KeReleaseSpinLock.entry {
If (s==Unlocked) abort;
else s = Unlocked;

/

SLIC Example
state {

enum { Locked, Unlocked}
s = Unlocked,;

/

\ acq KeAcquireSpinLock.entry {

S if (s==Locked) abort:
unlocked locked ()

= else s = Locked;
rel
R acq s

error KeReleaseSpinLock.entry {
If (s==Unlocked) abort;
else s = Unlocked;

/

Refinement Example

do {
KeAcquireSpinLock ();
nPacketsOld = nPackets;
if (request) {
request = request—> Next;
KeReleaseSpinLock();

nPackets++:

/
+ while(nPackets != nPacketsOld);

KeReleaseSpinLock ();

Refinement Example

do {
KeAcquireSpinLock ();

nPacketsOld = nPackets:

Does this code obey the if (request) {

locking rule? request = request—> Next;

KeReleaseSpinLock ();

nPackets++:

/
+ while(nPackets != nPacketsOld);

KeReleaseSpinLock ();

Refinement Example

do {
KeAcquireSpinLock ();

it (%) {

KeReleaseSpinLock ();

bs
2 while(#);

KeReleaseSpinLock ();

Refinement Example

do {
KeAcquireSpinLock ();

it (%) {

KeReleaseSpinLock ();

2 while(#);

KeReleaseSpinLock ();

Refinement Example

do {
KeAcquireSpinLock ();

it (¥ {

KeReleaseSpinLock ();

2 while(#);

KeReleaseSpinLock ();

Refinement Example

do {
KeAcquireSpinLock ();

it (¥ {

KeReleaseSpinLock ();

2 while(#);

KeReleaseSpinLock ();

Is this path concretizable?

=

Refinement Example

do {
KeAcquireSpinLock ();

nPacketsOIld = nPackets;

if (request) {
request = request—> Next;
KeReleaseSpinLock ();

nPackets++:

/
+ while(nPackets != nPacketsOId);

KeReleaseSpinLock();

Refinement Example
do {
KeAcquireSpinLock ();
nPacketsOld = nPackets;
if (request) {
request = request—> Next;

KeReleaseSpinLock ();

nPackets++:

/
+ while(nPackets != nPacketsOld);

KeReleaseSpinLock ();

This path is
spurious!

Refinement Example

do {
KeAcquireSpinLock ();

nPacketsOld = nPackets:

iIf (request) {

request = request—> Next;

KeReleaseSpinLock ();

nPackets++:

/
+ while(nPackets != nPacketsOId);

KeReleaseSpinLock ();

Let’s add the predicate
nPacketsOld==nPackets

Refinement Example

do {

KeAcquireSpinLock ();

nPacketsOld = nPackets; b=true;

if (request) {

request = request—> Next;

KeReleaseSpinLock (); nPackets++;

by
+ while(nPackets != nPacketsOld);

KeReleaseSpinLock ();

Let’s add the predicate
nPacketsOld==nPackets

Refinement Example

do {

KeAcquireSpinLock ();

nPacketsOld = nPackets; b=true;
if (request) {
request = request—> Next;

KeReleaseSpinLock ();
nPackets++: b=b?false:x

4
} while(nPackets !'= nPacketsOld); b

KeReleaseSpinLock ();

Let's add the predicate
nPacketsOld==nPackets

Refinement Example

. do {
o . :
Y KeAcquireSpinLock ();
@ b=true;
©
III.-"II H\‘xh. If (*) {
@ KeReleaseSpinLock ();
@ﬁ b=b?false:*;
@ W + whileip));

% % KeReleaseSpinLock ():

Refinement Example

. do {
W .
O KeAcquireSpinLock ();
_ b=true;
b L)
IIII,-"II ““11_ |f (>|<) {
@ KeReleaseSpinLock ();
@ﬁ b=b?false:*
RN

+ whileip));

% % KeReleaseSpinLock ():

Refinement Example

@ do {
D KeAcquireSpinLock ();
_ b=true;
b (L)
if (9 {
@ KeReleaseSpinLock ();
% b=b?false:x
b @ W 3 while ip);

b % % KeReleaseSpinLock ():
b

Refinement Example

. do {
™ . .
Y KeAcquireSpinLock ();
@ b=true;
b ®
it () {
@ KeReleaseSpinLock ();
@ﬁ b=b?false:*
| 4
b @ 'b@ } whilep);

b % % KeReleaseSpinLock ();
b

Refinement Example

do {
%/ KeAcquireSpinLock ();
b=true;
by ©
. KeReleaseSpinLock ();
b b=b?false:x;
}
b @ 'b @ }Wh”e!b);
b @ @ KeReleaseSpinLock ();
h © &

Refinement Example

do {
%/ KeAcquireSpinLock ();
b=true;
b @K
N\ if (%) {
. KeReleaseSpinLock ();
/b b=b?false:x;
}
L U
b Q 'b <|>_ }Wh”e!b);
b @ @ KeReleaseSpinLock ();
b O & The property holds!

Counterexample-guided Abstraction Refinement

» “CEGAR”
> An iterative method to compute a sufficiently precise abstraction
> Initially applied in the context of hardware [Kurshan]

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

CEGAR Overview

C program
1. Compute } { 2. Check
Abstraction Abstraction
[noerror] OK
4. Refine } { 3. Check
Predicates Feasibility
[feasible]

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Counterexample-guided Abstraction Refinement

= Claims:

1. This never returns a false error.

2. This never returns a false proof.

3. This is complete for finite-state models.

4. But: no termination guarantee in case of infinite-state systems

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Computing Existential Abstractions of Programs

C program
1. Compute } { 2. Check
Abstraction Abstraction
[noerror] OK
4. Refine } { 3. Check
Predicates Feasibility
[feasible]

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Computing Existential Abstractions of Programs

void main () {

int main () { bool pl, p2;

et 01=TRUE :

i=0: n p1 < 1=0 | p2=TRUE ;

P2 & even(l) > nile (p2) {
. . while (p

Viv+hﬂe.(even(')) 01 =pl ? FALSE : *;

1 | p2= 1p2;
}
g
C Program Predicates Boolean Program

Minimal?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Predicate Images

Reminder:

Image(X) ={s' € S|3s € X.T(s,s")}
We need:

Image(X) = {3’ € 5|38 € X.T(3,3")}

Image(X) is equivalent to:
{5,8' € $?|3s5,s" € S2.a(s) =8 A a(s") =8’ A T(s,5") }

This is called the predicate image of T .
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Enumeration

= Let’s take existential ahstraction seriously
= Basic idea: with n predicates, there are 27 - 27 possible abstract transitions

= Let’s just check them!

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Enumeration: Example

Predicates
P < 1=1
P2 & 1=2

p3 & even()

P1 P2 P3
0 0 O f(>
0 0 1
0 1 O
0 1 1
1 0 O
1 0 1
1 1 O
1 1 1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Basic Block T
i++ —> I'=i+ 1

=
O
N
O
w

Query to Solver

121 A1%2A even(l) A
i =i+ 1A
i 1 A0 #2A even(i)

R PP P OOOO DO
R P, OOFPFk OO
R Ok, OF Ok O

Enumeration: Example

Predicates
P < 1=1
P2 & 1=2

p3 & even()

P1 P2 P3 -

0 0 O

0 0 1 T
0 1 O

0 1 1

1 0 O

1 0 1

1 1 0

1 1 1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Basic Block T
i++ —> I'=i+ 1

=
O
N
O
w

Query to Solver

121 A1%2A even(l) A
i =i+ 1A
i 1 A0 #2A even(i)

R PP P OOOO DO
R P, OOFPFk OO
R Ok, OF Ok O

Enumeration: Example

Predicates
pr & 1I=1 Basic Block T
= |=2 _ 0
P2 | ++ —> =1+ 1

p3 & even()

P1 P2 P3 P1 P2 P3

T 0T o RNTREG Query to Solver
0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1 ...andsoon...
1 1 0 1 1 0

1 1 1 1 1 1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Predicate Images

Computing the minimal existential abstraction can be way too slow

« Use an over-approximation instead
v Fast(er) to compute

But has additional transitions

« Examples:
Cartesian approximation (SLAM)
« FastAbs (SLAM)
 Lazy abstraction (Blast)
 Predicate partitioning (VCEGAR)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Checking the Abstract Model

C program
1. Compute } { 2. Check
Abstraction Abstraction
[noerror] OK
4. Refine } { 3. Check
Predicates Feasibility
[feasible]

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Checking the Abstract Model

= No more integers!

= But:
« All control flow constructs, including function calls
* (more) non-determinism

v BDD-based model checking now scales

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Finite-State Model Checkers: SMV

@ Variables

VAR b0 _argc_ge 1: boolean; —-— argc>=1

VAR bl argc le 2147483646 : boolean ; —— argc <= 2147483646
VAR b2 : boolean ; —— argv[argc | == NULL
VAR b3 nmemb _ge r: boolean; —— nmemb >=r

VAR b4 : boolean ; —_ p]_ == &array[()]
VAR b5 1 ge 8: boolean; —— |>= 8

VAR b6 1 ge s: boolean; —— i>= s

VAR b7 : boolean ; — 1+ j>= 8

VAR b8 : Dboolean; —— 14+ i>=s

VAR b9 s gt O: boolean; --—s>0

VAR b10 s gt 1: boolean; -—s>1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Finite-State Model Checkers: SMV

@ Control Flow

-- program counter : 56 is the "terminating” PC
VAR PC: 0..56;

ASSIGN init (PC):=0: —initial PC

ASSIGN next (PC) : = case
PC=0: 1, --other
PC=1: 2, --other

PC=19: case -- goto (with guard)
guardl19 : 26 ;
1:20,;

esac ;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Finite-State Model Checkers: SMV

@ Data

TRANS (PC=0) —> next(bO _argc ge 1)=b0 argc ge 1
& next(bl argc le 213646)=Dbl argc le 21646

& next(b2)=b2

& ('b30 | b36)
& (!'b17 1b30
& ('b30 1 b42
& (!'b17 1b30
& ('b54 | b60)

b42)
b48)
1b42 | b54)

TRANS (PC=1) —> next(b0 _argc ge 1)=Db0 argc ge 1

next(b2)=b2

next(b4)=b4

o Ro R0 Ro Ro Ro

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

next(bl argc le 214646)=bl argc le 214746
next (b3 nmemb _ge r)=b3 nmemb ge r

next(b5 i ge 8)=b5 i ge 8
next(b6 i ge s)=b6 i ge s

Finite-State Model Checkers: SMV

@ Property

—— the specification

—— file main.c line 20 column 12
—— function c :: very buggy function
SPEC AG ((PC=51) —> !'b23)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Finite-State Model Checkers: SMV

= [f the property holds, we can terminate

= [f the property fails, SMV generates a counterexample with an assignment for all variables, including
the PC

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Simulating the Counterexample

C program
1. Compute } { 2. Check
Abstraction Abstraction
[noerror] OK
4. Refine } { 3. Check
Predicates Feasibility
[feasible]

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Lazy Abstraction

= The progress guarantee is only valid if the minimal existential abstraction is used.
* Thus, distinguish spurious transitions from spurious prefixes.

= Refine spurious transitions separately to obtain minimal existential abstraction

= SLAM: Constrain

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Lazy Abstraction

= One more observation:
Each iteration only causes only minor changes in the abstract model

= Thus, use “incremental Model Checker”, which retains the set of reachable states between iterations
(BLAST)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example Simulation

main() {
int main() {

nt . v 000! bO; /I y>x
y=1; 0=

—_

redicate: -

| if (bO
If (y>X) y> X (09)

y——: bO=*;
else else
assert(y> x); assert(b0);

Y b

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example Simulation

INt main

. 04 main() {

Int X, V;

e bool bO; /I y> X
y=1; CQ bO=*;
x=1; Sredicat @ bO=*;

redicatlte. :

if (y>x) Q\ if (b0O)

y> X
. @ bo=*
Yy ;
else
else
bO=*;
y++;
assert(y>x); assert(b0);
¥

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example Simulation

int main() {
Int x, vy,

y=1,

i (v X We now do a path test, so convert to
Ny (y>X) Static Single Assignment (SSA).

@ assert(y>x);
¥

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example Simulation

int main() { yr=1 A

int x, vy X1=1 A
O y1=1 yi=xi A
O x1=1; y2=yi=1 A
L
Q\if (y1>X1)

) yo=y1—-1

else (2 >xa)

y++;

This is UNSAT, so

@ assert(y>>x1); 7t is spurious

»

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Refining the Abstraction

C program
1. Compute } { 2. Check
Abstraction Abstraction
[noerror] OK
4. Refine } { 3. Check
Predicates Feasibility
[feasible]

report counterexample

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Manual Proof!

int main() {
Int x, v;
y=1,
{y=1}
‘=1 This proof uses

strongest
=1Ay=1

{x y =1} post-conditions
It (y>x)

y—,
else
{Xx=1Ay=1A-y>x}
y++;
{x=1Ay=2Ay>x}
assert(y>x);

An Alternative Proof

Int main() {
Int x, v;
y=1;
We are using weakest pre-conditions here
{-y>1=y+1>1}
x=1" wp(x:=E, P) = P [X/E]
{_|y > X = y +1> X} Wp(S;TIQ) - Wp(S1Wp(T1Q))
_ wp(if(c) AelseB,P)=
If (y>X)
y——; (C = wp(A,P)) A
else (—C = wp(B,P))
{y +1>x}
y++; The proof for the "true” branch is missing
{y >x}
assert(y>x);

Refinement Algorithms

Using WP

1. Start with failed guard G
2. Compute wp(G) along the path

Using SP

1. Start at the beginning
2. Compute sp(...) along the path

» Both methods eliminate the trace
Advantages / Disadvantages?

A\

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

