
Logical Deduction: IV

Introduction to Temporal Logic

Partha P Chakrabarti

Indian Institute of Technology Kharagpur
Aug-Sept 2019

2

Priority Arbiter: Properties

r1

r2

g1

g2

• Whenever r1 is asserted, g1 is given in the next cycle

• When r2 is the sole request, g2 comes in the next cycle

• When none of them are requesting, the arbiter parks the grant

on g2

• g1 and g2 can not be true at the same time (mutual exclusion)

3

c

s

b

a

5

3

4

2

1 1

1

1

1

12

9

5

gr

req

req

reqreq

req

gr

grgr

grgrgr

• From s the system always makes a request in future

• All requests are eventually granted

• Sometimes requests are immediately granted

• Requests are not always immediately granted

• Requests are held till grant is received

Analyzing Request and Grants

4

Timing Properties

• Whenever a request is recorded, the grant

should take place within 4 units of time.

• The arbiter will provide exactly 64 units of time

to high-priority users in each grant.

Car Braking

b: brakes are pressed, a: accelerator is

pressed, s: car stops, d: car slows down

• When brakes are pressed, the car slows

down in the next instant

• When no accelerator is pressed then after a

while the car continuously slows down

• When brakes are constantly kept pressed

and there is no accelerator pressed, the car

slows down and eventually stops.

5

6

(Propositional) Temporal Logic

• A logical notation that allows to

– specify relations in time

• Propositions are atomic

– have definite truth values (either true or false)

• Connectives
– Boolean operators

• , , , ,

– Temporal operators

• G p or always p

• F p or eventually p
• X p or next p
• p U q or p until q

Propositional Temporal Logic

• Temporal operators:

►Gp

►Fp

►Xp

►pUq

• Path quantifiers: A for all path

E there exists a path
7

8

Informal Semantics

• p holds in the next state

X p

p holds

9

• p holds always (globally)

alternatively

• p does not hold eventually

G p

p holds

Informal Semantics

10

• p holds eventually (in future)

alternatively

• p does not hold always

F p

p holds

Informal Semantics

11

• q holds eventually and p holds until q holds

p U q

p holds

q holds

Informal Semantics

12

Duality between Temporal Operators

G p

p holds always

p does not hold eventually

(p holds eventually)

F(p)

13

Nesting of Temporal Operators

F G p

G F p

Along the path there exists a state from which p will hold forever

Along the path for all states there will be eventually some state

where p holds

alternatively

Along the path p will hold infinitely often

14

Example: Priority Arbiter

r1

r2

g1

g2

• Either g1 or g2 is always

false (mutual exclusion)

G[g1 g2]

• Whenever r1 is asserted, g1 is given in the next cycle

G[r1 Xg1]

• When r2 is the sole request, g2 comes in the next cycle

G[(r1 r2) Xg2]

• When none are requesting, the arbiter parks the grant on g2

G[(r1 r2) Xg2]

Temporal Logics

• Linear Temporal Logic (LTL):
– LTL model checking is PSPACE complete

• CTL: p, q, f, fg, fg, E[fUg], A[fUg], EXf, AXf

– All untils and next-time operators must be
immediately preceded by an E or an A.

– CTL model checking is in P.

• CTL*:
– CTL without the quantifier restriction on untils and

next-time operators.

– CTL* model checking is PSPACE complete

15

16

Timing Properties

• Whenever a request is recorded, the grant

should take place within 4 units of time.

G(request F[0,4] grant)

Automotive Properties in Temporal Logic

• When brake is applied, the car immediately decelerates

G[brake X decel]

• When brake is applied, the car begins to decelerate within
200ms G[brake F≤200 decel]

• When brake is pressed, then car decelerates within 200
milliseconds by either throttle adjustment or brake
adjustment.

G[brake F≤ x (throttle_adj brake_adj)]

G[throttle_adj F≤ y decel]

G[brake_adj F≤ z decel] (x+ y ≤ 200) (x + z ≤ 200)

• If brake is pressed for more than 3 seconds the car stops.

G[brake U≥ 3000 brake F≤3000 stops]
17

Timed Temporal Logics

• Temporal logics for reasoning about timing.

RTCTL: CTL with the bounded until operator.

E[p U[2,6] A(q U[3,7] r)]
– RTCTL model checking is PSPACE complete

TCTL: Multiple clocks

z.E[p U (2 Z 6) w.A[q U (3 w 7) r]]
– TCTL model checking is PSPACE complete

TLTL: TCTL without E and A
– TLTL model checking is undecidable

18

Thank you

