Omega Regular Languages and Büchi Automata

CS60030 FORMAL SYSTEMS

PALLAB DASGUPTA,

FNAE, FASc, A K Singh Distinguished Professor in Al, Dept of Computer Science & Engineering Indian Institute of Technology Kharagpur Email: pallab@cse.iitkgp.ac.in Web: http://cse.iitkgp.ac.in/~pallab

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Regular expressions

- Let Σ be an alphabet with $A \in \Sigma$
- Regular expressions over Σ have syntax:

 $E::=\phi \mid \underline{\varepsilon} \mid \underline{A} \mid E + E' \mid E \cdot E' \mid E^*$

• The semantics of regular expression *E* is a language $L(E) \subseteq \Sigma^*$:

 $L(\underline{\phi}) = \phi^*$ $L(\underline{\varepsilon}) = \{\varepsilon\}$ $L(\underline{A}) = \{A\}$

 $L(E + E') = L(E) \cup L(E')$ L(E, E') = L(E), L(E') $L(E^*) = L(E)^*$

Syntax of ω -regular expressions

- *Regular expressions* denote languages of finite words
- ω -Regular expressions denote languages of infinite words
- An ω -regular expression G over Σ has the form:

$$G = E_1 \cdot F_1^{\omega} + \ldots + E_n \cdot F_n^{\omega}$$
 for n>0

- where E_i , Fi are regular expressions over Σ with $\varepsilon \notin L(F_i)$
- Some examples:
 - $(A+B)^* \cdot B^{\omega}$
 - $(B^*.A)^{\omega}$
 - $A^* \cdot B^\omega + A^\omega$

Semantics of ω -regular expressions

• For
$$L \subseteq \Sigma^*$$
 let $L^{\omega} = \{w_1 w_2 w_3 \dots | \forall i \ge 0, wi \in L\}$

- Let ω -regular expression $G = E_1 \cdot F_1^{\omega} + \ldots + E_n \cdot F_n^{\omega}$
- The semantics of *G* is the language $L_{\omega}(G) \subseteq \Sigma^{\omega}$:

 $L_{\omega}(G) = L(E_1).L(F_1)^{\omega} \cup \ldots \cup L(E_n).L(F_n)^{\omega}$

• G_1 and G_2 are *equivalent*, denoted $G_1 \equiv G_2$, if $L_{\omega}(G_1) = L_{\omega}(G_2)$

ω-Regular languages

- L is ω -regular if $L = L_{\omega}(G)$ for some ω -regular expression G
- Examples over $\Sigma = \{A, B\}$:
 - Language of all words with infinitely many As: $(B^*, A)^{\omega}$
 - Language of all words with finitely many As: $(A + B)^* \cdot B^{\omega}$
 - The empty language: \emptyset^{ω}
- ω -Regular languages are closed under \cup , \cap and complementation

ω-Regular safety properties

- Definition:
 - LT property P over AP is ω -Regular if P is an ω -regular language over the alphabet 2^{AP}
- Or, equivalently:
 - LT property P over AP is ω-Regular if P is a language accepted by a nondeterministic Büchi automaton over 2^{AP}

Nondeterministic Büchi automata

- NFA (and DFA) are incapable of accepting infinite words
- Automata on infinite words
 - Suited for accepting ω-regular languages
 - We consider nondeterministic Büchi automata (NBA)
- Accepting runs have to "check" the entire input word \Rightarrow are infinite
 - acceptance criteria for infinite runs are needed
- NBA are like NFA, but have a distinct *acceptance criterion*
 - one of the accept states must be visited infinitely often

Büchi Automata

A nondeterministic Büchi automaton (NBA) A is a tuple (Q, Σ , δ , Q₀, F) where:

- Q is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta \colon Q \times \Sigma \ \to 2^Q$ is a transition function
- F ⊆Q is a set of accept (or: final) states

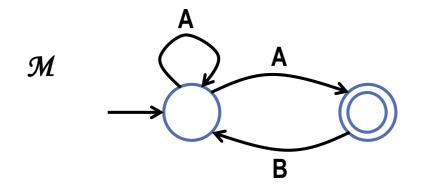
Language of an NBA

- NBA $A = (Q, \Sigma, \delta, Q_0, F)$ and word $\sigma = A_0 A_1 A_2 \dots \in \Sigma^{\omega}$
- A *run* for σ in A is an infinite sequence $q_0 q_1 q_2 \dots$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $i \ge 0$
- Run $q_0 q_1 q_2 \dots$ is accepting if $q_i \in F$ for infinitely many *i*.
- $\sigma \in \Sigma^{\omega}$ is accepted by A if there exists an accepting run for σ
- The accepted language of *A* :

 $L_{\omega}(A) = \{ \sigma \in \Sigma^{\omega} \mid \text{there exists an accepting run for } \sigma \text{ in } A \}$

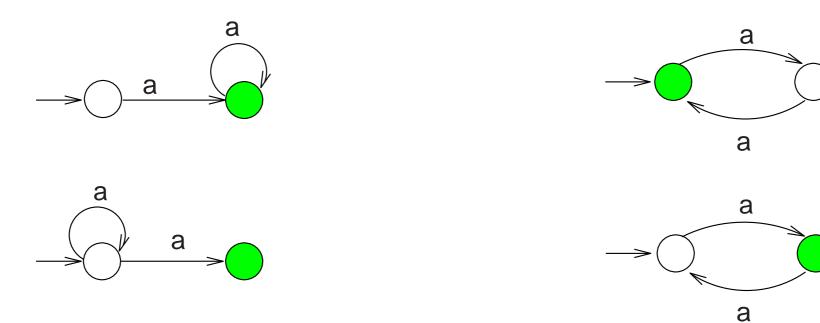
• NBA A and A' are equivalent if $L_{\omega}(A) = L_{\omega}(A')$

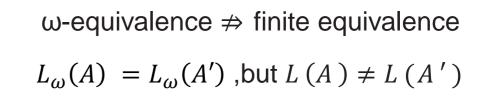
An Example NBA



- If we treat \mathcal{M} as a NFA, then $\mathcal{L}(\mathcal{M}) = (A + AB)^*A$
- If we treat \mathcal{M} as a NBA, then $\mathcal{L}(\mathcal{M})$ = $(A^*AB)^{\omega}$
 - Can you write some words which are accepted and some words which are not accepted?

NBA versus NFA





finite equivalence $\Rightarrow \omega$ -equivalence L(A) = L(A'), but $L_{\omega}(A) \neq L_{\omega}(A')$

NBA and ω -regular languages

The class of languages accepted by NBA agrees with the class of ω -regular languages.

This means:

- (1) any ω -regular language is recognized by an NBA
- (2) for any NBA A, the language $L_{\omega}(A)$ is ω -regular

For any ω -regular language there is an NBA

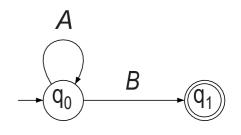
- How to construct an NBA for the ω -regular expression: $G = E_1 \cdot F_1^{\omega} + \ldots + E_n \cdot F_n^{\omega}$?
 - where E_i , Fi are regular expressions over Σ with $\varepsilon \notin L(F_i)$
- Use operators on NBA, mimicking operators on ω-regular expressions:
 - for NBA A_1 and A_2 there is an NBA accepting $L_{\omega}(A_1) \cup L_{\omega}(A_2)$
 - for any regular language L with $\varepsilon \notin L$ there is an NBA accepting L^{ω}
 - for regular language L and NBA A' there is an NBA accepting L. $L_{\omega}(A')$
- We will discuss these three operators in detail

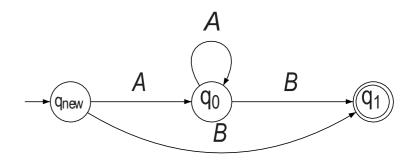
Union of NBAs

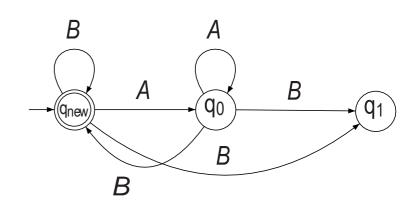
For NBA A_1 and A_2 (both over the alphabet Σ) there exists an NBA A such that: $L_{\omega}(A) = L_{\omega}(A_1) \cup L_{\omega}(A_2)$ and $|A| = O(|A_1| + |A_2|)$

Definition of ω -operator for NFA

- Let $\mathcal{A} = (\mathbf{Q}, \Sigma, \delta, \mathbf{Q}_0, \mathbf{F})$ be an NFA with $\varepsilon \notin L(\mathcal{A})$.
- Assume no initial state in \mathcal{A} has incoming transitions and $Q_0 \cap F = \emptyset$
 - Otherwise introduce a new initial state $q_{new} \notin F$
 - Let $q_{new} \xrightarrow{A} q$ iff $q_0 \xrightarrow{A} q$ for some $q_0 \in Q_0$
 - Keep all transitions in *A*
- Construct an NBA $\mathcal{A}' = (Q, \Sigma, \delta', Q'_0, F')$ as follows
 - If $q \xrightarrow{A} q' \in F$ then add $q \xrightarrow{A} q_0$ for any $q_0 \in Q_0$
 - Keep all transitions in A
 - $Q'_0 = Q_0$ and $F' = Q_0$







Proof of $L_{\omega}(\mathcal{A}') \subseteq L(\mathcal{A})^{\omega}$

- Let $\sigma \in L_{\omega}(\mathcal{A}')$ and $q_0 q_1 q_2 \dots$ be an accepting run for σ in \mathcal{A}'
 - Hence, $q_i \in F' = Q_0$ for infinitely many indices i
 - Let $i_0 = 0 < i_1 < i_2 < \dots$ such that $q_{i_k} \in F'$ and $q_j \notin F'$ for $j \neq i_k$
- Divide σ into infinitely many nonempty finite sub-words $w_i \in \Sigma^*$:

 $\sigma = w_1 w_2 w_3 \dots$ such that $q_{i_k} \in \delta'^*(q_{i_{k-1}}, w_k)$ for all k > 0

- It follows $\delta^*(q_{i_{k-1}}, w_k) \cap F \neq \phi$
 - $q_{i_k} \in Q_0$ and $q_{i_k} \in Q_0$ has no incoming transitions, thus $q_{i_k} \in F$
- Thus: $w_k \in L(\mathcal{A})$ for any k > 0, and hence $\sigma \in L(\mathcal{A})^{\omega}$

Proof of $L_{\omega}(\mathcal{A}') \supseteq L(\mathcal{A})^{\omega}$

- Let $\sigma = w_1 w_2 w_3 \dots$ such that $w_k \in L(\mathcal{A})$ for all k > 0
 - That is, $\sigma \in L(\mathcal{A})^{\omega}$
- Let $q_0^k q_1^k q_2^k \dots q_{n_k}^k$ be an accepting run for w_k in \mathcal{A}
- By definition of \mathcal{A}' , we have $q_0^{k+1} \in \delta'^*(q_0^k, w_k)$ for all k > 0

 $q_0^1 \dots q_{n_1-1}^1 \ q_0^2 \dots q_{n_2-1}^2 \ q_0^3 \dots q_{n_3-1}^3 \dots$ is an accepting run for $\sigma \ln A'$

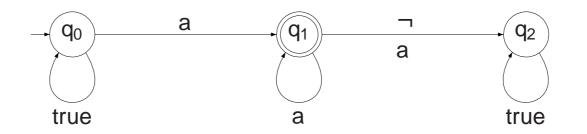
• Hence $\sigma \in L_{\omega}(\mathcal{A})$

Concatenating an NFA and an NBA

For NFA A and NBA A' (both over the alphabet Σ) there exists an NBA A'' with: $L_{\omega}(A'') = L(A). L_{\omega}(A')$ and |A''| = O(|A| + |A'|)

Interesting questions for NBA

- How to determine whether a NBA is empty?
- What is a deterministic BA?
- NBAs are more powerful than DBAs. The language (A+B)*B^ω is accepted by a NBA but not accepted by any DBA (why?)
- Non-determinism is useful:



Let AP = $\{a\}$, i.e., $2^{AP} = \{A, B\}$ where $A = \{\}$ and $B = \{a\}$

The language: eventually forever a may be represented as $(A + B)^*B^{\omega} = (\{\} + \{a\})^*\{a\}^{\omega}$

Generalized Büchi automata

- NBA are as expressive as ω-regular languages
- Variants of NBA exist that are equally expressive
 - Muller, Rabin, and Streett automata
 - generalized Büchi automata (GNBA)
- GNBA are like NBA, but have a distinct acceptance criterion
 - − a GNBA requires to visit several sets F_1, \ldots, F_k (k ≥ 0) infinitely often
 - for k = 0, all runs are accepting
 - for k = 1 this boils down to an NBA
- GNBA are useful to relate temporal logic and automata
 - but they are equally expressive as NBA

Generalized Büchi automata

A generalized NBA (GNBA) **G** is a tuple (Q, Σ , δ , Q₀, **F**) where:

- Q is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an alphabet
- $\delta: Q \times \Sigma \to 2^Q\,$ is a transition function
- $F = \{ F_1, \dots, F_k \}$ is a (possibly empty) subset of 2^Q

The size of **G**, denoted | **G** |, is the number of states and transitions in **G** :

$$|\mathbf{G}| = |\mathbf{Q}| + \sum_{\mathbf{q} \in \mathbf{Q}} \sum_{\mathbf{A} \in \mathbf{\Sigma}} |\delta(\mathbf{q}, \mathbf{A})|$$

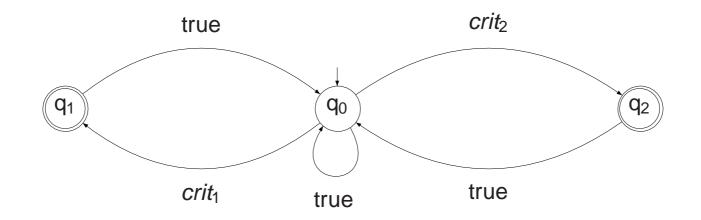
Language of a GNBA

- GNBA $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ and word $\sigma = A_0 A_1 A_2 \ldots \in \Sigma^{\omega}$
- A *run* for σ in \mathcal{G} is an infinite sequence $q_0 q_1 q_2 \dots$ such that:
 - $q_0 \in Q_0$ and $q_i \stackrel{A_i}{\rightarrow} q_{i+1}$ for all $i \ge 0$
- Run $q_0 q_1 q_2 \dots$ is accepting if for all $F \in \mathcal{F}$ for infinitely many *i*.
- $\sigma \in \Sigma^{\omega}$ is accepted by \mathcal{G} if there exists an accepting run for σ
- The accepted language of **G**:

 $L_{\omega}(\mathcal{G}) = \{ \sigma \in \Sigma^{\omega} \mid \text{there exists an accepting run for } \sigma \text{ in } \mathcal{G} \}$

• GNBA \mathcal{G} and \mathcal{G}' are equivalent if $L_{\omega}(\mathcal{G}) = L_{\omega}(\mathcal{G}')$

Example



A GNBA for the property "both processes are infinitely often in their critical section" $F = \{ \{q_1\}, \{q_2\} \}$

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

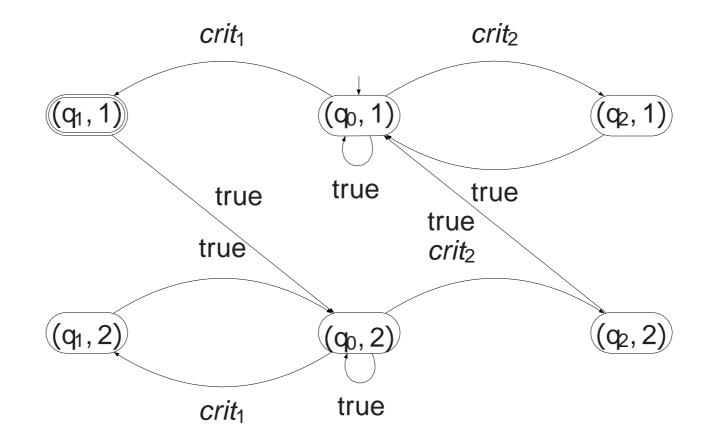
From GNBA to NBA

For any GNBA G there exists an NBA A with:

 $L_{\omega}(G) = L_{\omega}(A)$ and $|A| = O(|G| \cdot |F|)$

where F denotes the set of acceptance sets in G

Example



Facts about Büchi automata

- They are as expressive as **ω-regular languages**
- They are closed under various operations and also under \cap
- Nondeterministic BA are more expressive than deterministic BA
- Emptiness check = check for reachable recurrent accept state
 - this can be done in O(|A|)