FORMAL METHODS FOR MACHINE LEARNED SYSTEMS

CS60030 Formal Systems

tocol B
Formulas Ccloured Hihes
Query-| Driven Platf
Validation ~ PTOpoOSsitional Automatic model ™ Orleaqrams

PhD Student, Téh‘jvé‘ﬁg: "““B",*;];;,“g’;“zm,ict.tm Algorithms Abstract IODI? Ntlodu;.r
0 Games Constraint ® ® Quantification @ abstraction etection UeryMEmDrY
Department of Computer Science and De.:pe;g,jg;;:"&;05,%‘*5;2‘3?}{?,” e V f| C at| —

Generatlon Reactlve inference

Engineering, Scheduing Languages Measurement Dynam.c SV

Semannc Case Enwronment Godel u nt' me y S I S ':i:\i\:aRr g \Fl’lrg:vi]gq Reductions
Llnk abstraction/refinement onlin
I IT Kh a rag p u r Spec'lf'_‘:a*_l'ft M d Ouantlflers o FShell C omp onent By Ab Siirtt':! ct t' qoodolnltJeraDEEEILfr!ngflnement
. agn oo O flexlble MOdeIS ntegrity weak unit @ solvers
L | Application reuse
Email: briti_gangopadhyay@iitkgp.ac.in °°'§§epresentat,on SAT T or %gr;g%ete;;ed Program ‘ s ec |n o
vironments Syccinct tlme TeS |n

Fault- to\erant Proqrams
Conference Fault-Tolerant ug Watermarkmq ay s
Concurrent Y Framework
Petri Untrusted Components SyStemS Leaf IS rI u

Loagics
P Ti I F\ ul
“,*f'fe[,es,qn Static pompore equar Development Fuzzy Compatibiity

Computatlons 0 a e Queries Reachabiity
Safety petworl w r Ianquaqe Treewidth

Coverage Virtual Seamless
Efficient

Extended

FORMAL METHODS FOR SAFETY CRITICAL SYSTEMS

Machine Learned Controllers

Reinforcement Learning
] G can learn control
strategies for toy

I problems like moving an
agent in gridworld to
more complex domains
like autonomous driving.

® B

Action

0| 0 0

Idle

> State —

Correct Path

Wrong Path

End

Deep Q Neural Networks

Why Should Machine Learned Controllers be Verified?

9. o 1 * J‘ o 1= P \
. Artificial Intelligence based systems for automotive iy

< = 3 140 " =T
B . 4 Y 120 ~
el f £ 100 e

' 5 N

ey el SELF-DR S \

40
Uber Autonomous 2 B l I I I utopilot Failure
Crash March 2018 o)18
2015 2016 2017 2018 2019 2020 201 20232 2023 2024 2025

Motes: Incudes: infetainmant (virtual essistance, geslure and speech recognitien) and autonomous driving applications (object detection and
freespace detecton)

Source: IHS Technology - Automotive Electronics Rioadmap Report, H1 2018 2 2016 IHS

Boeing 737 crash 2018,
2019

Reinforcement Learning Overview

- *Modelled using Markov Decision Process
(MDP)

—>»| Environment

action Reward| |State

AA

Agent

Learns a policy T (S;;,S+1841--St4nt4pn) t0 Maximizing reward.
Policy is learnt using different algorithms with Neural Network
Components such as Deep Q Learning, Actor Critic, Deep
Deterministic Policy Gradient Methods

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Reinforcement Learning Overview

Learning in Reinforcement Learning is guided by the Bellman Equations which depends on two main
factors:

1. The immediate reward given for visiting a state using a particular action.
2. The expected reward for taking action a,,, from state s,,,

Q Value <—qﬂ(5, Ea‘) = Eﬁ- [Rt_|_1 + ’}’qW(SHlTAHl) | St = STAt = 3]

: 1

Policy t Discounted Q value L State and action at

Reward over future states time t

Reward shaping can prevent the agents from visiting unsafe states.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

How Is Formal Methods Relevant for Reinforcement Learning?

Many control tasks are solved using Neural Networks due to their ability to learn from data and generalization capabilities. These controllers are also used
in safety critical domain like autonomous driving where verification is mandatory.

Training DNN Controller Trained Model

Measurements x ~_ AR

v
1
S

a
% r > % + - - Ll
AN AN
PI ant . J“)\ \.-.__"r wraav.
W % g

Model of the RAK XK~ P LReaI World Plant

'

|

o -
e

Control inputs u

Non Interpretable hence difficult to verify

Analyse the hybrid models with tools like
Flow* to answer reachability question.
Works only with DNN’s having sigmoid
activation. Relu activations can be
verified with Reluplex. Not scalable.

i =0
=0
o =xixf (1 -2
= .'rE':.rfU x5
=1
=1
[o |

DNN with L layers and N neurons per
layer can be represented as a hybrid
system with L + 1 modes and 2N
states. [Verisig : Ivanov et el 2019]

Vo= 03xd 4 0.2xd 4 01
2= 00 4+ 05k 4+ 0.2
Li=)

JC:I.I:U'] C [2,3]

e () & [1,2
(0 € 1.2] {o)

How Is Formal Methods Relevant for Reinforcement Learning?

Training Trained Model
DNN Controller g)
~, Measurements x N)~ F
Model of the ~ SRR~ T
A XX WD > Y Real World Plant
Plant 1T 2 !
< TNV Y N /
J : BNV A
Control inputs u _/ \ Y
E
Non Interpretable hence difficult to verify R

C°_“5t'i_a_|i_r|‘_t the mratfkm’ deﬁitsli°:‘tﬁr°°esst A safety layer that analytically solves an
using L IL properties such that the agen action correction formulation at each state.
only learns to visit safe states. [Dvijotham et el 2018]

Model Checking On Markov Decision Process's

Standard Model Checking Model Checking on Probabilistic Models

Model of Transition
System

LTL Property

Markov Decision Process LTL Property

Non Deterministic Bichi * Double Exponential complexity
Automata * In practice large automata
» Hard to implement efficiently

Product

Product

Emptiness Check

YES/NO

P>=0.7? Yes/No

Model Checking On Markov Decision Process's

Markov Decision Process LTL Property Strongly Connected
/‘

.) é .
Initial Accepting
Limit Deterministic Blchi Component “ Jumps” Component
Automata p
. J _ J
(possibly) deterministic
Rrodict non-deterministic

Simpler Construction
Smaller Automata

P>=0.7? Yes/No

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Markov Decision Process (MDP)

A Markov Decision Process can be defined as a tuple M = (S, A, s, P, AP, L) where:

* Sis afinite set of states

* Ais afinite set of actions [A Label(A) = }J

* s, is the initial state 0. g’\i o
0.2

« P:SxAxS —|[0,1]is the transition probability function which determines

{B Label(B) = {b}}

U
3

probability of moving from a given state to another by taking an action

» AP is afinite set of atomic propositions
« L:S — 2AP assigns to each state s € S a set of atomic propositions L(s) S 24P,
* Weuse s; — a — s; to denote a transition from state s; € S to state s; € S by

action a € A.

10

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Limit Deterministic Buchi Automata (LDBA)

A Generalized Non Deterministic Buchi Automata can be defined as a tuple N = (Q, q,, Z, F, A) where

Q is a finite set of states _{qn :a A X(FGa V FGb)J

* q, € Qis the initial state | ¢
Qo a l e : {pga: G&}D
« I=2°P js afinite alphabet —
: FG FGb |
« F={F,, ..., F;}is the set of accepting conditions [f“ “v J | b

—
A:Qx ¥ — 2%js a transition relation. U < pay: Gb |D

|
tt l
|

GNBA is limit deterministic if Q can be partitioned into two disjoint sets Q = Q U Qp, such that : -
For every state q € Q; and for every a € £ : A(q, a) € Qp and [A(q, a)| =1,
And for every F; € F, F, c Q,

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

11

LDBA and MDP Product

Given an MDP M = (S, A, s,, P, AP, L) and an LDBA N =(Q, q,, Z, F, A) with £ = 24P the product MDP is defined as
MQN=MN=(S® A, s®, P® APS, L®) where

« §®=8 xQis a set of product states,

« s®;=(s,, qo) is the initial state of the product MDP,

« AP®=Q,

« L®=8xQ — 2%suchthatL®(s, q)=q,

* P®:§®xAx8§9® [0, 1] is the transition probability function such that (s; —» a— s;) A (9;— L(s;)— q;) =P
B((s;, di) a,(s;, q;)) = P(s;, a, s;).

» Over the states of the product MDP we also define accepting condition F ® ={F®,,..,F® } where F® =S x F;

[Sickert et el 2016]

12

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

LDBA and MDP Product Example

1. 8= (s, qo),
2. AP®=Q,L®=8SxQ — 2%suchthatL®(s, q)=q,
3. P®:5®xAx8®—[0,1]suchthat(s;— a—s;) A(q— L(s;)— q;) = P®((s;,), a,(s;, q;)) = P(s;, a, §)).

MDP LDBA Product MDP
—{A: Label(A) = {a}J —{qﬂ. . a A X(FGa Vv FGb)J | — Ao
: o |
= = w s
&l 0.2 ! l j{a[p o ¢ D }
[B: Label(B) = {b}} [ql: FGa v FGbJ | z;
-
u T e | U = e
B tt ! 3

13

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Logically Constrained Reinforcement Learning

The Reward function is defined over the product Markov Decision Process.

2. The product MDP is a synchronous structure encompassing transition relations of the original MDP and also
the structure of the Buichi automaton.

3. A always contains those accepting states that are needed to be visited at a given time.

The Reinforcement Learning agent learns on the product Markov decision process using the Bellman equation.

- . ! @l
R(E _fry ifq €A, s9 = (s,4),
{'5 1“) - .
Tn otherwise.

Example of Slippery Gridworld: A = {left, right, up, down, stay}

There is a probability of 85% that the action takes the robot to the correct state
and 15% that the action takes the robot to a random state in its neighbourhood.

t stands for “target”, u stands for “unsafe”, and p refers to the area that has to
be visited before visiting the area with label t.

14

Example of Logically Constrained RL

Safety Specification : Eventually find the target Ft and stay there G(t — Gt) while avoiding the unsafe
otherwise the agent is going to be trapped there G(u — Gu). [Hasanbeig et el 2018]

ot ADO(t — Ot) A D(u — Du)

start —

Reward Machines

e Reward machines (RM’s) are a formal representation for reward functions.

e LTL formulas and other regular languages can be used to specify reward-worthy behaviour that is
automatically converted into RM’s (via DFAs).

e RM structure can be exploited by Q-learning and automated reward shaping to learn policies faster,
solving problems that cannot reasonably be solved otherwise. [Camacho et al. (2019)]

_ L || | Symbol Meaning

B x| € A Agent
» ' .
b Furniture
* | o [= | =k - Coffee machine
: A < Mail room

A % % = 5 0 Office

']]] A, B, C, D Marked locations

Task: Patrol A, B, C, and D.

Reward Machines

Reward Machines (RM) are Mealy machines where the input alphabet is the set of possible labels and the
output alphabet is a set of reward functions. They consist of the following elements:
* A finite set of states U .
* An initial state u, €U.
* A set of transitions, each labelled by:
* a logical condition defined over the vocabulary
* and a reward function

m = O # global wvariable

s|def get_reward(s):

if m == 0 and s.at("A"):
m = 1

if m == 1 and s.at("B"):
m = 2

if m == 2 and s.at("C"):
m = 3

if m == 3 and s.at("D"):
m = 0
return 1

return 0

Reward Machines

This RM starts in 1, and transitions to u; when A is reached.
The agent gets reward 0 from that transition’s reward function.

Positive reward is given only when the agent completes a cycle.

é {-A,0)
-

:m:. 0

Al 2

Example: “Get coffee and bring it to the office."

[TL: Eventually[s A Next[Eventually o]]
RM:

(-, 0) (—0,0) (true, 0}
-é {!Iu} é {ujl} 2

» Observe state (s, u) and execute action a ~ m(a|(s, u)).
« Observe next state (s’, u’) and the reward r.
« Improve policy m using experience ((s, u}, a, r,{s’, u')).

o« (s,u)—(s',u').

18

THANK YOU

References

1.

Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. 2019. Verisig: verifying
safety properties of hybrid systems with neural network controllers. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems.

Kroening, D, A Abate, and M Hasanbeig. n.d. “Towards Verifiable and Safe Model-Free Reinforcement
Learning.” In . Vol. 2509. CEUR Workshop Proceedings

Limit-Deterministic Buchi Automata for Linear Temporal Logic Computer Aided Verification, 2016, Volume
9780 SBN : 978-3-319-41539-0 Salomon Sickert, Javier Esparza, Stefan Jaax

MoChiBA: Probabilistic LTL Model Checking Using Limit-Deterministic Blichi Automata Automated
Technology for Verification and Analysis, 2016, Volume 9938 ISBN : 978-3-319-46519-7 Salomon Sickert,
Jan Kretinsky

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening . 2018. Logically-Constrained
Reinforcement Learning. arXiv preprint arXiv:1801.08099 (2018)

Dalal, G., Dvijotham, K., Vecerik, M., Hester, T., Paduraru, C., & Tassa, Y. (2018). Safe Exploration in
Continuous Action Spaces. ArXiv, abs/1801.08757.

A. Camacho, R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. Mcllraith, “LTL and beyond: Formal
languages for reward function specification in reinforcement learning,” in IJCAI'19. International Joint
Conferences on Artificial Intelligence Organization, 7 2019, pp. 6065-6073

