
Scalability in Model Checking

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

PALLAB DASGUPTA,

FNAE, FASc,

A K Singh Distinguished Professor in AI,

Dept of Computer Science & Engineering

Indian Institute of Technology Kharagpur

Email: pallab@cse.iitkgp.ac.in

Web: http://cse.iitkgp.ac.in/~pallab

CS60030 FORMAL SYSTEMS

Handling Large State Spaces

State Explosion

• If M has k state variables, then it has 2k states

• Not all these states are reachable

• Not all state variables are relevant for a property we wish to prove

Representation

• Symbolic – we will never actually generate the explicit state space

• Reduced – throw out those state variables that are inconsequential

Decision strategies

• Proving the property on an abstraction of M may be sufficient

• Proving the property assuming all states are reachable may be sufficient

2

More on scalability

• BDD, SAT, SMT

• Not good enough for many of the state spaces where we wish to use formal methods

OPTIONS (we will elaborate each of these)

• BOUNDED SEARCH

• In many cases we may know an upper-bound on the length of potential counter-examples

• We can unfold only up to that depth

• INDUCTION

• We can inductively prove certain properties with limited unfolding

• ABSTRACTION – REFINEMENT

• We reduce the complexity of the STS by dropping some of its variables and prove that the

abstraction is safe

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

BOUNDED MODEL CHECKING

Bounded Model Checking

• Represent sets of states and the transition relation as Boolean logic formulas

• Instead of computing the fixpoints, unroll the transition relation up to certain fixed bound

and search for violations of the property within that bound

• Transform this search to a Boolean satisfiability problem and solve it using a SAT solver

Example: Bound=2

Clauses from Transition Relation:

C1
1: r20 r10 g10 g21

C2
1: r10 g11

r1

r2

g1

g2
Clauses from Initial State:

I: g20 g10

Is there a witness of length=2?

Clauses from Property: F(r1 (Xg1 XXg1))

Z1: r10 g11

SAT Check: Is Z1 I C1
1 C2

1 satisfiable?

Answer: No, since Z1 conflicts with C2
1

7

Example: Bound=3

Clauses from Transition Relation:

C1
1, C2

1: from previous iteration

C1
2: r21 r11 g11 g22

C2
2: r11 g12

r1

r2

g1

g2
Clauses from Initial State:

I: g20 g10

Is there a witness of length=3?

Clauses from Property: F(r1 (Xg1 XXg1))

Z2: (r10 (g11 g12)) (r11 g1
2)

SAT Check: Is Z2 I C1
1 C2

1 C1
2 C2

2 satisfiable?

Yes: Witness: r10 = 1, r11 = 0, g11 = 1, g12 = 0, rest are don’t cares

Conclusion: We have found a bug!!

What Can We Guarantee?

Note that we are checking only for bounded paths (paths which have at most k+1 distinct

states)

• So if the property is violated by only paths with more than k+1 distinct states, we would not find a

counter-example using bounded model checking

• Hence if we do not find a counter-example using bounded model checking we are not sure that the

property holds

However, if we find a counter-example, then we are sure that the property is violated since the

generated counter-example is never spurious (i.e., it is always a concrete counter-example)

Proving Correctness

If we can find a way to figure out when we should stop then we would be able to provide

guarantee of correctness.

There is a way to define a diameter of a transition system so that a property holds for the

transition system if and only if it is not violated on a path bounded by the diameter.

So if we do bounded model checking using the diameter of the system as our bound, then we

can guarantee correctness if no counter-example is found.

10

Formal Methodology

Bound on path length k

Clauses describing the system M :

- Initial state : I(s1)

- Unrolled transition relation : Λi=1..k-1 T(si , si+1)

Loop clause loopk = Vi=1..k T(sk , si)

[f]i,k means that temporal property f is true at runs starting from si and provable in k BMC iterations.

For the property f to hold on the system M Λ [f]1,k must be valid.

11

Translation of LTL to SAT

Xf is true at state si , iff f is provable starting from si+1

[X f]i,k = (i < k) Λ [f]i+1,k

Ff is true in state si , iff f is provable within k iterations from some future state sj

[F f]ik = Vj=i..k [f]j,k

Gf is true in state si , iff f is true at all states reachable in k iterations and all paths loop

[G f]i,k = Λj=i..k [f]j,k Λ loopk

f U g is true at si , iff g is provable from some state reachable within k iterations and f is

provable from all preceding states within k iterations

[f U g]i,k = Vj=i..k([g]j,k Λ Λn=i..j-1[f]n,k)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
2

INDUCTION

The intuitive basis for induction

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
3

Is any bad state reachable

from any initial state?

INITIAL

STATES

BAD

STATES

State transition system

Suppose we prove the following:

• All initial states are good, and

• The transition relation does not allow

any transition from a good state to a bad

state

Then inductively, we are safe

Let p be the formula representing bad states

Then we check:

1. Whether Q0 p is empty

2. Whether PreImage(p) p is empty

If both are true, then we have inductively shown that bad states are unreachable

The notion of k-induction

For k= 0, 1, ….

1. Check whether any state reachable from Q0 in k or fewer steps is bad.

If so, report counterexample and exit.

2. Check whether R guarantees that there is no transition to a bad state after k safe steps

If so, exit with success.

3. Otherwise continue to the next iteration

For finite state systems we can guarantee that the above will terminate in a finite number of
iterations.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
4

Is any bad state reachable

from any initial state?

INITIAL

STATES

BAD

STATES

State transition system

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
5

ABSTRACTION REFINEMENT

Cone-of-influence reduction

Two state variables

• b and d

The value of f is influenced by:

• Input a

• State S1

The value of g is influenced by:

• Input b

• State S2
• State S1, because S2 is influenced by it

• Input a, because S1 is influenced by it

Computable using static analysis

16

a x

y

f

b

z

w

g

S

1

S

2

Abstraction

Cone-of-influence reduction with respect to a property does not loose any relevant
information

• The problem is that quite often COI is not enough

Abstractions further reduce the size of the state machine

What kind of abstractions do we want?

• Bugs must not escape detection.

• This is guaranteed by the following constraint:

• Any run which exists in the original state machine must also exist in the abstract state
machine

• This is achieved by existential abstraction of the transition relation

17

Existential Abstraction

In this example, we eliminate x2

• Let h(s) denote the abstract state corresponding

to a state s in the original machine

• Existential abstraction:

T(sa, sb) T(h(sa), h(sb))

• In other words:

T(si, sj) sa, sb T(sa, sb) such that

h(sa) = si and h(sb) = sj

18

00

01

10

11

0 1

T(x1, x2)

T(x1)

Existential Abstraction

Corresponding to every run in the original state machine, we have a run in the abstract state

machine

• Therefore counterexamples in the original machine (if any) are preserved in the abstract state

machine

• If a property holds on the abstract state machine, then it also holds in the original state machine

Problem: A counterexample found in the abstract state machine is not necessarily real

19

False counterexample

Consider the property

G(x1 G (x1))

• Whenever x1 goes high, it stays high

• This is true in the original state machine

(look at the reachable states only)

• But it is false in the abstract state m/c

20

00

01

10

11

0 1

T(x1, x2)

T(x1)

Abstraction Refinement

2
1

Abstract State M/C +

Properties

model checker

PASS?

Real Cex?

counterexample analysis

yes

no

Refine the abstraction

no yes

23

Checking the Counterexample

Counterexample: (c1, …,cm)

• Each ci is an assignment to the set of remaining state variables.

Concrete traces corresponding to the counterexample:

𝝋 = 𝑰 𝒔𝟏 ∧ ሥ

𝒊=𝟏

𝒎−𝟏

𝑹(𝒔𝒊, 𝒔𝒊+𝟏) ∧ ሥ

𝒊=𝟏

𝒎

𝒉 𝒔𝒊 = 𝒄𝒊

Initial State Unrolled Transition

Relation
Compliance with

counterexample

24

• Simulate counterexample on concrete model with SAT

• If the instance is unsatisfiable, analyze conflict

• Make visible one of the variables in the clauses that lead to the conflict

Source: Chauhan, Clarke, Kukula, Sapra, Veith, Wang, FMCAD 2002

Abstraction/Refinement with conflict analysis

25

Why do we get spurious counterexample?

I

I

Deadend
states

Bad
States

Failure
State

f

26

Refinement

Problem: Deadend and Bad States are in the same abstract state.

Solution: Refine abstraction function.

The sets of Deadend and Bad states should be separated into different abstract states.

I

I

Deadend

states

Bad

States
Failure

State

f

27

Refinement

h’ h’ h’h’ h’

Refinement : h’

h’h’

28

Refinement

Deadend

States

𝜑𝐷 = 𝑰 𝒔𝟏 ∧ ሥ

𝒊=𝟏

𝒇−𝟏

𝑹(𝒔𝒊, 𝒔𝒊+𝟏) ∧ ሥ

𝒊=𝟏

𝒇

𝒉 𝒔𝒊 = 𝒄𝒊

29

Refinement

Deadend

States

Bad

States
𝜑𝐵 = 𝑹(𝒔𝑓 , 𝒔𝑓+𝟏) ∧ 𝒉 𝒔𝒇 = 𝒄𝒇 ∧ 𝒉 𝒔𝒇+𝟏 = 𝒄𝒇+𝟏

𝜑𝐷 = 𝑰 𝒔𝟏 ∧ ሥ

𝒊=𝟏

𝒇−𝟏

𝑹(𝒔𝒊, 𝒔𝒊+𝟏) ∧ ሥ

𝒊=𝟏

𝒇

𝒉 𝒔𝒊 = 𝒄𝒊

Is D B = ?

30

Refinement as Separation

0 1 0 1 0 1 0

0 0 1 0 0 1 0

0 1 1 1 0 1 0

d1

b1

b2

Invisible

Visible

0

1

1

1

0

1

Refinement: Find subset U of I that separates between all pairs of dead-end and bad states.

Make them visible.

U must be minimal !

31

Refinement as Separation

0 1 0 1 0 1 0

0 0 1 0 0 1 0

0 1 1 1 0 1 0

d1

b1

b2

0

1

1

I

V

Refinement: Find subset U of I that separates between all pairs of dead-end and bad states.

Make them visible.

U must be minimal !

32

Refinement as Separation

The state separation problem

Input: Sets D, B

Output: Minimal U I s.t.:

 d D, b B, u U. d(u) b(u)

The refinement h’ is obtained by adding U to V.

33

Separation methods

ILP-based separation

• Minimal separating set.

• Computationally expensive.

Decision Tree Learning based separation.

• Not optimal.

• Polynomial.

