
FORMAL METHODS FOR MACHINE LEARNED SYSTEMS

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Briti Gangopadhyay

PhD Student,

Department of Computer Science and

Engineering,

IIT Kharagpur

Email: briti_gangopadhyay@iitkgp.ac.in

CS60030 Formal Systems

Machine Learned Controllers

2

Reinforcement Learning

can learn control

strategies for toy

problems like moving an

agent in gridworld to

more complex domains

like autonomous driving.

Q Table
Deep Q Neural Networks

Large state and action space

Why Should Machine Learned Controllers be Verified?

Uber Autonomous Car

Crash March 2018

Tesla Autopilot Failure

2016, 2018

Boeing 737 crash 2018,

2019

Reinforcement Learning Overview

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
4

Learns a policy π (stat,st+1at+1…st+nat+n) to maximizing reward.

Policy is learnt using different algorithms with Neural Network

Components such as Deep Q Learning, Actor Critic, Deep

Deterministic Policy Gradient Methods

Modelled using Markov Decision Process

(MDP)

Reinforcement Learning Overview

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
5

Learning in Reinforcement Learning is guided by the Bellman Equations which depends on two main

factors:

1. The immediate reward given for visiting a state using a particular action.

2. The expected reward for taking action at+1 from state st+1

Policy
Reward

Discounted Q value

over future states

Reward shaping can prevent the agents from visiting unsafe states.

Q Value

State and action at

time t

How Is Formal Methods Relevant for Reinforcement Learning?

6

Non Interpretable hence difficult to verify

DNN with L layers and N neurons per

layer can be represented as a hybrid

system with L + 1 modes and 2N

states. [Verisig : Ivanov et el 2019]

Many control tasks are solved using Neural Networks due to their ability to learn from data and generalization capabilities. These controllers are also used

in safety critical domain like autonomous driving where verification is mandatory.

Model of the

Plant
Real World Plant

DNN Controller

Measurements x

Control inputs u

Training

Acts

Analyse the hybrid models with tools like

Flow* to answer reachability question.

Works only with DNN’s having sigmoid

activation. Relu activations can be

verified with Reluplex. Not scalable.

Trained Model

How Is Formal Methods Relevant for Reinforcement Learning?

7

Non Interpretable hence difficult to verify

Model of the

Plant
Real World Plant

DNN Controller

Measurements x

Control inputs u

Training

Constraint the markov decision process

using LTL properties such that the agent

only learns to visit safe states.

S

A

F

E

T

Y

L

A

Y

E

R

A safety layer that analytically solves an

action correction formulation at each state.

[Dvijotham et el 2018]

Trained Model

Model Checking On Markov Decision Process's

8

Standard Model Checking

Model of Transition

System
LTL Property

Non Deterministic Büchi

Automata

Product

YES/NO

Model Checking on Probabilistic Models

Markov Decision Process LTL Property

Non Deterministic Büchi

Automata

Product

P>=0.7? Yes/No

Emptiness Check

Deterministic Rabin

Automata

Safra Construction

• Double Exponential complexity

• In practice large automata

• Hard to implement efficiently

Model Checking On Markov Decision Process's

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
9

Markov Decision Process LTL Property

Limit Deterministic Büchi

Automata

Product

P>=0.7? Yes/No

• Simpler Construction

• Smaller Automata

Strongly Connected

Markov Decision Process (MDP)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
10

A Markov Decision Process can be defined as a tuple M = (S, A, s0, P, AP, L) where:

• S is a finite set of states

• A is a finite set of actions

• s0 is the initial state

• P : S × A × S → [0, 1] is the transition probability function which determines

probability of moving from a given state to another by taking an action

• AP is a finite set of atomic propositions

• L : S → 2AP assigns to each state s ∈ S a set of atomic propositions L(s) ⊆ 2AP.

• We use si → a → sj to denote a transition from state si ∈ S to state sj ∈ S by

action a ∈ A.

Limit Deterministic Büchi Automata (LDBA)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
11

A Generalized Non Deterministic Büchi Automata can be defined as a tuple N = (Q, q0, Σ, F, ∆) where

• Q is a finite set of states

• q0 ∈ Q is the initial state

• Σ = 2AP is a finite alphabet

• F = {F1, ..., Ff } is the set of accepting conditions

• ∆ : Q × Σ → 2Q is a transition relation.

GNBA is limit deterministic if Q can be partitioned into two disjoint sets Q = QN ∪ QD, such that : –

For every state q ∈ QD and for every α ∈ Σ : ∆(q, α) ⊂ QD and |∆(q, α)| = 1,

And for every Fj ∈ F, Fj⊂ QD

LDBA and MDP Product

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
12

Given an MDP M = (S, A, s0, P, AP, L) and an LDBA N = (Q, q0, Σ, F, ∆) with Σ = 2AP, the product MDP is defined as

M ⊗ N = MN = (S ⊗, A, s⊗0 , P ⊗, AP⊗, L⊗), where

• S ⊗ = S × Q is a set of product states,

• s⊗0 = (s0, q0) is the initial state of the product MDP,

• AP⊗ = Q,

• L⊗ = S × Q → 2 Q such that L⊗(s, q) = q,

• P ⊗ : S⊗ × A × S⊗ → [0, 1] is the transition probability function such that (si → a→ sj) ∧ (qi → L(si)→ qj) ⇒ P

⊗((si , qi), a,(sj , qj)) = P(si , a, sj).

• Over the states of the product MDP we also define accepting condition F ⊗ = {F⊗ 1 , ..., F⊗ f } where F⊗ j = S × Fj .

[Sickert et el 2016]

LDBA and MDP Product Example

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
13

1. s⊗0 = (s0, q0),

2. AP⊗ = Q, L⊗ = S × Q → 2 Q such that L⊗(s, q) = q,

3. P ⊗ : S⊗ × A × S⊗ → [0, 1] such that (si → a→ sj) ∧ (qi → L(si)→ qj) ⇒ P⊗((si , qi), a,(sj , qj)) = P(si , a, sj).

MDP LDBA Product MDP

A, q0

Logically Constrained Reinforcement Learning

1. The Reward function is defined over the product Markov Decision Process.

2. The product MDP is a synchronous structure encompassing transition relations of the original MDP and also

the structure of the Büchi automaton.

3. A always contains those accepting states that are needed to be visited at a given time.

4. The Reinforcement Learning agent learns on the product Markov decision process using the Bellman equation.

1
4

Example of Slippery Gridworld: A = {left, right, up, down, stay}

There is a probability of 85% that the action takes the robot to the correct state

and 15% that the action takes the robot to a random state in its neighbourhood.

t stands for “target”, u stands for “unsafe”, and p refers to the area that has to

be visited before visiting the area with label t.

Example of Logically Constrained RL

1
5

Safety Specification : Eventually find the target Ft and stay there G(t → Gt) while avoiding the unsafe

otherwise the agent is going to be trapped there G(u → Gu). [Hasanbeig et el 2018]

Reward Machines

1
6

● Reward machines (RM’s) are a formal representation for reward functions.

● LTL formulas and other regular languages can be used to specify reward-worthy behaviour that is

automatically converted into RM’s (via DFAs).

● RM structure can be exploited by Q-learning and automated reward shaping to learn policies faster,

solving problems that cannot reasonably be solved otherwise. [Camacho et al. (2019)]

Reward Machines

1
7

Reward Machines (RM) are Mealy machines where the input alphabet is the set of possible labels and the

output alphabet is a set of reward functions. They consist of the following elements:

• A finite set of states U .

• An initial state u0 ∈U .

• A set of transitions, each labelled by:

• a logical condition defined over the vocabulary

• and a reward function

Reward Machines

1
8

THANK YOU

1
9

References

2
0

1. Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. 2019. Verisig: verifying

safety properties of hybrid systems with neural network controllers. In Proceedings of the 22nd ACM

International Conference on Hybrid Systems.

2. Kroening, D, A Abate, and M Hasanbeig. n.d. “Towards Verifiable and Safe Model-Free Reinforcement

Learning.” In . Vol. 2509. CEUR Workshop Proceedings

3. Limit-Deterministic Büchi Automata for Linear Temporal Logic Computer Aided Verification, 2016, Volume

9780 SBN : 978-3-319-41539-0 Salomon Sickert, Javier Esparza, Stefan Jaax

4. MoChiBA: Probabilistic LTL Model Checking Using Limit-Deterministic Büchi Automata Automated

Technology for Verification and Analysis, 2016, Volume 9938 ISBN : 978-3-319-46519-7 Salomon Sickert,

Jan Křetínský

5. Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening . 2018. Logically-Constrained

Reinforcement Learning. arXiv preprint arXiv:1801.08099 (2018)

6. Dalal, G., Dvijotham, K., Vecerík, M., Hester, T., Paduraru, C., & Tassa, Y. (2018). Safe Exploration in

Continuous Action Spaces. ArXiv, abs/1801.08757.

7. A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith, “LTL and beyond: Formal

languages for reward function specification in reinforcement learning,” in IJCAI’19. International Joint

Conferences on Artificial Intelligence Organization, 7 2019, pp. 6065–6073

