Scalability in Model Checking

CS60030 FORMAL SYSTEMS

A Ouery Dr ven

Valdato Proposmonal A Automatic model o c D|aqrams

o aCUB‘.ynaEr‘.uffsng@ect<>n Alqorlthms Abstraction Moduar

FNAE, FASC, csn(.‘n - g .fi é‘”éti 6"‘“'hDotoctlon QuerYM mory
L] u u n . Fe i

A K Singh Distinguished Professor in Al, Dynam.c iy GSé“ Rdeactlvir':::
i i I .’mmr, ' N2 I ai:ys:g(iwsne o

Dept of Cqmputer Science & Engineering '|'_ T.L componente.,,a,y Rosirart . Quantiied. .

Indian Institute of Technology Kharagpur e App.”i.i': P C hnmeqmy e k.

. . . Representatlon SAT T“ Program
Email: pallab@cse.iitkgp.ac.in permerts SUCC.ncaam;TeWaswgpqgg‘mmgmzei: Programs D tTib
LR [ ] erence F k
Web: http://cse.iitkgp.ac.in/~pallab et Statxlcsvs@mw@%;m. y 4 Dgpmemm§ B

Sotty 0, TS 'Software oueres i

Coverage Virtual language Tree

FORMAL METHODS FOR SAFETY CRITICAL SYSTEMS




Handling Large State Spaces

State Explosion

* If M has k state variables, then it has 2* states
* Not all these states are reachable
* Not all state variables are relevant for a property we wish to prove

Representation

- Symbolic — we will never actually generate the explicit state space
» Reduced - throw out those state variables that are inconsequential

Decision strategies

* Proving the property on an abstraction of M may be sufficient
* Proving the property assuming all states are reachable may be sufficient




More on scalability

- BDD, SAT, SMT

* Not good enough for many of the state spaces where we wish to use formal methods

OPTIONS (we will elaborate each of these)
 BOUNDED SEARCH

* In many cases we may know an upper-bound on the length of potential counter-examples
*  We can unfold only up to that depth

« INDUCTION

« We can inductively prove certain properties with limited unfolding
« ABSTRACTION - REFINEMENT

« We reduce the complexity of the STS by dropping some of its variables and prove that the
abstraction is safe

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR ™



BOUNDED MODEL CHECKING

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR <



Bounded Model Checking

* Represent sets of states and the transition relation as Boolean logic formulas

* [nstead of computing the fixpoints, unroll the transition relation up to certain fixed bound
and search for violations of the property within that bound

 Transform this search to a Boolean satisfiability problem and solve it using a SAT solver




Example: Bound=2

1M— " g1
o R
_Do_ . gz

Clauses from Property: F(r1 A (—Xg1 v —XXg1))
Z': M9A—g1

SAT Check: Is Z' A1 A C;' A C,! satisfiable?

Answer: No, since Z' conflicts with C,'

Is there a witness of length=2?

Clauses from Transition Relation:

Cl ”A-r'A—-g1'= g2'
C,;: M= g1

Clauses from Initial State:
I: 920 A —|g10




Example: Bound=3

Is there a witness of length=3?

Clauses from Transition Relation:
M= " g1 C,!, C,": from previous iteration
Cx r'A-r' A—gl'= g22

DO‘} - 2 C,z r'= g12

Clauses from Initial State:
I: 920 N _Ig10

r2—

Clauses from Property: F(r11 A (—Xg1 v —XXg1) )
Z% (MOA(—=gl'v —=g1?)) v (1! A —=g.?)

SAT Check: Is Z2 A1 A C,' AC," A C,2 A C,2 satisfiable?

Yes: Witness: r11°=1,r1'=0, g1' =1, g12 =0, rest are don’t cares

Conclusion: We have found a bug!!




What Can We Guarantee?

Note that we are checking only for bounded paths (paths which have at most k+1 distinct
states)

* So if the property is violated by only paths with more than k+1 distinct states, we would not find a
counter-example using bounded model checking

* Hence if we do not find a counter-example using bounded model checking we are not sure that the
property holds

However, if we find a counter-example, then we are sure that the property is violated since the
generated counter-example is never spurious (i.e., it is always a concrete counter-example)




Proving Correctness

If we can find a way to figure out when we should stop then we would be able to provide
guarantee of correctness.

There is a way to define a diameter of a transition system so that a property holds for the
transition system if and only if it is not violated on a path bounded by the diameter.

So if we do bounded model checking using the diameter of the system as our bound, then we
can guarantee correctness if no counter-example is found.




Formal Methodology

Bound on path length k

Clauses describing the system M :

- Initial state : I(s,)
- Unrolled transition relation : Ai=1..k-1 T(S;, Si1)

Loop clause loop, = Vi=1..k T(sg, s)

[f]; « means that temporal property f is true at runs starting from s; and provable in k BMC iterations.

For the property f to hold on the system M A [f],, must be valid.

10



Translation of LTL to SAT

Xf is true at state s, , iff f is provable starting from s,
[ Xl = (i<k)A[f]q

Ff is true in state s; , iff f is provable within k iterations from some future state s,
[Ffly = j=i. k [f ]j,k

Gf is true in state s, , iff f is true at all states reachable in k iterations and all paths loop
[Gflix= A= x[f]xAloop,

fUgis true at s, , iff g is provable from some state reachable within k iterations and f is
provable from all preceding states within k iterations

[fUG]ix = Vieikl [ 9 LA Apsijal T 104

11



INDUCTION

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



The intuitive basis for induction

State transition system
BAD
STATES

Is any bad state reachable Suppose we prove the following:
from any initial state? « All initial states are good, and
INITIAL - The transition relation does not allow
STATES iti
any transition from a good state to a bad

/ state

Then inductively, we are safe

Let p be the formula representing bad states

Then we check:

1. Whether Q, A p is empty

2. Whether Prelmage(p) A —p is empty

If both are true, then we have inductively shown that bad states are unreachable

13

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



State transition system

The notion of k-induction
BAD

STATES
Is any bad state reachable
from any initial state?

INITIAL
STATES

/’
Fork=0,1,....

1. Check whether any state reachable from Q, in k or fewer steps is bad.
If so, report counterexample and exit.

2. Check whether R guarantees that there is no transition to a bad state after k safe steps
If so, exit with success.

3. Otherwise continue to the next iteration

For finite state systems we can guarantee that the above will terminate in a finite number of
iterations.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



ABSTRACTION REFINEMENT

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Cone-of-influence reduction

Two state variables

- bandd @l

:

The value of fis influenced by: ! D—‘ y
* Input a 5
- State S1 r 1 [
.. S
The value of g is influenced by: 2 [T
* Input b Z
- State S2 —qj_'

- State S1, because S2 is influenced by it 33_9
* Input a, because S1 is influenced by it

Computable using static analysis

:

16



Abstraction

Cone-of-influence reduction with respect to a property does not loose any relevant
information

 The problem is that quite often COl is not enough

Abstractions further reduce the size of the state machine

What kind of abstractions do we want?

« Bugs must not escape detection.
* This is guaranteed by the following constraint:

 Any run which exists in the original state machine must also exist in the abstract state
machine

* This is achieved by existential abstraction of the transition relation

17



Existential Abstraction

In this example, we eliminate x,

* Let h(s) denote the abstract state corresponding
to a state s in the original machine

- Existential abstraction:
T(s,, s,) = T'( h(s,), h(s,) )
* |In other words:
T'(s,s;)=3s,, s, T(s, s;) such that
h(s,) =s; and h(s,) =s;

18




Existential Abstraction

Corresponding to every run in the original state machine, we have a run in the abstract state
machine

 Therefore counterexamples in the original machine (if any) are preserved in the abstract state
machine

- If a property holds on the abstract state machine, then it also holds in the original state machine

Problem: A counterexample found in the abstract state machine is not necessarily real

19



False counterexample

Consider the property

G(x;=G(x))

* Whenever x, goes high, it stays high

* This is true in the original state machine
(look at the reachable states only)

* Butitis false in the abstract state m/c

20




Abstraction Refinement

Abstract State M/C +
Properties

model checker

Refine the abstraction > &
A

counterexample analysis

(SN
=

no




Checking the Counterexample

Counterexample: (c,, ...,c,)

* Each c; is an assignment to the set of remaining state variables.

Concrete traces corresponding to the counterexample:

@ =1(s1) A 17_\1R(Si»si+1) A (/m\ h(s;) = Ci)
i=1 i=1

Initial State Unrolled Tr.ansition Compliance with
Relation counterexample

23




Abstraction/Refinement with conflict analysis

« Simulate counterexample on concrete model with SAT
« [f the instance is unsatisfiable, analyze conflict

 Make visible one of the variables in the clauses that lead to the conflict

Source: Chauhan, Clarke, Kukula, Sapra, Veith, Wang, FMCAD 2002

24



Why do we get spurious counterexample?

Deadend
states

e—0 0o e o
o # st e s
e o 0 -0 @
- S

Bad
States

Failure
State

25




Refinement

Problem: Deadend and Bad States are in the same abstract state.
Solution: Refine abstraction function.

The sets of Deadend and Bad states should be separated into different abstract states.

Deadend
st

Y

@
O

e —0 | ©®
‘\ Py
L) M
@—@

H—B

Bad
States

®
o

“

o
: %ﬁ.ﬁ

Failure
State

26



27

| Refinement

Refinement : h’




Refinement

Deadend
States

Ciaed

28



Refinement

f-1 f
0p = 1(s) A ( /\RGss Si+1)> . ( [\ his) = c,->
i=1 i=1

Deadend
States

—_— ] —
—_— ] —
—_— ] —
—_— ] —

iy

Is oo A g =D ?

Ry

f

©p = R(S7,Sr41) A h(sf) =cf A h(sf+1) = Cfi1

29



Refinement as Separation

d,

Invisible
b,
b,

Refinement: Find subset U of | that separates between all pairs of dead-end and bad states.
Make them visible.

U must be minimal !

30



Refinement as Separation

d, I o 1 [ ¢

b, Jo ol o

b, Jo 1 ¢

Refinement: Find subset U of | that separates between all pairs of dead-end and bad states.
Make them visible.

U must be minimal !

31



Refinement as Separation

The state separation problem
Input: Sets D, B
Output: Minimal U e s.t.:
VdeD,VbeB,Jue U. d(u)=+b(u)

The refinement h’ is obtained by adding U to V.

32



Separation methods

ILP-based separation

 Minimal separating set.
- Computationally expensive.

Decision Tree Learning based separation.

* Not optimal.
* Polynomial.

33



