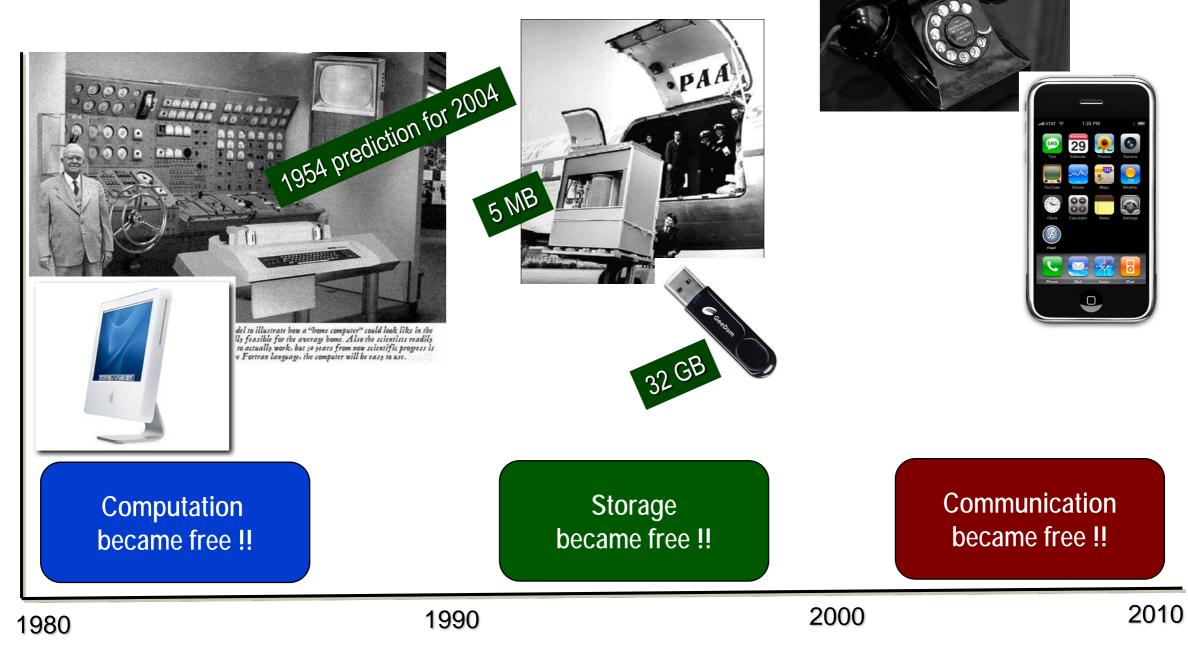
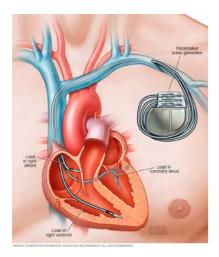
# FORMAL METHODS – AN INTRODUCTION

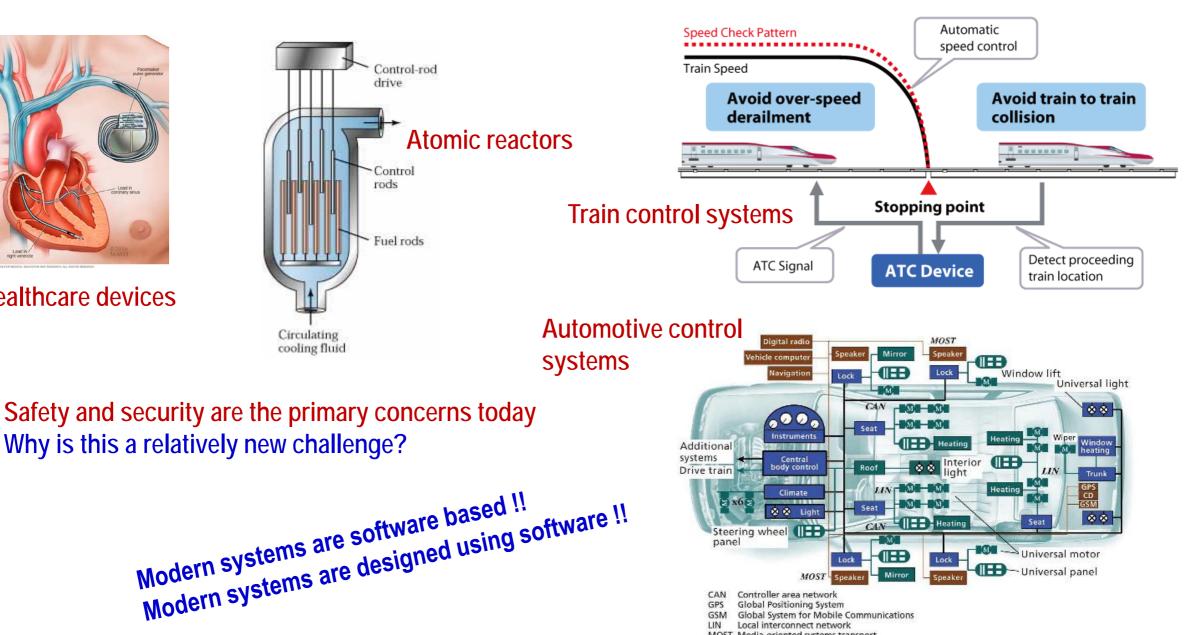








#### DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Dr Pallab Dasgupta, Professor


#### The Evolution of Electronic Computing



## Computing is not confined to labs anymore !!



Healthcare devices



GSM

Global System for Mobile Communications

Local interconnect network Media-oriented systems transport

### Safety and Computer Science

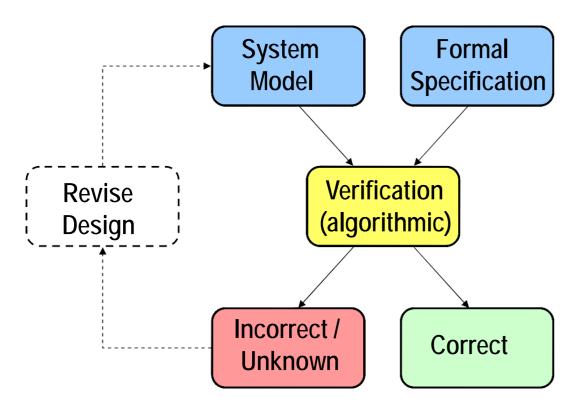
- In view of the proliferation of electronics and software in everything that we use:
  - Safety has a new meaning the electronics and software must not do things that cause my
    gadgets to harm me
  - Only Computer Science can solve the problems related to cyber safety
  - Today there are at least two people in verification for every person in design. And this is true in:
    - Design of integrated circuits
    - Design of software
    - Design of control systems

⇒ Verification experts are in high demand in modern engineering. Yet bugs continue to haunt the industry.

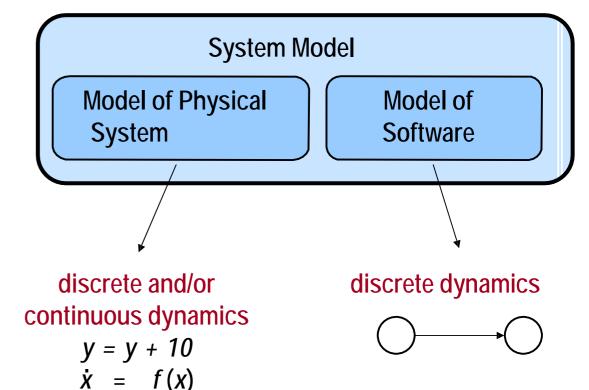
#### Famous incidents from software bugs



Explosion of Ariane 5, 1996 due to ".. conversion of a 64 bit integer into a 16 bit signed integer lead to an overflow ..."



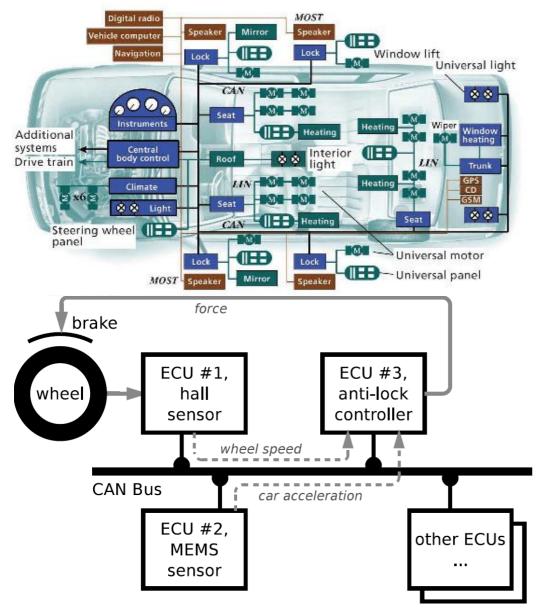

Loss of Mars Climate Orbiter, 1999 due to "...mix-up between pounds and kilogram...."

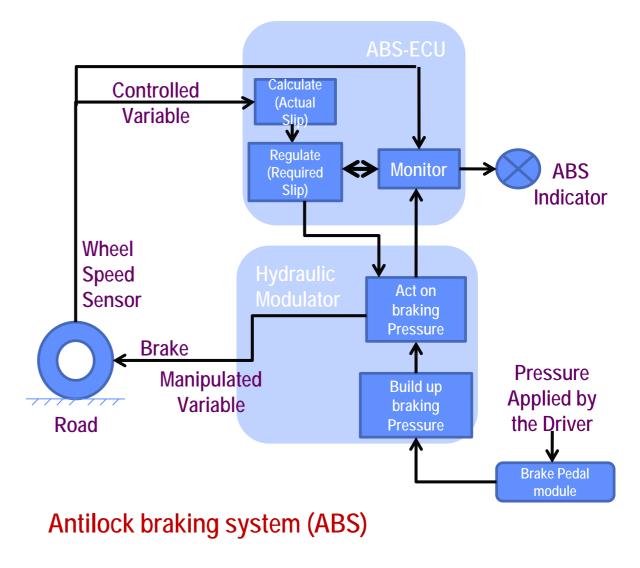



USS Yorktown died in the water, 1998 due to *"…input and Division* by *'0'. " X / 0 = undefined…"* 

# Formal Methods are used to prove designs to be correct !!




- More than 70 top scientists work in the NASA Langley formal methods group
- Top companies (Intel, IBM, Google, Microsoft, General Motors) have dedicated formal methods groups
- So does ministries of defense, atomic energy, space, etc.




International Safety Standards recommending Formal Methods in Verification

- Aeronautics (DO-178C)
- Automotive (ISO 26262)
- Industrial process automation (IEC 61508)
- Nuclear (IEC 60880)
- Railway (EN 50128)
- Space (ECSS-Q-ST-80C)

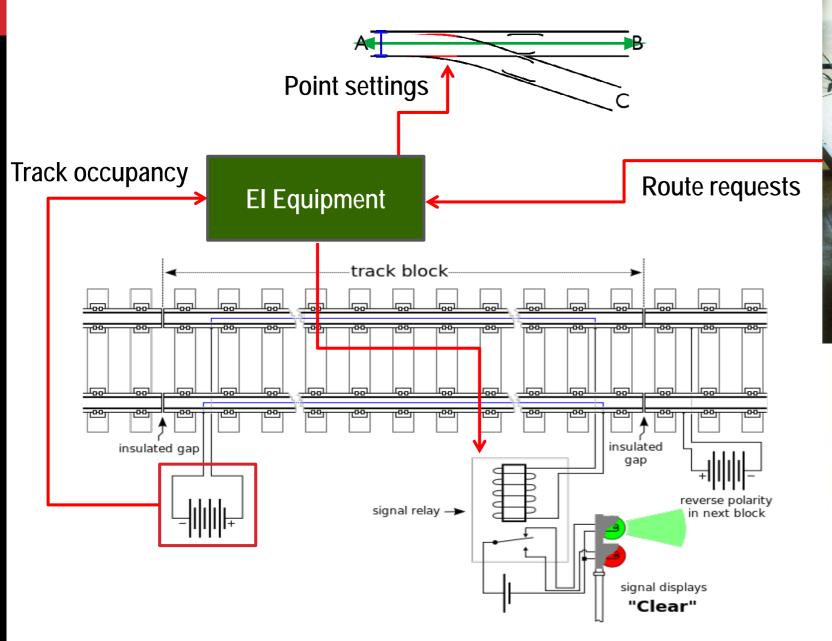
#### **Examples of Safety Critical Systems**



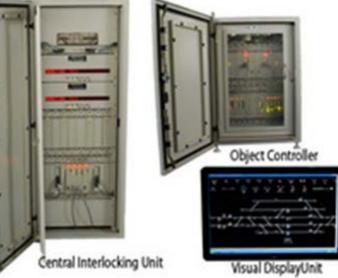




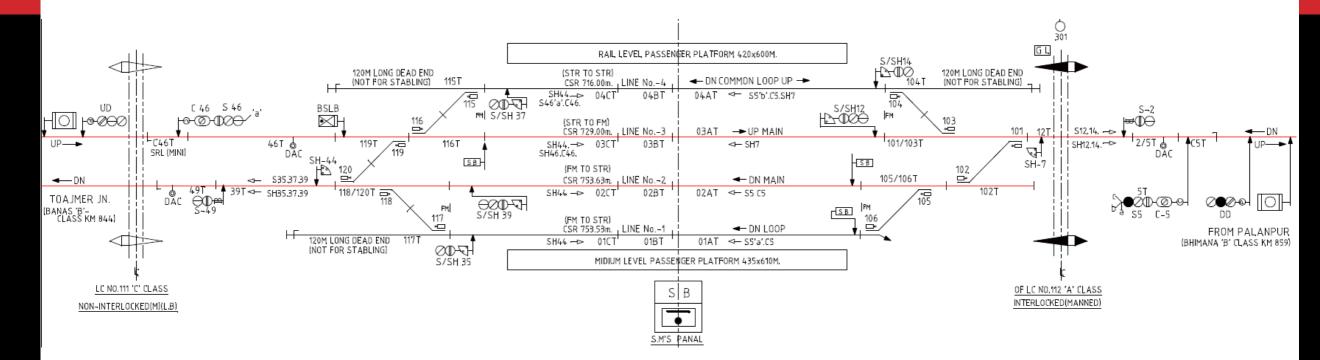
NATIONAL LOAD DESPATCH CENTER - Control room At the Top of Control Heirarchy


#### **Course Topics**

- Formal Specifications.
  - Automata over finite and infinite words, Communicating concurrent state machines, Temporal and Modal Logics, Relationship between Logic and Automata, Satisfiability, Validity and Model checking problems.
- Handling Large State Spaces.
  - Succinct representations of state spaces and their traversal, SAT and BDD-based symbolic reachability approaches, abstraction refinement approaches.
- Model Checking.
  - Temporal logic model checking, Symbolic and automata theoretic approaches.


- Formal representation of time.
  - Timed automata, Timed temporal logic, Model checking timed systems.
- Formal representation of hybrid systems.
  - Hybrid automata, Reachability problems in hybrid automata, Polyhedral approximation techniques.
- Formal analysis of programs.
  - Abstract interpretation, Predicate abstraction, Model checking software systems.
- Industrial applications of formal methods.

A Real World Case Study


### **Electronic Interlocking in Railways**







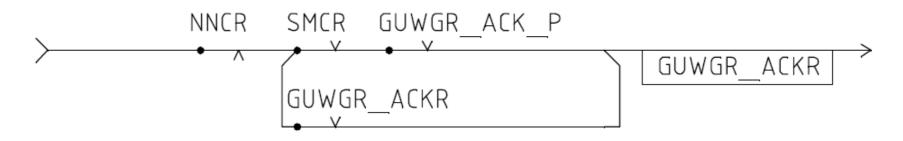
# Life-cycle of signaling logic: Step-1 (Yard Layout)



Traditionally the layout (signal plan) is created manually

- Upgradations are reflected manually on paper
- No automatic consistency checking
- No automatic way to guarantee that upgradations in signaling plan and control table are consistent

# Life-cycle of signaling logic: Step-2 (Control Table)


| S.NO | MCA   | VEM <b>E</b> | TNT<br>C | BUT   | TON |         | ETLIOF M           |                                                            |                              |                                                            |              |                    | IN OVERL-1P |                            |                     |                                                            |               |      | RELEASED                                                                | -                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SIGNAL ASPECT                |       |                                                                                                   |
|------|-------|--------------|----------|-------|-----|---------|--------------------|------------------------------------------------------------|------------------------------|------------------------------------------------------------|--------------|--------------------|-------------|----------------------------|---------------------|------------------------------------------------------------|---------------|------|-------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------|---------------------------------------------------------------------------------------------------|
| 0)   | FRO   | M T          | то       | GN    | UN  | · · ·   | POINTS             | TRACK                                                      | SOLATION<br>POINTS<br>NORMAL | GATE<br>CONTROL<br>& OTHERS<br>SLOTS<br>REQUIRED<br>NORMAL | CRANK        | KI.                | POINTS      | #34.0V                     | ISOLATION<br>POINTS | GATE<br>CONTAGL<br>3 OTHERS<br>3LOTS<br>REQUIRED<br>NORMAL | CRANK         |      | TRACK<br>CIRCUITS<br>OCCUPIED<br>CLEARED                                | APPROCACH                                         | ROUTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |       | REMARKS                                                                                           |
|      |       |              |          |       |     | NORMAL  | REVERSE            | CIRCUITS                                                   |                              | SLOTS<br>BEQUIRED<br>NORMAL                                | HANDL        | NORMAI             | REVERSE     | CIRCUITS                   |                     |                                                            | HANDLE        |      |                                                                         | LOCKING                                           | LOCKED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VELLOW                       | GREEN |                                                                                                   |
| 1.   | S2    | BHIMANA      |          | \$2   | UM  | -       | -                  | 2/5T                                                       |                              | •                                                          |              | -                  | -           | 4                          | •                   | ·                                                          | -             | 2/5T |                                                                         | 2                                                 | (S5.C5-LN1.2.4)<br>SH7-LN 3.4<br>SH12.SH14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                            | ·     | CONTROLLED BY BHIMAN,<br>SIDE SINGLE LINE<br>TOKENLESS B/INSTT.<br>IN TGT POSITION<br>VITH SSDAC, |
| 2,   | S5 b  | 5.1          | s        | 55    | 02  | 105/106 | 101/102            | 2/5T<br>12T<br>101/103T<br>1021<br>1051103T<br>-02-1151/CT |                              | 301                                                        | CH-3<br>CH-1 | 117/118<br>119/120 |             | 118/120T<br>39T,           |                     |                                                            | CH-0<br>CH-10 | 2/5T | 2/5T<br>127<br>101/103T<br>102T<br>105/106T                             | DEAD                                              | CHG-LN4W<br>IG3/IG4 R<br>S2 C5-LN2<br>SH39<br>SH44-LN2<br>C48-LN3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$39<br>R<br>OR<br>Y OR<br>G | -     | . es                                                                                              |
| 3,   | C5    | \$39         | 9 3      | COGGN | 02  | 105/106 | 101/102            |                                                            |                              | 301                                                        | CH-3<br>CH-1 |                    |             |                            |                     | -                                                          |               |      | 2/5T 12T<br>101/103T<br>102T<br>105/106T<br>OR<br>THREYEM.<br>CELCANC.  |                                                   | S2, S5-LN2<br>S35, SH35, S37<br>SH37, SH39,<br>SH44-LN1, 2, 3, 4<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3):<br>(C46-LN3): |                              |       | CLEARS 60 SEC.<br>AFTER OCC. OF C5T &<br>REPLACED TO ON WHEN<br>C5T IS CLEARED                    |
| 4.   | S5'a' | \$35         | 5        | 55    | 01  |         | 101/102 105/106    | 2/5T<br>12T<br>101/103T<br>102T                            |                              | 301                                                        | CH-1<br>CH-3 | 117/118            |             | 1177                       | -                   | -                                                          | СН-9          | 2/5T | 2/5T<br>12T                                                             | 52.05-LN<br>046= LN 3                             | 11. SH44-LN.2.3.4.<br>4. W 103/104 R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S35<br>R                     | •     |                                                                                                   |
| -    | 0.00  | -            | -        |       |     |         |                    | 105/106T.<br>01AT/ST/CT                                    |                              |                                                            |              | 119/120            | 117/118     | 117T,<br>118/120T,<br>39T, |                     |                                                            | CH-10<br>CH-5 | 2/51 | 101/103T<br>102T<br>105/108T,                                           | 52.CS-LNI                                         | NI. SH35_SH44-LNI.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S35 R<br>OR Y                |       | •                                                                                                 |
| 5.   | C5    | 535          | SS       | COGGN | 01  | -       | 101/102<br>105/106 | -<br>2/5T                                                  | -                            | 301                                                        | СН-1<br>СН-3 | -                  |             |                            | -                   | . * .                                                      |               |      | 2/5T.12T<br>101/103T<br>102T<br>105/106T<br>OR<br>THRID'EM,<br>CD.CANC, | 52.55-LN<br>5444-LN 1<br>- (SH37.537<br>(SH44-LN4 | W 103/104 P<br>1.5H35.5H37.537<br>2.3) C46-LN32<br>W 117/118 R)<br>103/104R4<br>117/118 R)<br>103/104R4<br>117/118 R)<br>W 103/104R3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                            |       | CLEARS 60 SEC<br>AFIER OCC. CF C5T &<br>REPLACED TO 'ON' WHEN<br>C5T IS CLEARED                   |

Traditionally the control table is created manually from the layout

- Upgradations are reflected manually on paper
- No automatic consistency checking
- No automatic way to guarantee that upgradations in control table are consistent with application logic

## Life-cycle of signaling logic: Step-3 (Application Logic)

GUWGR\_ACKR = !NNCR & ((SMCR & GUWGR\_ACK\_P) # GUWGR\_ACKR);



Traditionally the application logic is created manually from the control table

- Uses traditional relay logic (ladder network) for legacy reasons
- Lack of standardization in terms of the set of relays used to define the logic
- RDSO has been working towards a standard for Indian Railways. This will significantly help if vendors are made to comply.

### How would we verify 1000 pages of logic which looks like this?

S2GNR = S2GN\_P & IS5GNR & ISH7GNR & IS12GNR & ISH12GNR & IS14GNR & ISH14GNR & IS35GNR & ISH35GNR & IS437GNR & ISH37GNR & ISH39GNR & ISH44GNR & IS46GNR & IS49GNR & IS4

S5GNR = S5GN\_P & IS2GNR & ISH7GNR & IS12GNR & ISH12GNR & IS14GNR & ISH14GNR & IS35GNR & ISH35GNR & IS37GNR & ISH37GNR & IS39GNR & ISH39GNR & ISH44GNR & IS46GNR & IS49GNR & IS49

SH7GNR = SH7GN\_P & IS2GNR & IS5GNR & IS12GNR & ISH12GNR & IS14GNR & ISH14GNR & IS35GNR & ISH35GNR & IS37GNR & ISH37GNR & ISH39GNR & ISH39GNR & ISH44GNR & IS46GNR & IS46GNR & IS49GNR & IS46GNR & IS

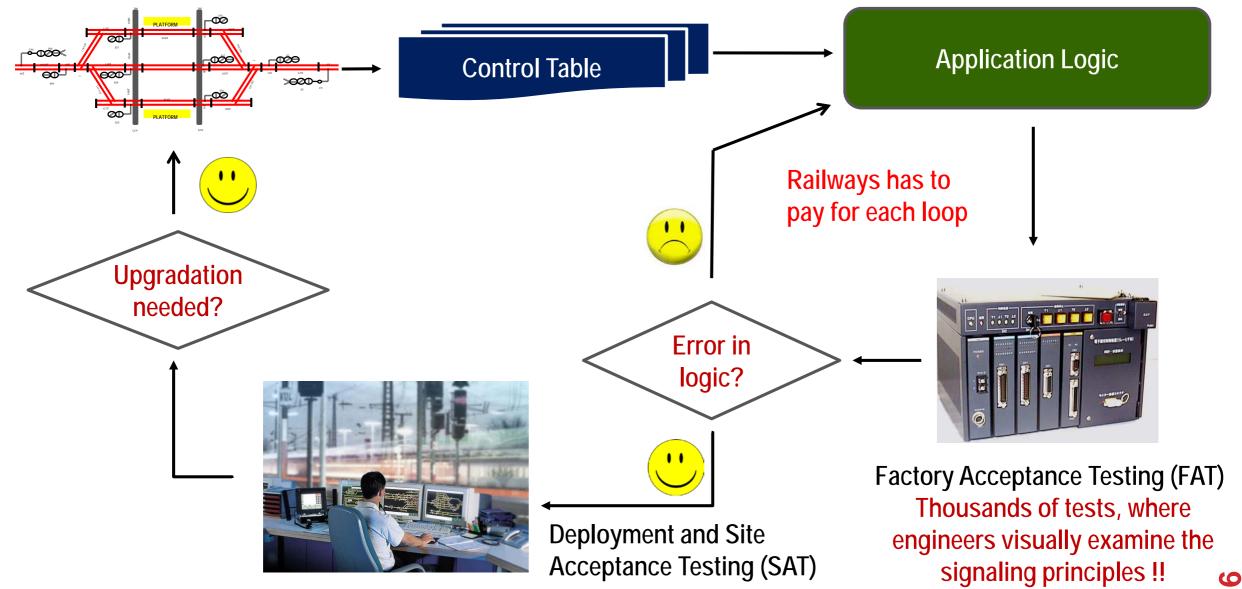
S12GNR = S12GN\_P & IS2GNR & IS5GNR & ISH7GNR & ISH12GNR & IS14GNR & ISH14GNR & IS35GNR & ISH35GNR & IS37GNR & ISH37GNR & ISH39GNR & ISH39GNR & ISH44GNR & IS46GNR & IS49GNR & IS49GNR & IS46GNR & IS49GNR & IS46GNR & IS

SH12GNR = SH12GN\_P & IS2GNR & IS5GNR & ISH7GNR & IS12GNR & IS14GNR & ISH14GNR & IS35GNR & ISH35GNR & IS437GNR & IS439GNR & ISH39GNR & ISH44GNR & IS46GNR & IS49GNR & IS49GNR & IS49GNR & IS46GNR & IS49GNR & IS46GNR & IS49GNR & IS46GNR & I

S14GNR = S14GN\_P & IS2GNR & IS5GNR & ISH7GNR & IS12GNR & ISH12GNR & ISH14GNR & IS35GNR & ISH35GNR & IS37GNR & ISH37GNR & ISH39GNR & ISH44GNR & IS46GNR & IS49GNR & IS4

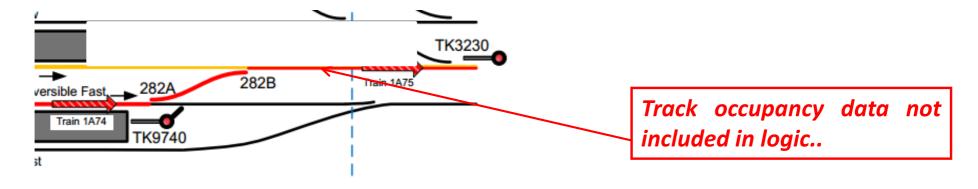
SH14GNR = SH14GN\_P & IS2GNR & IS5GNR & ISH7GNR & IS12GNR & ISH12GNR & IS14GNR & IS35GNR & ISH35GNR & IS37GNR & ISH37GNR & ISH39GNR & ISH44GNR & IS46GNR & IS49GNR & IS

S35GNR = S35GN\_P & IS2GNR & IS5GNR & ISH7GNR & IS12GNR & ISH12GNR & IS14GNR & ISH14GNR & ISH35GNR & IS37GNR & ISH37GNR & ISH39GNR & ISH39GNR & ISH44GNR & IS46GNR & IS49GNR & IS49GNR & ISH35GNR & ISH35GNR & ISH35GNR & ISH37GNR & ISH39GNR & ISH39GNR & ISH44GNR & IS46GNR & IS49GNR & ISH35GNR & ISH35GNR & ISH35GNR & ISH35GNR & ISH39GNR & ISH39GNR & ISH44GNR & ISH44GNR & ISH46GNR & ISH46


SH35GNR = SH35GN\_P & IS2GNR & IS5GNR & ISH7GNR & IS12GNR & ISH12GNR & IS14GNR & ISH14GNR & IS35GNR & IS35GNR & ISH37GNR & IS39GNR & ISH39GNR & ISH44GNR & IS46GNR & IS49GNR & IS

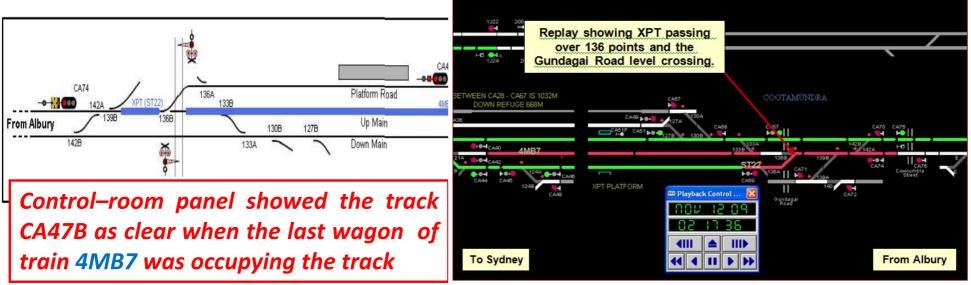
S37GNR = S37GN\_P & IS2GNR & IS5GNR & ISH7GNR & IS12GNR & ISH12GNR & IS14GNR & ISH14GNR & IS35GNR & ISH35GNR & ISH37GNR & ISH39GNR & ISH39GNR & ISH44GNR & IS46GNR & IS49GNR & IS49GNR & ISH35GNR & ISH35GNR & ISH35GNR & ISH39GNR & ISH39GNR & ISH44GNR & IS46GNR & IS49GNR & ISH35GNR & ISH35GNR & ISH35GNR & ISH35GNR & ISH39GNR & ISH39GNR & ISH44GNR & ISH46GNR & ISH46

SH37GNR = SH37GN\_P & IS2GNR & IS5GNR & ISH7GNR & IS12GNR & ISH12GNR & IS14GNR & ISH14GNR & IS35GNR & IS435GNR & IS35GNR & IS39GNR & ISH39GNR & ISH44GNR & IS46GNR & IS46GNR & IS49GNR & IS46GNR & IS


S39GNR = S39GN\_P & IS2GNR & IS5GNR & ISH7GNR & IS12GNR & IS12GNR & IS14GNR & IS14GNR & IS14GNR & IS35GNR & IS435GNR & IS435GNR & IS437GNR & IS439GNR & IS44GNR & IS46GNR & IS49GNR & IS49GNR & IS49GNR & IS46GNR & IS49GNR & IS46GNR & IS49GNR & IS46GNR & IS46GNR & IS46GNR & IS46GNR & IS49GNR & IS46GNR & IS46G

# Life-cycle for Signaling Logic




#### Milton Keynes, UK, 2008 - Cause

Formal investigations revealed, the axle-counter data was not included in the SSI logic associated with the aspect controls for signals *TK9740* and *TK3230* 

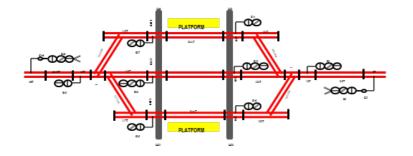


#### Cootamundra, NSW Australia, 2009 - The incident

Figure 3: Signal schematic (part) - Cootamundra Yard.



#### Railway Safety Standards recommend Formal Methods


Table A.4 — Software design and implementation (clause 10)

| TEC | HNIQUE/MEASURE                                                                                     | Ref. | SWSIL | SWSIL | SWSIL | SWSIL | SWSIL |
|-----|----------------------------------------------------------------------------------------------------|------|-------|-------|-------|-------|-------|
|     |                                                                                                    |      | 0     | 1     | 2     | 3     | 4     |
| 1.  | Formal methods including for example<br>CCS, CSP, HOL, LOTOS, OBJ,<br>Temporal Logic, VDM, Z and B | B.30 |       | R     | R     | HR    | HR    |
| 2.  | Semi-formal methods                                                                                | D.7  | R     | HR    | HR    | HR    | HR    |

Source: Page 50, EN50128: 2001

There are no guidelines in EN50128 on how such methods may be used in the context of Application Logic

### **IIT Kharagpur Contributions**

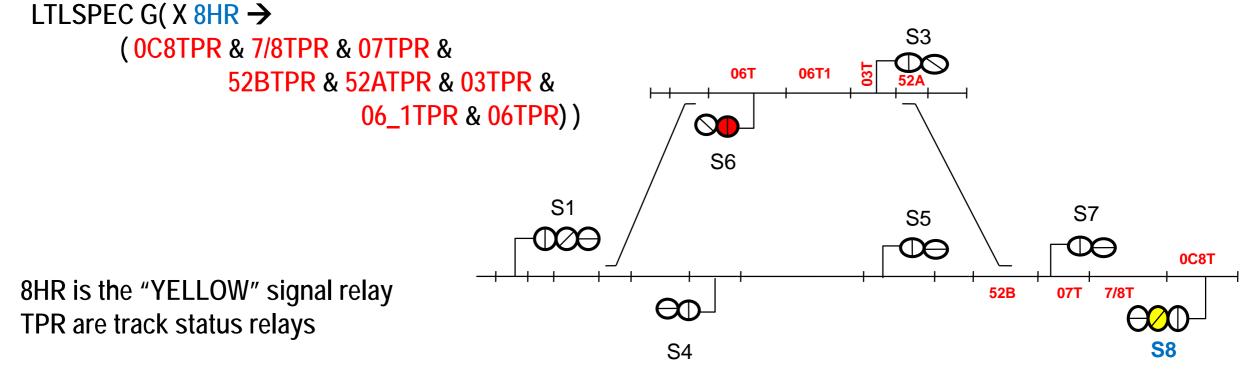


#### Layout Editor Tool

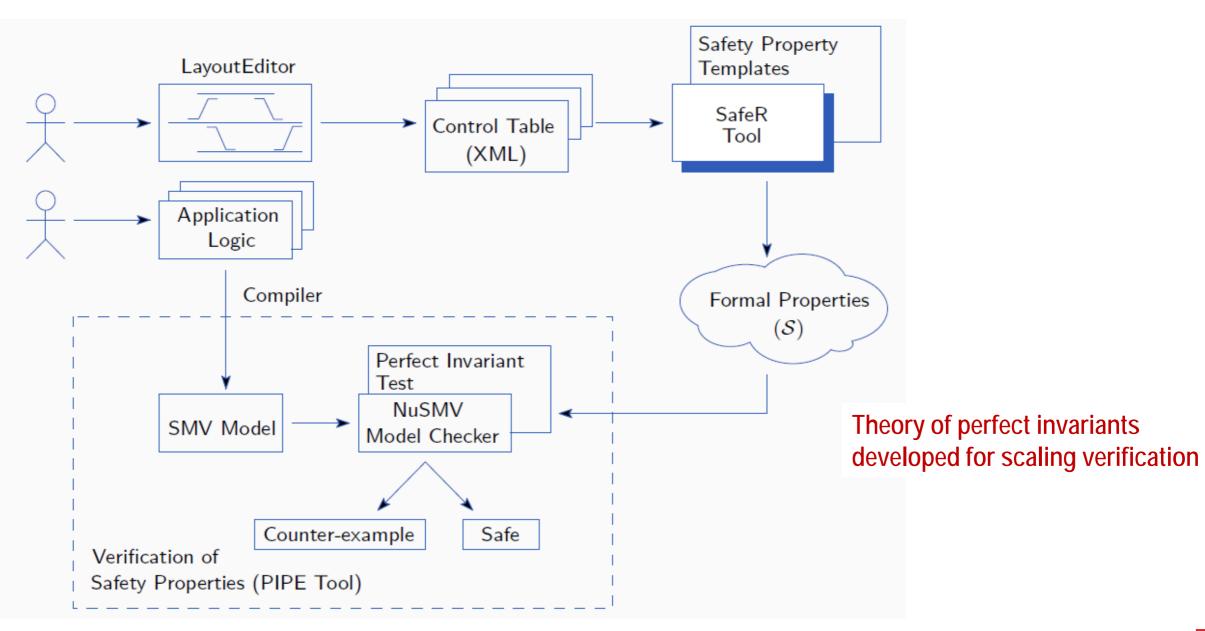
- Yard layout is created using this tool
- The tool can perform several sanity checks
- Updates can be made as and when required

|       | IAL          |             |       | ROUTE           |                  | OVERLAP        |                 |                  |                | 0                                                  | γ<br>UIT                               | A C D                                        |                   |                  | U                               |
|-------|--------------|-------------|-------|-----------------|------------------|----------------|-----------------|------------------|----------------|----------------------------------------------------|----------------------------------------|----------------------------------------------|-------------------|------------------|---------------------------------|
| SL NO | ENTRY SIGNAL | EXIT SIGNAL | ROUTE | POINT<br>NORMAL | POINT<br>REVERSE | TRACKS         | POINT<br>NORMAL | POINT<br>REVERSE | OVERLAP<br>SET | CONTROLLED<br>BY TRACK<br>CIRCUIT                  | SIGNAL<br>REPLACED BY<br>TRACK CIRCUIT | BACK LOCKED<br>UNTILL TRACK<br>CIRCUIT CLEAR | LEVEL<br>CROSSING | CRANK<br>HANDLES | ROUTES                          |
| 1     | S1           | S5          | 1A    | 51              |                  | 5T, 07T        | 52              |                  | OV-5           | 1T, 2T, 02T, 4T, 04T, 05T1,<br>05T2, 05T3, 05T     | 1T                                     | 1T, 2T,<br>02T, 4T                           | LC 1              | CH1,<br>CH2      | C-1A, 4, 8A, 78A                |
| 2     | S1           | S3          | 1BD   |                 | 51               | ЗT             | 52              |                  | OV1-3          | 1T, 2T, 02T, 4T, 6T, 06T,<br>06T1, 06T2, 06T3, 03T | 1T                                     | 1T, 2T ,<br>02T, 4T,                         | LC 1              | CH1,<br>CH2      | C-1B, 6, 78A                    |
|       |              |             | 1BM   |                 |                  | 3T, 5T,<br>07T |                 | 52               | OV2-3          |                                                    |                                        | 6T                                           | LC 1              |                  | C-1B, 6, 8B, 78A,<br>78B, 8A, 5 |
| 3     | S3           | S7          | 3     |                 | 52               |                |                 |                  |                | 3T, 5T, 07T                                        | 3Т                                     | 3T, 5T                                       |                   | CH2              | 8B, 78B, 6, C-1B                |
| 4     | S5           | S7          | 5     | 52              |                  |                |                 |                  |                | 5T, 07T                                            | 5T                                     | 5T                                           |                   | CH2              | 8A, 78A, 4, C-1A                |
| r .   | C 1          | C.L.        | C 1 A | F1              | l                |                | 1               | l                | l              | 47                                                 | 4.7                                    | 17 27                                        | 101               | CU1              | 14 4 04 704                     |

#### **Control Table Generator Tool**


- Control table is automatically generated from the layout created by layout editor
- The tool checks for inherent inconsistencies
- Push-button solution whenever the layout is upgraded

### **IIT Kharagpur Contributions**


Example: Proving that the track circuits in the route up to the next signal and its overlap are clear. SafeR generates the following formal property.

#### The SafeR Tool

- Reads the control table
- Creates a comprehensive set of *formal properties*
- Built in knowledge about international railway signaling principles
- Thousands of properties are automatically verified using back-end formal tools



### **IIT-KGP EI Verification Tool Flow**

