Model Checking

CS60030 FORMAL SYSTEMS

PALLAB DASGUPTA,

FNAE, FASc, A K Singh Distinguished Professor in AI, Dept of Computer Science & Engineering Indian Institute of Technology Kharagpur

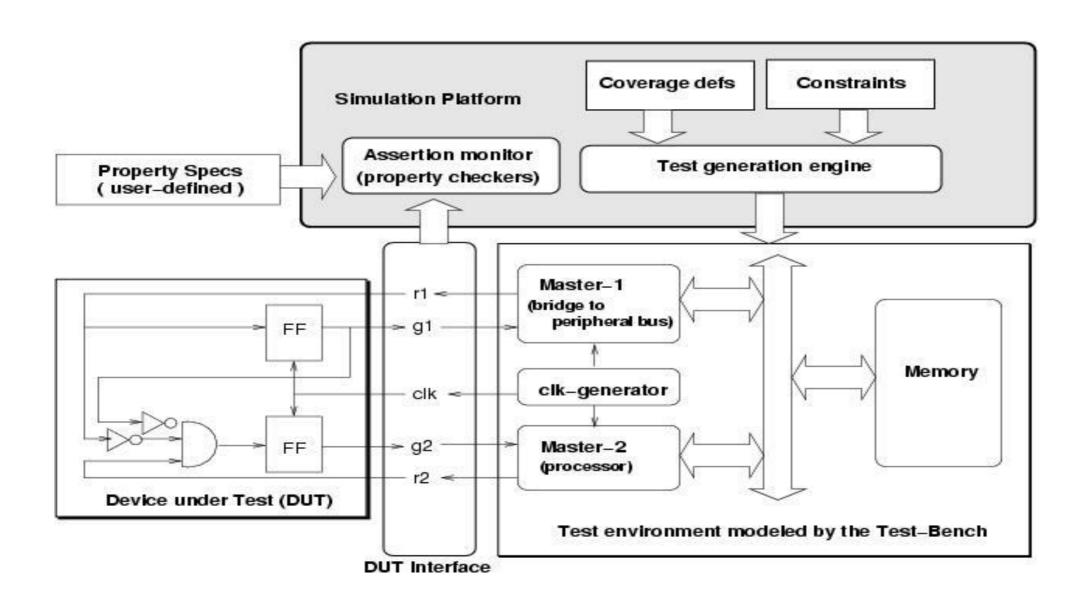
Email: pallab@cse.iitkgp.ac.in

Web: http://cse.iitkgp.ac.in/~pallab

Formal Property Verification

- What is formal property verification?
 - Verification of formal properties?
 - Formal methods for property verification?
- Both are important requirements
- Broad Classification
 - Dynamic property verification (DPV)
 - Static/Formal property verification (FPV)

Dynamic Property Verification (DPV)



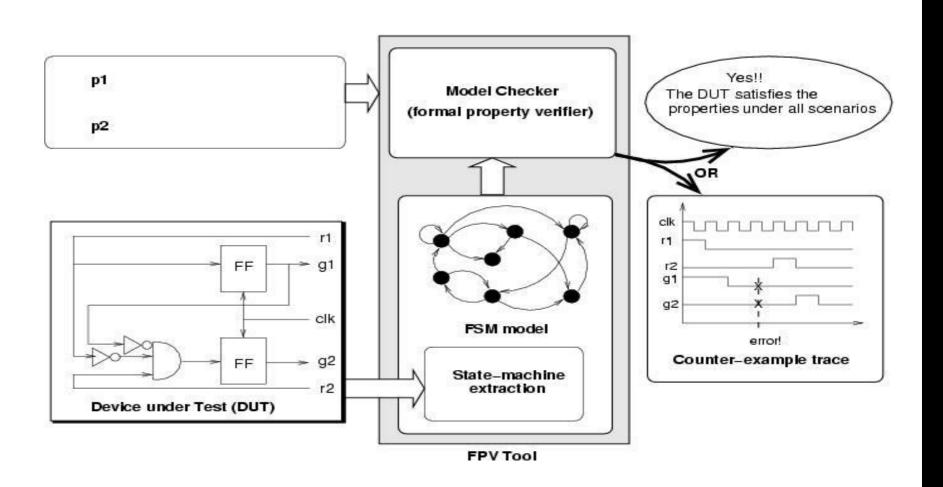
Formal Property Verification (FPV)

Temporal Logics (Timed / Untimed, Linear Time / Branching Time): *LTL, CTL*

Early Languages: Forspec (Intel), Sugar (IBM), Open Vera Assertions (Synopsys)

Current IEEE Standards: SystemVerilog Assertions (SVA),

Property Specification Language (PSL)



Formal Property Verification

The formal method is called "Model Checking"

- The algorithm has two inputs
 - A finite state transition system (FSM) representing the implementation
 - A formal property representing the specification
- The algorithm checks whether the FSM "models" the property
 - This is an exhaustive search of the FSM to see whether it has any path / state that refutes the property.

Transition Systems and Kripke Structures

A *transition system TS* is a tuple $(S, Act, \rightarrow, I, AP, L)$ where

- S is a set of states
- Act is a set of actions
- $\cdot \rightarrow \subseteq S \times Act \times S$ is a transition relation
- \cdot $I \subseteq S$ is a set of initial states
- AP is a set of atomic propositions
- $L: S \rightarrow 2^{AP}$ is a labeling function

S and Act are either finite or countably infinite

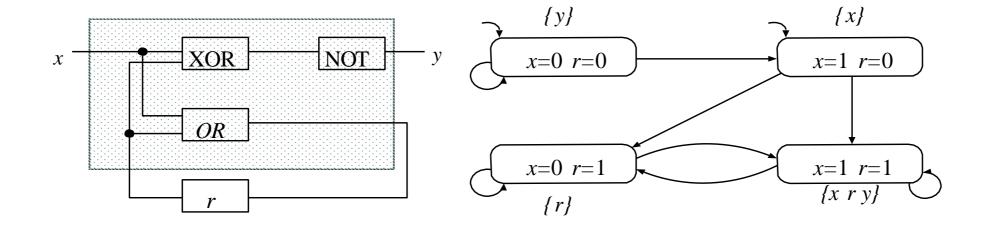
A *Kripke Structure TS* is a tuple $(S, \rightarrow, I, AP, L)$ where

- S is a set of states (inputs are part of the state)
- $\cdot \rightarrow \subseteq S \times S$ is a transition relation
- \cdot $I \subseteq S$ is a set of initial states
- AP is a set of atomic propositions
- $L: S \rightarrow 2^{AP}$ is a labeling function
- → is a total relation, that is, every state has a next state (could be itself)

S is finite

In this discussion we shall use the notion of Kripke structures

Modeling Sequential Circuits as Kripke Structures



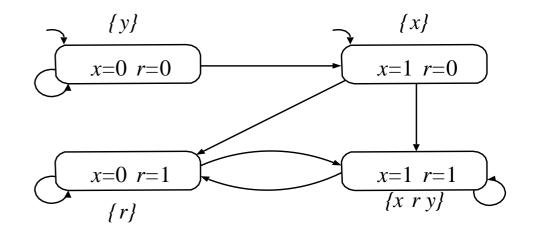
A simple hardware circuit with Input variable x, Output variable y, and Register rOutput function $\neg(x \oplus r)$ and register evaluation function $x \lor r$

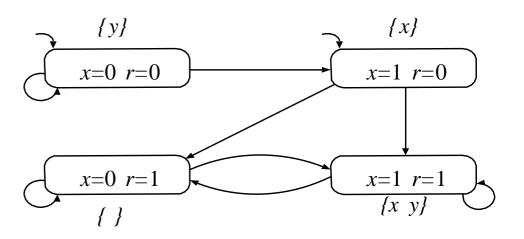
Atomic Propositions

Consider two possible state-labelings:

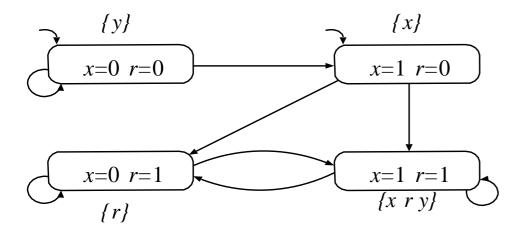
- Let $AP = \{x, y, r\}$
 - $-L((x = 0, r = 1)) = \{r\} \text{ and } L((x = 1, r = 1)) = \{x, r, y\}$
 - $-L((x = 0, r = 0)) = \{y\} \text{ and } L((x = 1, r = 0)) = \{x\}$
 - property e.g., "once the register is one, it remains one"

- $-L((x = 0, r = 1)) = \emptyset$ and $L((x = 1, r = 1)) = \{x, y\}$
- $-L((x = 0, r = 0)) = \{y\} \text{ and } L((x = 1, r = 0)) = \{x\}$
- property e.g., "the output bit y is set infinitely often"





Automata over Infinite Words



Runs of the transition system:

$$\Sigma = \{ \{ \}, \{x\}, \{y\}, \{r\}, \{x y\}, \{x r\}, \{r y\}, \{x r y\} \} = 2^{AP}$$

Each run of the system belongs to $(2^{AP})^{\omega}$ that is, the set of infinite words over Σ

Runs(TS)
$$\subseteq$$
 (2^{AP}) $^{\omega}$

- A run of this state machine is an infinite sequence of states.
 - If we observe only the state labels, then each state is viewed as a combination of labels (note that two states can have same labels)

Runs of the formal property:

Linear time properties are also defined over $\Sigma = 2^{AP}$

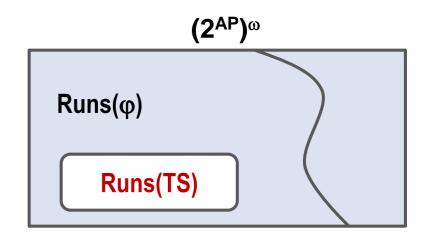
Each run in $(2^{AP})^{\omega}$ either satisfies a given formal property ϕ or is a counterexample

$$\mathsf{Runs}(\varphi) \subseteq (2^{\mathsf{AP}})^{\omega}$$

 $TS \models \phi$ (read as TS models ϕ) iff $Runs(TS) \subseteq Runs(\phi)$

Model Checking Linear Time Properties

- Linear Temporal Logic (LTL) captures an expressive subset of Omega Regular Languages
 - SVA is derived from LTL
- Given a LTL property, ϕ , to determine whether TS $\models \phi$ we do the following:
 - Since TS $\models \varphi$ iff Runs(TS) \subseteq Runs(φ), it follows that Runs(TS) \cap [$(2^{AP})^{\omega}$ Runs(φ)] = \emptyset

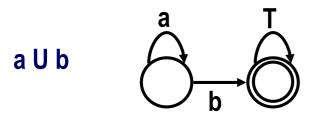


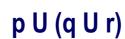
- We create an automaton, $B_{\neg \phi}$, which accepts runs satisfying $\neg \phi$, that is, runs in $(2^{AP})^{\omega}$ Runs (ϕ)
- We compute the product of TS with $B_{\neg \phi}$ and check whether the product has any accepting run.
 - If not then TS $\models \varphi$.
 - Otherwise, the accepting run is a counter-example trace.

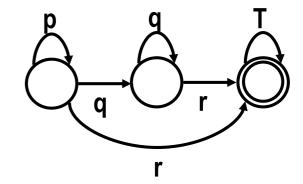
Nondeterministic Büchi automata

- NFA (and DFA) are incapable of accepting infinite words
- A nondeterministic Büchi automaton (NBA) A is a tuple (Q, Σ , δ , Q₀, F) where:
 - Q is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
 - Σ is an alphabet
 - $\delta: Q \times \Sigma \rightarrow 2^Q$ is a transition function
 - F ⊆ Q is a set of accept (or: final) states
- NBAs are structurally similar to NFAs.
- But they have separate acceptance criteria
 - An NFA accepts its (finite) input if some run of the NFA reaches an accept state at the end of the input
 - A Büchi automaton accepts its infinite length input if at least one of the accept states is visited infinitely
 often

Linear Time Properties can be converted to NBA







$$GF(p \land Xp)$$

$$p$$

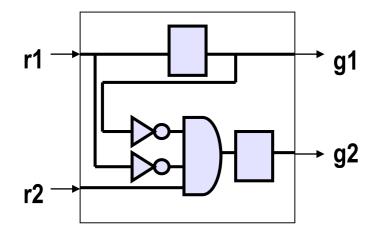
$$T$$

Here the Büchi acceptance criteria ensures that $p \wedge Xp$ is satisfied infinitely often.

DFAs and NFAs are equally powerful, and therefore many algorithms convert a NFA to a DFA before product construction.

Non-deterministic Büchi automata are strictly more powerful than deterministic Büchi automata. Therefore we do not attempt to convert a NBA to a DBA.

Our running example: Priority Arbiter



Design-under-test (DUT)

Specification: Formal Property

- One of the grant lines is always asserted
- In Linear Temporal Logic: G(g1 ∨ g2)

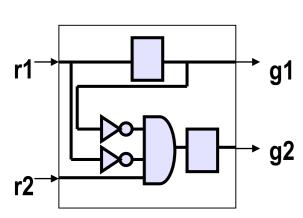
We wish to check whether: $TS(DUT) = G(g1 \vee g2)$

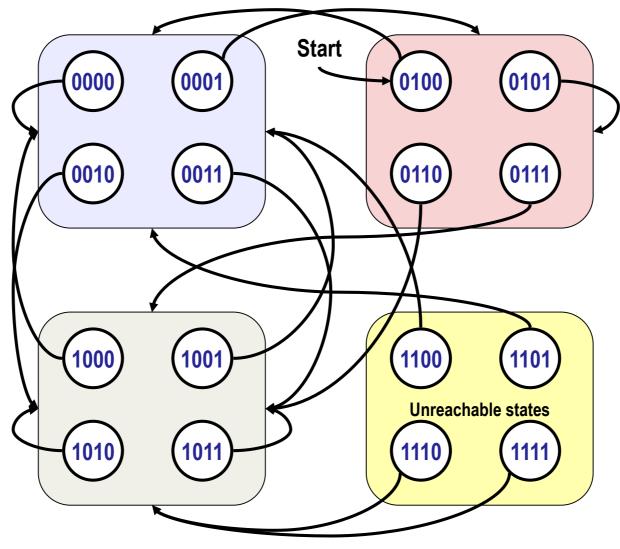
The Kripke Structure: TS(DUT)

Transition Relation:

 $g'_1 \Leftrightarrow r_1$ $g'_2 \Leftrightarrow \neg r_1 \wedge r_2 \wedge \neg g_1$

Initial State:





PS	I/P	NS	Next
9 ₁ 9 ₂	r ₁ r ₂	g′ ₁ g′ ₂	I/P
00	00	00	XX
00	01	01	ХX
00	10	10	ХX
00	11	10	ХX
01	00	00	XX
01	01	01	ХX
01	10	10	ХX
01	11	10	XX
10	00	00	XX
10	01	00	ХX
10	10	10	ХX
10	11	10	XX
11	00	00	XX
11	01	00	ХX
11	10	10	ХX
11	11	10	XX

This is only for demonstration !!

We will never create this explicitly, but encode it in SAT / BDD

Now we handle the specification

Our property:
$$\varphi = G[g_1 \vee g_2]$$

Either of the grant lines is always active

We will create the automaton, \mathcal{A} , for $\neg \phi$

- $\neg \varphi = F[\neg g_1 \land \neg g_2]$
- Sometime both grant lines will be inactive

We will then search for a common run between this automaton and the TS(DUT) from the implementation

Intuitive steps towards creating the automaton for the property

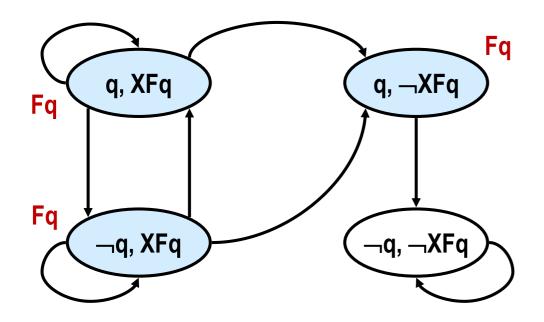
- Let us consider our property $F(\neg g_1 \land \neg g_2)$ // Eventually q is true
- Using q as a short form for $\neg g_1 \land \neg g_2$ we can rewrite it as:

```
Fq = q \vee XFq // Either q is true now or Fq is true in the next state
```

- Therefore we can classify the states in a run into the following types:
 - States that satisfy q
 - States that do not satisfy q but satisfy XFq
 - States that do not satisfy q and do not satisfy XFq
 - The first two types are labeled by Fq

The automaton for our property

Our property: Fq where $q = \neg g_1 \land \neg g_2$

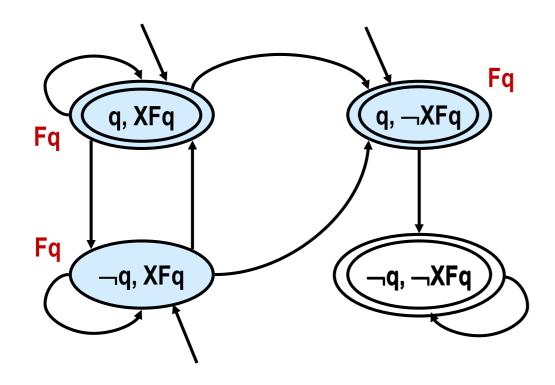


 States that satisfy q and states that do not satisfy q but satisfy XFq are labeled with Fq

- We add the following edges:
 - From states satisfying XFq to states labeled with Fq
 - From states satisfying —XFq to states satisfying —q
- But the self loop in the state labeled {¬q, XFq} is problematic
 - It allows the satisfaction of q to be postponed forever, in which case Fq does not hold

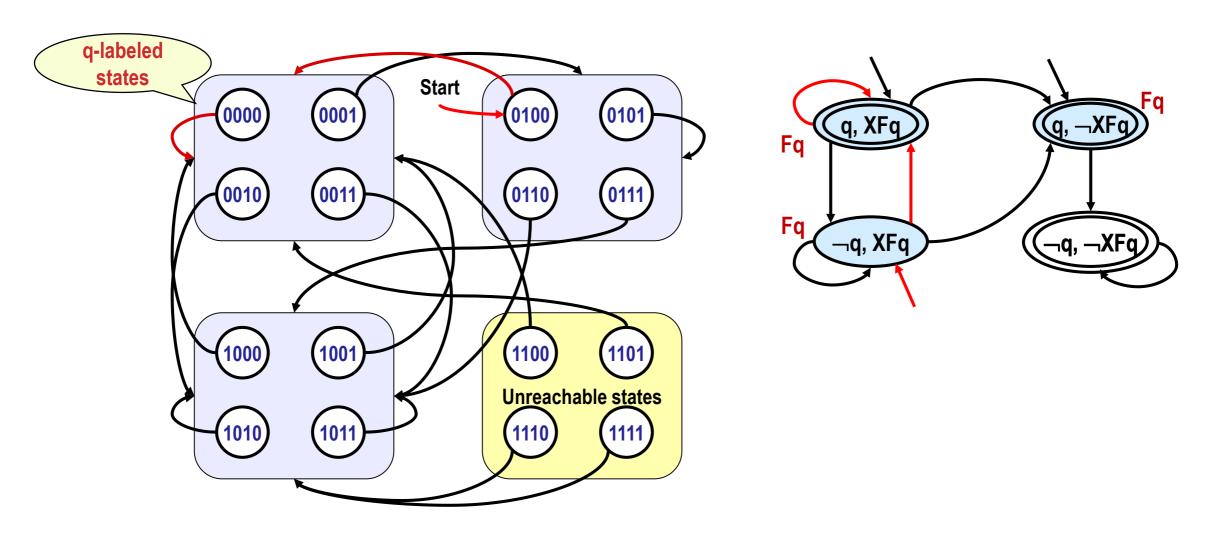
The Büchi Automaton

Our property: Fq where $q = \neg g_1 \land \neg g_2$



- The self loop in the state labeled {¬q, XFq} is problematic
 - It allows the satisfaction of q to be postponed forever, in which case Fq does not hold
- By defining the remaining three states as accept
 states, we force the accepting runs to come out of the
 state labeled {¬q, XFq}
 - Recall that the Büchi acceptance criterion states that accept states must be visited infinitely often.

Is the product non-empty?



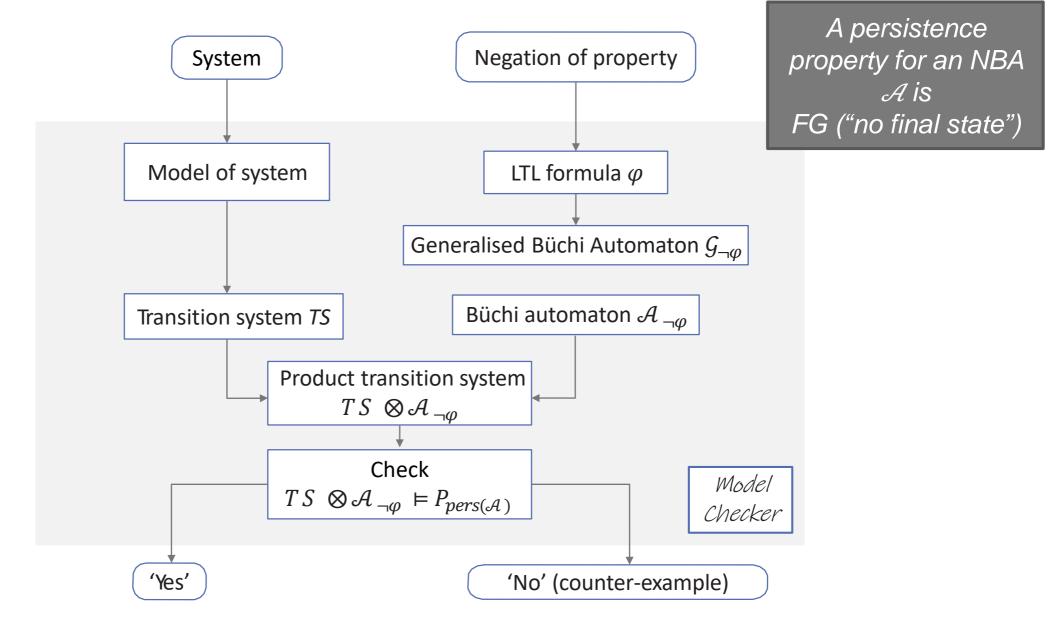
The common run is shown in red. Product is non-empty.

Conclusion: TS(DUT) \models G(g1 \lor g2) is not true. The counterexample is the run in red.

Computational facts

- If a LTL property has k sub-formulas, then the number of states in its automaton may have O(2k) states
 - Decomposing the property into a conjunction of smaller properties helps in containing the size of this automaton
 - It also helps the FPV tool to prune away parts of the implementation before making the emptiness check
- LTL model checking is PSPACE-complete, but linear in the size of the implementation
 - However, the main bottleneck is in the size of the implementation, which is why we use succinct representations.

LTL Model Checking – An Overview



"Elementary" Sets for φ

- For an LTL-property φ , the <u>set closure</u>(φ) consists of:
 - All sub-formulas ψ of φ and their negation $\neg \psi$.

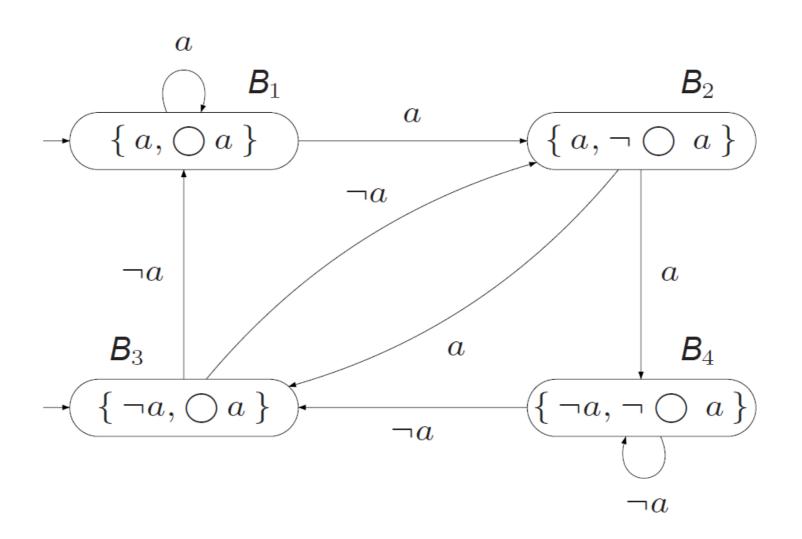
The set B \subseteq closure(φ) is elementary if:

- 1. B is logically consistent if for all $\varphi_1 \wedge \varphi_2$, $\psi \in \text{closure}(\varphi)$:
 - $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \implies \neg \psi \notin B$
 - true \in closure(φ) \Longrightarrow true \in B
- 2. B is locally consistent if for all $\varphi_1 \cup \varphi_2 \in \text{closure}(\varphi)$:
 - $\varphi_2 \in B \Longrightarrow \varphi_1 \cup \varphi_2 \in B$
 - $\varphi_1 \cup \varphi_2 \in B$ and $\varphi_2 \notin B \Longrightarrow \varphi_1 \in B$
- 3. B is maximal for all $\psi \in \text{closure}(\varphi)$:
 - $\psi \notin B \Longrightarrow \neg \psi \in B$

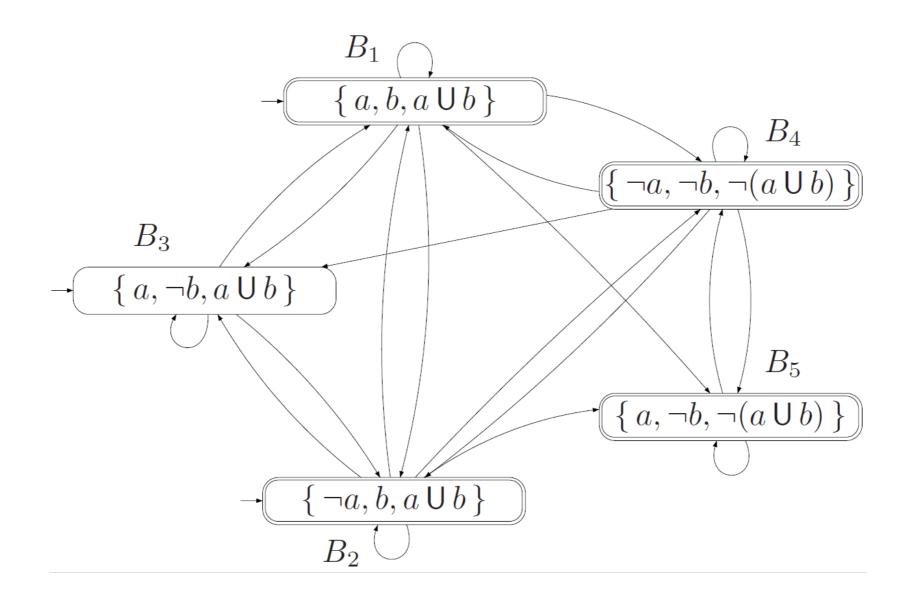
The GNBA for the LTL-property ϕ

- A Generalized NBA has multiple sets of accept states, F₁, ..., F_k each of which must be visited infinitely often in an accepting run
- For the LTL-property φ , let \mathcal{G}_{φ} = (Q, 2^{AP} , δ , Q_0 , \mathcal{F}), where
 - Q is the set of elementary sets of formulas B \subseteq closure(φ).
 - $Q_0 = \{ B \in Q \mid \varphi \in B \}$
 - $\mathcal{F} = \{ \{ B \in Q \mid \varphi_1 \cup \varphi_2 \notin B \text{ or } \varphi_2 \in B \} \mid \varphi_1 \cup \varphi_2 \in \mathsf{closure}(\varphi) \}$
 - The transition relation δ : Q x $2^{AP} \rightarrow Q$ is given by:
 - $\delta(B, B \cap AP)$ is the set of all elementary sets of formulas B' satisfying:
 - For every X $\psi \in \mathsf{closure}(\varphi)$: $\mathsf{X}\psi \in B \Leftrightarrow \psi \in B$ ' AND
 - For every $\varphi_1 \cup \varphi_2 \in \operatorname{closure}(\varphi)$: $\varphi_1 \cup \varphi_2 \in B \iff (\varphi_2 \in B \vee (\varphi_1 \in B \wedge \varphi_1 \cup \varphi_2 \in B'))$

GNBA for φ = Oa



GNBA for φ = a U b



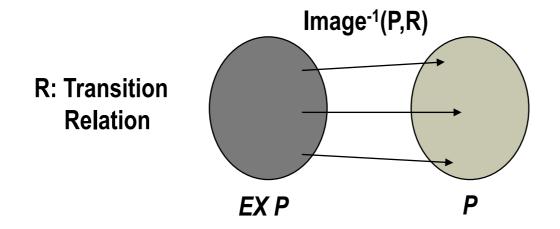
Emptiness Check

- Emptiness check for a NFA is to find whether any accepting run exists
 - Can be decided by finding whether any accept state is reachable
 - We can do this using the symbolic reachability methods discussed earlier
- Emptiness check for a NBA is to find whether any accepting run exists using the Büchi acceptance criterion
 - Can be decided by finding whether any strongly connected component containing one or more accept states is reachable
 - Once we find the states in strongly connected components with accept states, we can use the symbolic reachability methods to find whether such components are reachable from the initial states
 - How to find strongly connected components using symbolic search?

CTL Model Checking

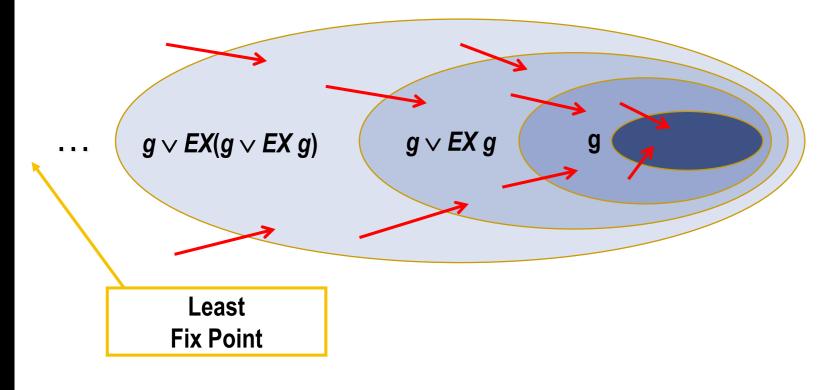
- Need only to show methodology for EX, EU, EG.
- Other modalities can be expressed in terms of EX, EU, EG.
 - AFp = ¬EG ¬p
 - AGp = ¬EF ¬p
 - $A(p \cup q) = \neg E[\neg q \cup (\neg p \land \neg q)] \land \neg EG \neg q$

Example: EX p



$$\mathsf{EXp} = \{ \mathsf{v} \mid \exists \mathsf{v}' \, (\, \mathsf{v}, \, \mathsf{v}' \,) \in \mathsf{R} \land \mathsf{p} \in \mathcal{L}(\, \mathsf{v}' \,) \, \}$$

Example: EF g

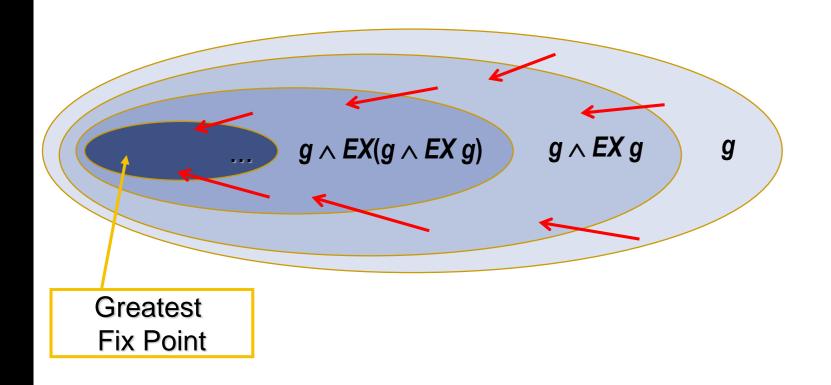


Given a model M = \langle AP, S, S0, R, L \rangle and S_q the sets of states satisfying g in M

```
procedure CheckEF (S_g)
Q := emptyset; \ Q' := S_g;
while \ Q \neq Q' \ do
Q := Q';
Q' := Q \cup \{ s \mid \exists s' [ R(s,s') \land Q(s') ] \}
end \ while
S_f := Q; \ return(S_f)
```

Example: EG g

EG g is calculated as



Given a model M = \langle AP, S, S0, R, L \rangle and S_q the sets of states satisfying g in M

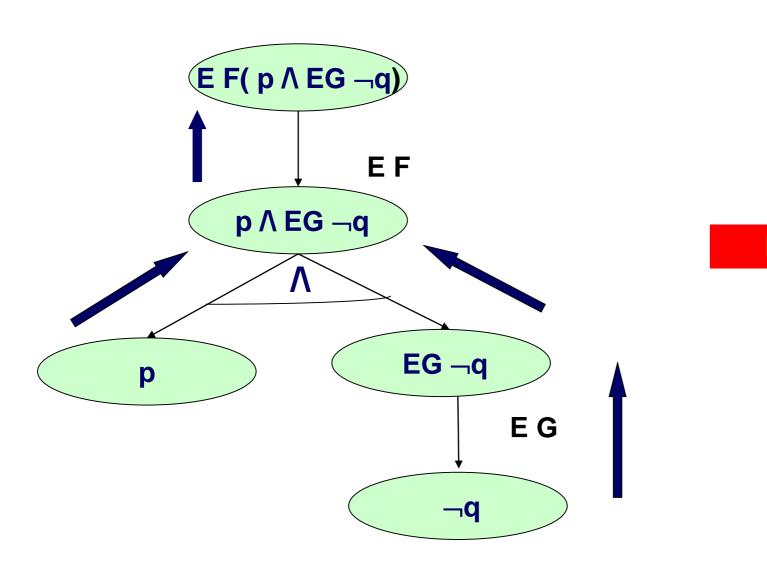
```
procedure CheckEG (S_g)
Q := S ; Q' := Sg ;
while Q \neq Q' do
```

$$Q' := Q \cap \{ s \mid \exists s' [R(s,s') \land Q(s')] \}$$

end while

$$S_f := Q$$
; return(S_f)

Checking Nested Formulas



Bottom Up

Checking Nested formulas

