Succinct Representations (BDDs and SAT)

CS60060 FORMAL SYSTEMS

PALLAB DASGUPTA,

INDIAN INS

FNAE, FASc, A K Singh Distinguished Professor in Al, Dept of Computer Science & Engineering Indian Institute of Technology Kharagpur Email: pallab@cse.iitkgp.ac.in Web: http://cse.iitkgp.ac.in/~pallab

TE OF TECHNOLOGY KHARAGPUR

FORMAL METHODS FOR SAFETY CRITICAL SYSTEMS

Set Membership versus Boolean Functions

- Suppose state variables are x_1 , x_2 , x_3 and states are encoded as $\langle x_1 x_2 x_3 \rangle$
- Consider the set of states: **S** = { 000, 010, 011, 100, 101 }
- Boolean membership function for S: $f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_2 \overline{x}_3 + \overline{x}_1 x_2 \overline{x}_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline$

- Why use Boolean functions to represent state sets?
 - Because Boolean functions can be minimized
 - Often size of a circuit is logarithmic in the number of minterms
- $f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_2 \overline{x}_3 + \overline{x}_1 x_2 \overline{x}_3 + \overline{x}_1 x_2 x_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 \overline{x}_2 x_3 = \overline{x}_1 \overline{x}_3 + \overline{x}_1 x_2 + x_1 \overline{x}_2$

Representations of Boolean Functions

• Disjunctive Normal Form (Sum of minterms)

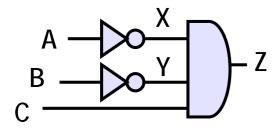
 $f(x_1, x_2, x_3) = \overline{x}_1 \overline{x}_3 + \overline{x}_1 x_2 + x_1 \overline{x}_2$

- Checking satisfiability is easy, checking validity is hard
- Conjunctive Normal Form (Product of clauses)

 $g(x_1, x_2, x_3) = (\overline{x}_1 + \overline{x}_3)(\overline{x}_1 + x_2)(x_1 + \overline{x}_2)$

- Checking validity is easy, checking satisfiability is har
- Translation between CNF and DNF is computationally hard

Converting a Circuit to SAT



A circuit describes the relationship (constraints) between its nets

p=q can be written as $(p + \overline{q})(\overline{p} + q)$

CLAUSE FORM:

The circuit functionality is: $(x = \overline{a})(y = \overline{b})(z = xyc)$ which may be rewritten as: $(x + a)(\overline{x} + \overline{a})(y + b)(\overline{y} + \overline{b})(z + \overline{x} + \overline{y} + \overline{c})(\overline{z} + x)(\overline{z} + y)(\overline{z} + c)$

Typically the number of clauses for a circuit is much smaller than 2ⁿ (the number of rows in the truth table).

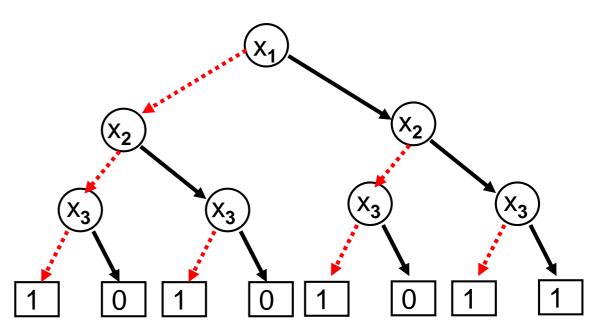
Binary Decision Diagrams (BDDs)

Graphical representation [Lee, Akers, Bryant]

- Efficient representation & manipulation of Boolean functions in many practical cases
- Enables efficient verification/analysis of a large class of designs
- Worst-case behavior still exponential

Example: $f = (X_1 \land X_2) \lor \neg X_3$

- Represent as binary tree
- Evaluating f:
 - Start from root
 - For each vertex labeled x_i
 - take dotted branch if x_i = 0
 - else take solid branch

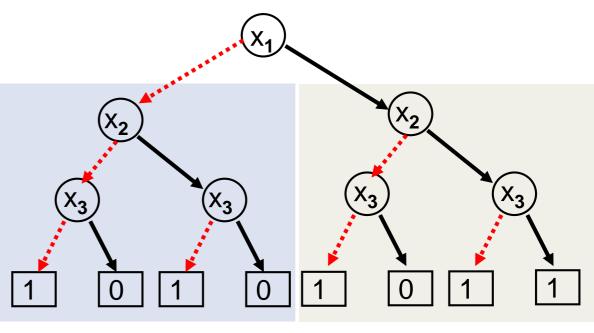


Binary Decision Diagrams (BDDs)

Underlying principle: Shannon decomposition

- $f(x_1, x_2, x_3) = x_1 \wedge f(1, x_2, x_3) \vee \neg x_1 \wedge f(0, x_2, x_3)$ = $x_1 \wedge (x_2 \vee \neg x_3) \vee \neg x_1 \wedge (\neg x_3)$
- Can be applied recursively to f(1, x₂, x₃) and f(0, x₂, x₃)
 - Gives tree
- Extend to n arguments

Number of nodes can be exponential in number of variables



 $f = (X_1 \land X_2) \lor \neg X_3$

Restrictions on BDDs

Ordering of variables

 In all paths from root to leaf, variable labels of nodes must appear in a specified order

Reduced graphs

- No two distinct vertices must represent the same function
- Each non-leaf vertex must have distinct children

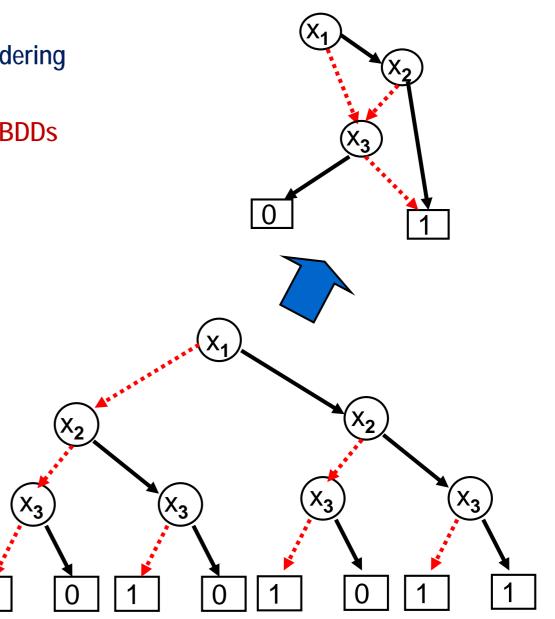
Not a ROBDD !

 $f = (x_1 \land x_2) \lor \neg x_3$

REDUCED ORDERED BDD (ROBDD): Directed Acyclic Graph

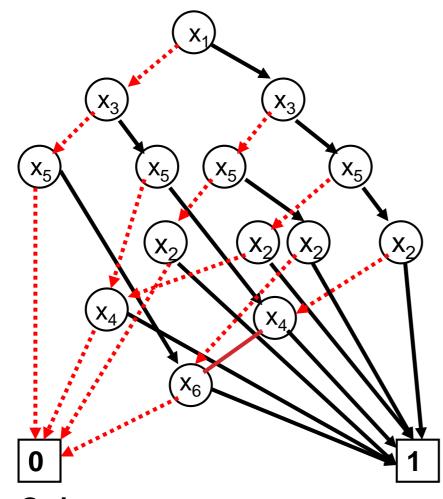
ROBDDs

- Unique (canonical) representation of f for given ordering of variables
 - Checking f1 = f2 reduces to checking if ROBDDs are isomorphic
- Shared subgraphs: size reduction
- Every path doesn't have all labels x1, x2, x3
- Every non-leaf vertex has a path to 0 and 1

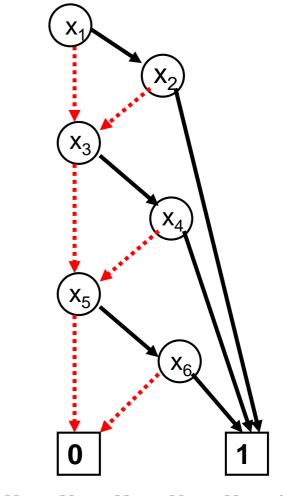


Variable Ordering Problem

 $f = x_1 x_2 + x_3 x_4 + x_5 x_6$



Order: $x_1 < x_3 < x_5 < x_2 < x_4 < x_6$



Order: $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$

Variable Ordering Problem

ROBDD size

- Extremely sensitive to variable ordering
 - $\mathbf{f} = \mathbf{x}_1 \mathbf{x}_2 + \mathbf{x}_3 \mathbf{x}_4 + \dots + \mathbf{x}_{2n-1} \mathbf{x}_{2n}$
 - 2n+2 vertices for order $x_1 < x_2 < x_3 < x_4 < ... x_{2n-1} < x_{2n}$
 - 2^{n+1} vertices for order $x_1 < x_{n+1} < x_2 < x_{n+2} < ... < x_n < x_{2n}$
 - $f = x_1 x_2 x_3 \dots x_n$
 - n+2 vertices for all orderings
 - Exponential regardless of variable ordering
 - Most significant bit of product of n-bit integer multiplier [Bryant]

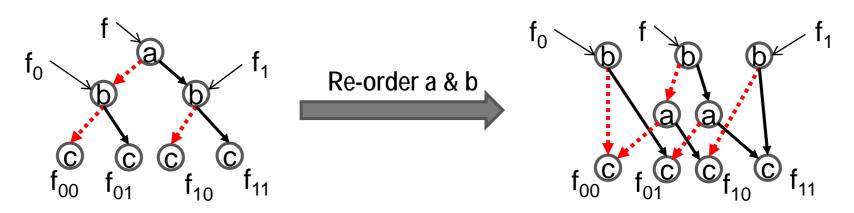
Determining best variable order for arbitrary functions is computationally intractable

• Heuristics: Static ordering, Dynamic ordering

Variable Ordering Solutions

Dynamic ordering

- Starts with user-provided static order
- If dynamic re-ordering triggered on-the-fly, evaluate benefits of re-ordering small subset of variables
 - If beneficial, re-order and repeat until no benefit
- Expensive in general, sophisticated triggers essential
- Key observation [Friedman]: Given ROBDD with x₁ < ... x_i < x_{i+1} < ... x_n,
 - Permuting x₁... x_i has no effect on ROBDD nodes labeled by x_{i+1}... x_n
 - Permuting x_{i+1} ... x_n has no effect on ROBDD nodes labeled by x₁ ... x_i
 - Variables in adjacent levels easily swappable



How to use a BDD package

 $f(x, a, b, c, z) = (x + a)(\overline{x} + \overline{a})(y + b)(\overline{y} + \overline{b})(z + \overline{x} + \overline{y} + \overline{c})(\overline{z} + x)(\overline{z} + y)(\overline{z} + c)$

- Create a BDD manager
- Create BDDs of sub-functions and then the functions

bdd1 = Cudd_bddOr(gbm, x, a); bdd2 = Cudd_bddOr(gbm, y, b); bdd3 = Cudd_bddAnd(gbm, bdd1, bdd2); ... and so on.

• More to be discussed during hands-on sessions

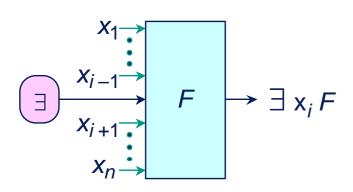
BDD Operations

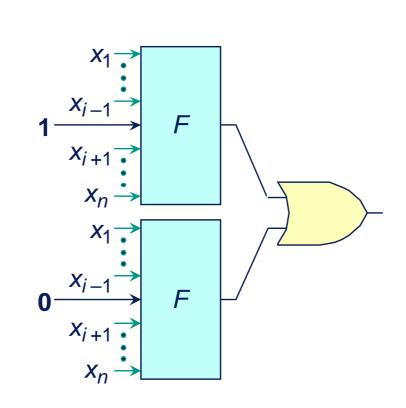
- All logical operations AND, OR, NOT, etc.
- Validity Checking: The BDD of a valid function reduces to the single node 1
- Satisfiability Checking: The BDD of an unsatisfiable function reduces to the single node 0
- Variable Quantification:

- **Restrict operation**: *Effect of setting function argument x_i to constant k (0 or 1).*
 - Also called Cofactor operation

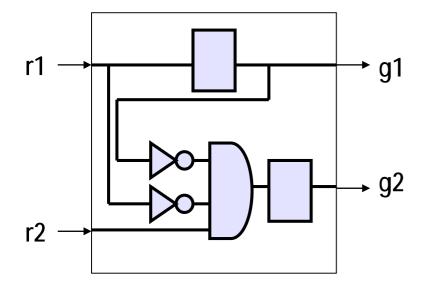
$$k \xrightarrow{X_{1} \rightarrow} F \xrightarrow{X_{j-1} \rightarrow} F$$

$$k \xrightarrow{X_{j+1} \rightarrow} F \xrightarrow{X_{j+1} \rightarrow} F$$



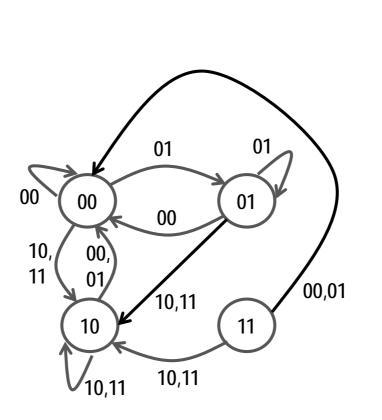


Basics of Finite State Systems



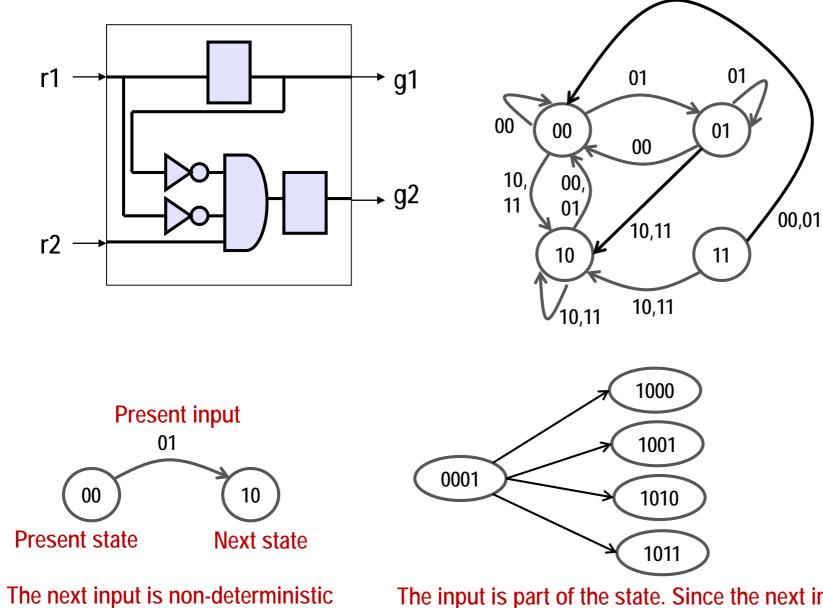
 $\frac{\text{Transition Relation:}}{g'_1 \Leftrightarrow r_1}$ $g'_2 \Leftrightarrow \neg r_1 \land r_2 \land \neg g_1$

Initial State: r₁=0, r₂=0, g₁=0, g₂=1



PS 9 ₁ 9 ₂	I/P r ₁ r ₂	NS g' ₁ g' ₂
00	00	00
00	01	01
00	10	10
00	11	10
01	00	00
01	01	01
01	10	10
01	11	10
10	00	00
10	01	00
10	10	10
10	11	10
11	00	00
11	01	00
11	10	10
11	11	10

Open Systems versus Non-Deterministic Closed Systems



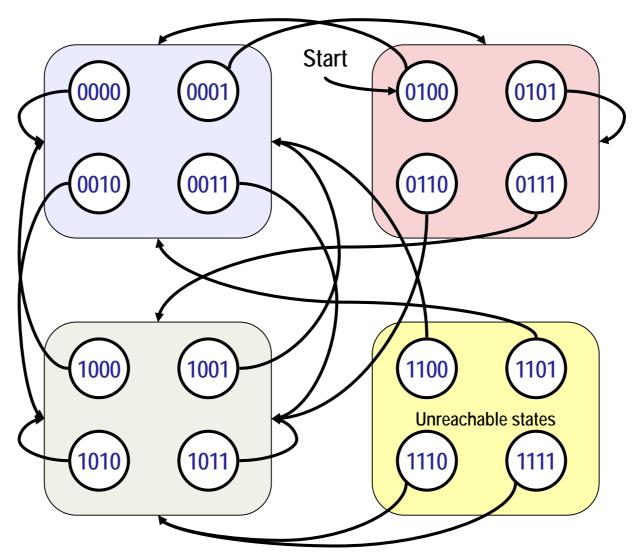
PS g ₁ g ₂	I/P r ₁ r ₂	NS g' ₁ g' ₂	Next I/P
00	00	00	xx
00	01	01	XX
00	10	10	XX
00	11	10	ХХ
01	00	00	XX
01	01	01	XX
01	10	10	ХХ
01	11	10	XX
10	00	00	XX
10	01	00	XX
10	10	10	xx
10	11	10	XX
11	00	00	ХХ
11	01	00	ХХ
11	10	10	ХХ
11	11	10	XX

The input is part of the state. Since the next input is not known we have a non-deterministic state machine.

The complete transition relation

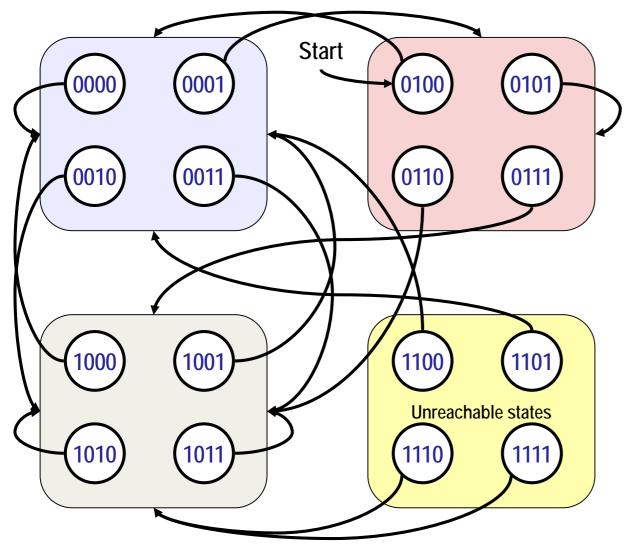
 $\frac{\text{Transition Relation:}}{g'_1 \Leftrightarrow r_1}$ $g'_2 \Leftrightarrow \neg r_1 \land r_2 \land \neg g_1$

Initial State: $r_1=0, r_2=0, g_1=0, g_2=1$



PS g ₁ g ₂	I/P r ₁ r ₂	NS g' ₁ g' ₂	Next I/P
00	00	00	ХХ
00	01	01	хх
00	10	10	xx
00	11	10	хх
01	00	00	XX
01	01	01	xx
01	10	10	xx
01	11	10	хх
10	00	00	ХХ
10	01	00	xx
10	10	10	xx
10	11	10	ХХ
11	00	00	ХХ
11	01	00	ХХ
11	10	10	ХХ
11	11	10	ХХ

State Labels: Propositions

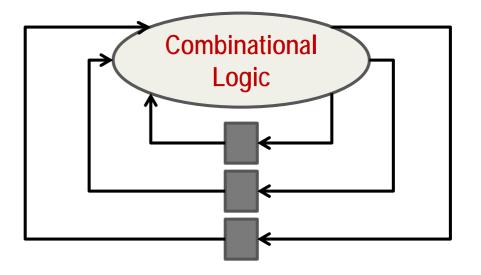


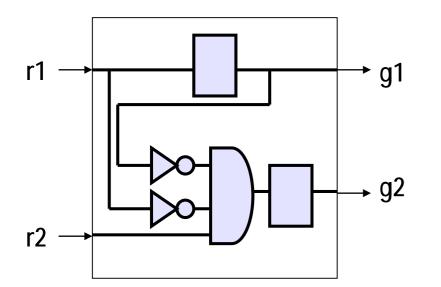
PS g ₁ g ₂	I/P r ₁ r ₂	NS g' ₁ g' ₂	Next I/P
00	00	00	XX
00	01	01	хх
00	10	10	хх
00	11	10	хх
01	00	00	ХХ
01	01	01	хх
01	10	10	хх
01	11	10	ХХ
10	00	00	XX
10	01	00	xx
10	10	10	хх
10	11	10	ХХ
11	00	00	XX
11	01	00	ХХ
11	10	10	ХХ
11	11	10	ХХ

p: $g_1 \wedge g_2$ The states in the yellow box are labeled with p q: $r_1 = g_1$ The states labeled with q are 0000, 0001, 0100, 0101, 1010, 1011, 1110, 1111

Succinct representation of State Machines

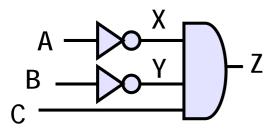
- Sequential functions: Combinational logic + Flip flops
 - The combinational logic represents the transition relation





 $\frac{\text{Transition Relation:}}{g'_1 \Leftrightarrow r_1}$ $g'_2 \Leftrightarrow \neg r_1 \land r_2 \land \neg g_1$

The notion of Characteristic Functions



X	у	С	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

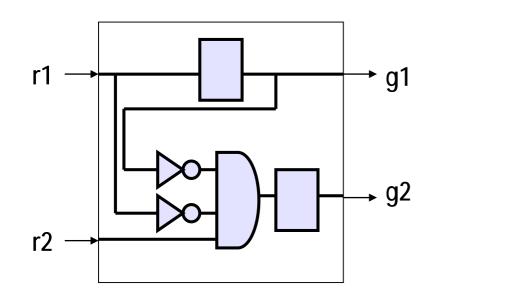
f(z) = xyc

The characteristic function $cf(z, x, y, c) \equiv (z = xyc)$ Therefore:

$$cf(z, x, y, c) = (z + \overline{x} + \overline{y} + \overline{c})(\overline{z} + x)(\overline{z} + y)(\overline{z} + c)$$

x	у	С	Z	CF
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Characteristic functions for transition relations



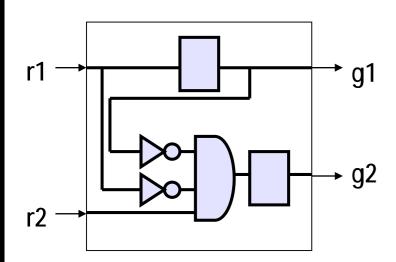
 $\frac{\text{Transition Relation:}}{g'_1 \Leftrightarrow r_1}$ $g'_2 \Leftrightarrow \neg r_1 \land r_2 \land \neg g_1$

 $cf1(r_1, g_1') = (\overline{r}_1 + g_1')(r_1 + \overline{g}_1')$

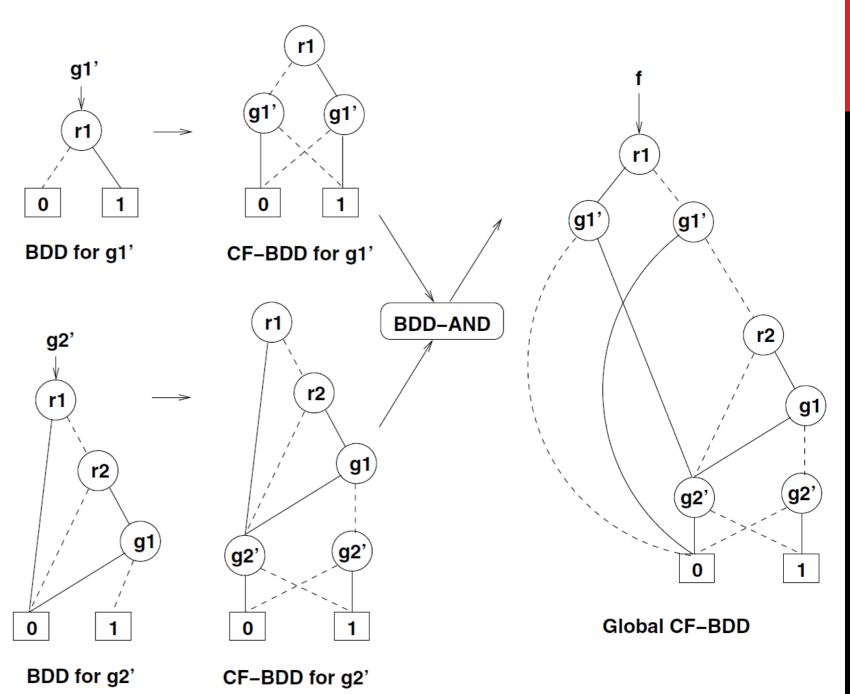
 $cf2(r_1, r_2, g_1, g_2') = (g_2' + r_1 + \bar{r}_2 + g_1)(\bar{g}_2' + \bar{r}_1) \ (\bar{g}_2' + r_2)(\bar{g}_2' + \bar{g}_1)$

$$\begin{split} cf(r_1, r_2, g_1, g_2, g_1', g_2') &= cf1(r_1, g_1') \wedge cf2(r_1, r_2, g_1) \\ &= (\overline{r}_1 + g_1')(r_1 + \overline{g}_1')(g_2' + r_1 + \overline{r}_2 + g_1)(\overline{g}_2' + \overline{r}_1) \ (\overline{g}_2' + r_2)(\overline{g}_2' + \overline{g}_1) \end{split}$$

Using BDDs



 $\frac{\text{Transition Relation:}}{g'_1 \Leftrightarrow r_1}$ $g'_2 \Leftrightarrow \neg r_1 \land r_2 \land \neg g_1$



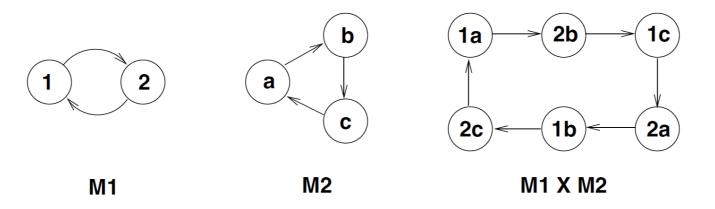
What can we do using CF of transition relation?

EXERCISE: Use the characteristic function for the transition relation to answer the following:

- Is there a transition from a state at which both requests, r1 and r2, are high to a state at which g2 is high?
- Can g1 ever be high for two consecutive cycles?
- Can g1 ever be high for three consecutive cycles?
- If g2 is high, does in mean r2 was high in one of the previous two cycles?

State Explosion and Succinct Representations

• The number of states in a circuit is a product of the number of states in its components (exponential growth)



- The size of BDDs grow exponentially with the number of variables.
 - There are model checking techniques which use *partitioned transition relations*
- The complexity of solving a SAT instance grows exponentially with the number of clauses.
 - But modern SAT solvers are good at solving millions of clauses in less than a second
- Techniques to overcome the state explosion problem
 - Abstractions, Assume-Guarantee, Induction