Logical Deduction: IV
Introduction to Temporal Logic

Partha P Chakrabarti

Indian Institute of Technology Kharagpur
Aug-Sept 2019

Priority Arbiter: Properties

r2 —

* Whenever rlis asserted, gl is given in the next cycle
* When r2 is the sole request, g2 comes in the next cycle

* When none of them are requesting, the arbiter parks the grant
on g2

« gl and g2 can not be true at the same time (mutual exclusion)

2

Analyzing Request and Grants
s Lsl
re ; .

3
reg reg req
JAL e
o OF O . Ogr
gl’ gl’

 From s the system always makes arequest in future
» All requests are eventually granted

 Sometimes requests are immediately granted

* Requests are not always immediately granted

* Requests are held till grant is received

Timing Properties
« Whenever arequest is recorded, the grant

should take place within 4 units of time.

 The arbiter will provide exactly 64 units of time
to high-priority users in each grant.

Car Braking

b: brakes are pressed, a: accelerator Is
pressed, s: car stops, d: car slows down

* When brakes are pressed, the car slows
down In the next instant

* When no accelerator Is pressed then after a
while the car continuously slows down

* When brakes are constantly kept pressed
and there Is no accelerator pressed, the car
slows down and eventually stops.

(Propositional) Temporal Logic

A logical notation that allows to
— specify relations in time

 Propositions are atomic
— have definite truth values (either true or false)

e Connectives

— Boolean operators
e —,V,A,2, €2

— Temporal operators

e Gp or always p
 Fp or eventually p
« Xp or next p

- pUQg or p until g

Propositional Temporal Logic

* Temporal operators:

»Gp @ @ @ @ © o o
»Fp O O @ O © 0 0
»Xp O @ - O © 0 0
»pUg @—@ —@ O 0O 0 O©

* Path quantifiers: A for all path
E there exists a path

Informal Semantics

@ p holds

 p holds in the next state

Informal Semantics

@ p holds

 p holds always (globally)
alternatively
« —p does not hold eventually

10

Informal Semantics

@ p holds

 p holds eventually (in future)
alternatively
« —p does not hold always

11

Informal Semantics

pUq @ @ O O » 0 o

@ p holds
O qholds

@ holds eventually and p holds until g holds

O

12

Duality between Temporal Operators

@
g,

p holds always

-

—p does not hold eventually

-

—(—p holds eventually)

17

—F(—p)

13

Nesting of Temporal Operators

FGp O O O LD » & O ©

Along the path there exists a state from which p will hold forever

GFp © O @ O o 0 o

Along the path for all states there will be eventually some state
where p holds

alternatively

Along the path p will hold infinitely often

14

Example: Priority Arbiter

* Either g1 or g2 is always
r1— 0l false (mutual exclusion)
r —>

* Whenever rl is asserted, gl is given in the next cycle
G[rl = Xgl]

« When r2 is the sole request, g2 comes in the next cycle
G[(—rl A r2) = Xg2]

« When none are requesting, the arbiter parks the grant on g2
G[(—rl A —r2) = Xg2 |

Temporal Logics

* Linear Temporal Logic (LTL):
— LTL model checking is PSPACE complete
e CTL: p,q,—f, fag, fvg, E[fUg], A[fUg], EXf, AXf

— All untils and next-time operators must be
Immediately preceded by an E or an A.

— CTL model checking is in P.
e CTL™
— CTL without the quantifier restriction on untils and
next-time operators.
— CTL* model checking is PSPACE complete

15

16

Timing Properties

« Whenever a request Is recorded, the grant
should take place within 4 units of time.

G(request — Fy, 4 grant)

Automotive Properties in Temporal Logic

* When brake Is applied, the car immediately decelerates
G[brake = X decel]

* When brake Is applied, the car begins to decelerate within
200ms G[brake = F_,,, decel]

* When brake Is pressed, then car decelerates within 200
milliseconds by either throttle adjustment or brake
adjustment.

G[brake = F_, (throttle_adj v brake_adj)] A
G[throttle_adj = F_, decel] A
G[brake_adj = F_, decel] A (x+y <200) A (x +z<200)
« If brake Is pressed for more than 3 seconds the car stops.
G[brake U. 3499 —brake = F_;40 Stops]

17

Timed Temporal Logics

« Temporal logics for reasoning about timing.
RTCTL: CTL with the bounded until operator.

E[p Up 6 A(Q Uz 7 1]
— RTCTL model checking is PSPACE complete

TCTL: Multiple clocks
ZE[PpU@R2<Z<6) AWA[QU B<w<7)AT]]
— TCTL model checking is PSPACE complete

TLTL: TCTL without E and A
— TLTL model checking is undecidable

18

Thank you

