Logical Deduction: IV Introduction to Temporal Logic

Partha P Chakrabarti Indian Institute of Technology Kharagpur Aug-Sept 2019

Priority Arbiter: Properties

- Whenever r1 is asserted, g1 is given in the next cycle
- When r2 is the sole request, g2 comes in the next cycle
- When none of them are requesting, the arbiter parks the grant on g2
- g1 and g2 can not be true at the same time (mutual exclusion)

Analyzing Request and Grants

- From s the system always makes a request in future
- All requests are eventually granted
- Sometimes requests are immediately granted
- Requests are not always immediately granted
- Requests are held till grant is received

Timing Properties

- Whenever a request is recorded, the grant should take place within 4 units of time.
- The arbiter will provide exactly 64 units of time to high-priority users in each grant.

Car Braking

- b: brakes are pressed, a: accelerator is pressed, s: car stops, d: car slows down
- When brakes are pressed, the car slows down in the next instant
- When no accelerator is pressed then after a while the car continuously slows down
- When brakes are constantly kept pressed and there is no accelerator pressed, the car slows down and eventually stops.

(Propositional) Temporal Logic

- A logical notation that allows to
 - specify relations in time
- Propositions are atomic
 - have definite truth values (either true or false)
- Connectives
 - Boolean operators
 - ¬,∨,∧,→,↔
 - Temporal operators

• G p	or	always p
• F p	or	eventually p
• X p	or	next p
• p U q	or	p until q

Propositional Temporal Logic

Temporal operators:

Path quantifiers: A for all path
E there exists a path

• p holds in the next state

- p holds always (globally) alternatively
- $\neg p$ does not hold eventually

- p holds eventually (in future) alternatively
- ¬p does not hold always

• q holds eventually and p holds until q holds

Duality between Temporal Operators

Along the path there exists a state from which *p* will hold forever

Along the path for all states there will be eventually some state where *p* holds

alternatively

Along the path p will hold *infinitely often*

Example: *Priority Arbiter*

 Either g1 or g2 is always false (mutual exclusion)

$$G[\neg g1 \lor \neg g2]$$

- When r2 is the sole request, g2 comes in the next cycle

$$G[(\neg r1 \land r2) \Rightarrow Xg2]$$

• When none are requesting, the arbiter parks the grant on g2 $G[(\neg r1 \land \neg r2) \Rightarrow Xg2]$

Temporal Logics

- Linear Temporal Logic (LTL):
 LTL model checking is PSPACE complete
- **CTL:** p, q, $\neg f$, $f \land g$, $f \lor g$, E[fUg], A[fUg], EXf, AXf
 - All untils and next-time operators must be immediately preceded by an E or an A.
 - CTL model checking is in P.
- CTL*:
 - CTL without the quantifier restriction on untils and next-time operators.
 - CTL* model checking is PSPACE complete

Timing Properties

• Whenever a request is recorded, the grant should take place within 4 units of time.

G(request $\rightarrow F_{[0,4]}$ grant)

Automotive Properties in Temporal Logic

- When brake is applied, the car immediately decelerates $G[brake \Rightarrow X decel]$
- When brake is applied, the car begins to decelerate within 200ms **G**[brake \Rightarrow **F**_{<200} decel]
- When brake is pressed, then car decelerates within 200 milliseconds by either throttle adjustment or brake adjustment.

 $\begin{array}{l} G[\text{ brake} \Rightarrow \mathbf{F}_{\leq x} (\text{throttle}_adj \lor \text{brake}_adj)] \land \\ G[\text{ throttle}_adj \Rightarrow \mathbf{F}_{\leq y} \text{ decel }] \land \\ G[\text{ brake}_adj \Rightarrow \mathbf{F}_{\leq z} \text{ decel }] \land (x+y \leq 200) \land (x+z \leq 200) \end{array}$

• If brake is pressed for more than 3 seconds the car stops. **G**[brake $U_{\geq 3000} \neg brake \Rightarrow F_{\leq 3000}$ stops]

Timed Temporal Logics

 Temporal logics for reasoning about timing.
RTCTL: CTL with the bounded until operator. E[p U_[2,6] A(q U_[3,7] r)] – RTCTL model checking is PSPACE complete

TCTL: Multiple clocks $z.E[p U (2 \le Z \le 6) \land w.A[q U (3 \le w \le 7) \land r]]$ - TCTL model checking is PSPACE complete

TLTL: TCTL without E and A – TLTL model checking is undecidable

Thank you