- 1. Write LTL properties over the alphabet A,B,C for each of the following statements.
 - (a) $G[A \implies X((B \cup C) \lor GB)]$
 - (b) $G[A \implies X((\neg A \cup B) \lor G(\neg A))]$
 - (c) G[$XA \land XXB \implies C$]
 - (d) $G[A \land XB \implies XXC \lor XXXC] \lor$ $G[A \land XXB \implies XXXC \lor XXXXC] \lor$ $G[A \land XXXB \implies XXXXC \lor XXXXXC]$
 - (e) G[A $\implies \neg XFB \lor X(\neg B \cup (B \land FC))$]
- 2. Draw the ROBDD for *f* using the ordering a > b > c > d. The given circuit reduces to $\bar{a} + \bar{d}$. Hence the BDD is as follows.

- 3. Equivalence Checking
 - (a) Not equivalent. LHS can be satisfied even when no state satisfies $p \land q$.
 - (b) Equivalent
 - (c) Not equivalent. If start state satisfies $\neg p \land \neg q \land r$, then RHS is satisfied, but LHS fails.
- 4. 3-bit Gray Counter
 - (a) The equations for x_1' , x_2' , and x_3' can be written as follows
 - $x_1 = \bar{x_1} x_2 \bar{x_3} + x_1 x_2 \bar{x_3} + x_1 x_2 x_3 + x_1 \bar{x_2} x_3 = x_2 \bar{x_3} + x_1 x_3$
 - $x_2 \prime = \bar{x_1} \bar{x_2} x_3 + \bar{x_1} x_2 x_3 + \bar{x_1} x_2 \bar{x_3} + x_1 x_2 \bar{x_3} = x_2 \bar{x_3} + \bar{x_1} x_3$
 - $x_3 \prime = \bar{x_1} \bar{x_2} \bar{x_3} + \bar{x_1} \bar{x_2} x_3 + x_1 x_2 \bar{x_3} + x_1 x_2 x_3 = x_1 x_2 + \bar{x_1} \bar{x_2}$

Therefore, $cf = [x_1 \vee \odot (x_2 \bar{x_3} + x_1 x_3)][x_2 \vee \odot (x_2 \bar{x_3} + \bar{x_1} x_3)][x_3 \vee \odot (x_1 x_2 + \bar{x_1} \bar{x_2})]$

(b) $\psi = [(x_1' = \bar{x_1}) \iff (x_2' = x_2)(x_3' = x_3)]$ $\wedge [(x_2' = \bar{x_2}) \iff (x_1' = x_1)(x_3' = x_3)]$ $\wedge [(x_3' = \bar{x_3}) \iff (x_1' = x_1)(x_2' = x_2)]$ $\therefore \varphi = \neg \psi \wedge cf$ (c) $\zeta = G \left[\bigwedge_{i=2}^{i=7} \neg [(x_1 = X^i x_1)(x_2 = X^i x_2)(x_3 = X^i x_3)] \right]$