Planning in Artificial Intelligence

The intelligent way to do things

COURSE: CS60045

Pallab Dasgupta
Professor,
Dept. of Computer Sc & Engg

Blocks World

Predicates describing the initial state: On(C, A), On(A, Table), On(B, Table), Clear(C), Clear(B) Predicates describing the target state: On(A, B), On(B, C)

The planning task is to determine the actions for reaching the target state from the initial state.

ACTIONS:

Move(X, Y)

Precond: Clear(X), Clear(Y)

Effect: On(X, Y)

Move(X, Table)

Precond: Clear(X)

Effect: On(X, Table)

Choosing Actions

On(C, A), On(A, Table), On(B, Table), Clear(C), Clear(B)

ACTIONS:

Move(X, Y)

Precond: Clear(X), Clear(Y)

Effect: On(X, Y)

Move(X, Table)

Precond: Clear(X)

Effect: On(X, Table)

- We can move C to the table
 - This achieves none of the goal predicates
- We can move C to top of B
 - This achieves none of the goal predicates
- We can move B to top of C
 - This achieves On(B, C)

Partial Solutions

ACTIONS:

Move(X, Y)

Precond: Clear(X), Clear(Y)

Effect: On(X, Y)

Move(X, Table)

Precond: Clear(X)

Effect: On(X, Table)

On(C, A), On(A, Table), On(B, Table), Clear(C), Clear(B)

We use Move(B, C) to achieve the sub-goal, On(B, C).

But if we apply this move at the beginning, we get:

Which is not what we want !!

Partial Solutions

ACTIONS:

Move(X, Y)

Precond: Clear(X), Clear(Y)

Effect: On(X, Y)

Move(X, Table)

Precond: Clear(X)

Effect: On(X, Table)

The sub-goal On(A, B) is achieved by moving C to the table and then moving A to top to B. But this gives us:

But this too is not what we want !!

Ordering Partial Solutions

ACTIONS:

Move(X, Y)

Precond: Clear(X), Clear(Y)

Effect: On(X, Y)

Move(X, Table)

Precond: Clear(X)

Effect: On(X, Table)

Move(B, C) removes the Clear(C) predicate which is essential for Move(C, Table). Hence Move(C, Table) must precede Move(B, C).

Can Move(B, C) and Move(A, B) be executed in any order?

Ordering Partial Solutions

ACTIONS:

Move(X, Y)

Precond: Clear(X), Clear(Y)

Effect: On(X, Y)

Move(X, Table)

Precond: Clear(X)

Effect: On(X, Table)

Move(A, B) removes the Clear(B) predicate which is essential for Move(B, C). Hence Move(B, C) must precede Move(A, B).

Therefore the only total order is:

- I. Move(C, Table)
- 2. Move(B, C)
- 3. Move(A, B)

Sometimes Partial Order may stay

ACTIONS

Op(ACTION: RightShoe,

PRECOND::RightSockOn,

EFFECT:: RightShoeOn)

Op(ACTION: RightSock,

EFFECT: RightSockOn)

Op(ACTION: LeftShoe,

PRECOND: LeftSockOn,

EFFECT: LeftShoeOn)

Op(ACTION: LeftSock,

EFFECT: LeftSockOn)

Which of these situations are allowed by these actions?

Sometimes Partial Order may stay

ACTIONS

Op(ACTION: RightShoe,

PRECOND::RightSockOn,

EFFECT:: RightShoeOn)

Op(ACTION: RightSock,

EFFECT: RightSockOn)

Op(ACTION: LeftShoe,

PRECOND: LeftSockOn,

EFFECT: LeftShoeOn)

Op(ACTION: LeftSock,

EFFECT: LeftSockOn)

Planning is an integral part of automation

Recommended clip from Charlie Chaplin's Modern Times to see what can go wrong:

https://www.youtube.com/watch?v=n_1apYo6-Ow

What we intend to learn:

- 1. Partial Order Planning
- 2. GraphPlan and SATPlan

Partial Order Planning

- Basic Idea: Make choices only that are relevant to solving the current part of the problem
- Least Commitment Choices
 - Orderings: Leave actions unordered, unless they must be sequential
 - Bindings: Leave variables unbound, unless needed to unify with conditions being achieved
 - Actions: Usually not subject to "least commitment"

Terminology

- Totally Ordered Plan
 - There exists sufficient orderings O such that all actions in A are ordered with respect to each other
- Fully Instantiated Plan
 - There exists sufficient constraints in B such that all variables are constrained to be equal to some constant
- Consistent Plan
 - There are no contradictions in O or B
- Complete Plan
 - Every precondition P of every action A_i in A is achieved:
 - There exists an effect of an action A_j that comes before A_i and unifies with P, and no action A_k that deletes P comes between A_j and A_j

Early Days: STRIPS

- STanford Research Institute Problem Solver
- Many planners today use specification languages that are variants of the one used in STRIPS

Our running example:

- Given:
 - Initial state: The agent is at home without tea, biscuits, book
 - Goal state: The agent is at home with tea, biscuits, book
 - A set of actions as shown next

Representing States

States are represented by conjunctions of function-free ground literals

Goals are also described by conjunctions of literals

Goals can also contain variables

$$At(x) \wedge Sells(x, Tea)$$

The above goal is being at a shop that sells tea

Representing Actions

- Action description serves as a name
- Precondition a conjunction of positive literals (why positive?)
- Effect a conjunction of literals (+ve or –ve)
 - The original version had an add list and a delete list.

```
Op( ACTION: Go(there),

PRECOND: At(here) ∧ Path(here, there),

EFFECT: At(there) ∧ ¬At(here)
```

Representing Plans

- A set of plan steps. Each step is one of the operators for the problem.
- A set of step ordering constraints. Each ordering constraint is of the form $S_i \prec S_j$, indicating S_i must occur sometime before S_j .
- A set of variable binding constraints of the form v = x, where v is a variable in some step, and x is either a constant or another variable.
- A set of causal links written as $S \rightarrow c$: S' indicating S satisfies the precondition c for S'.

Example

Initial plan

```
Plan( STEPS: { S1: Op( ACTION: start ), S2: Op( ACTION: finish, PRECOND: RightShoeOn \land LeftShoeOn ) }, ORDERINGS: \{S_1 \prec S_2\}, BINDINGS: \{\}, LINKS: \{\}
```

POP Example: Get Tea, Biscuits, Book

Initial state:

```
Op( ACTION: Start,

EFFECT: At(Home) ∧ Sells(BS, Book)

∧ Sells(TS, Tea)

∧ Sells(TS, Biscuits))
```

Goal state:

```
Op( ACTION: Finish,
PRECOND: At(Home) ∧ Have(Tea)
∧ Have(Biscuits)
∧ Have(Book))
```

Actions:

```
Op( ACTION: Go(y),
PRECOND: At(x),
EFFECT: At(y) ∧ ¬At(x))
```

```
Op( ACTION: Buy(x),
PRECOND: At(y) ∧ Sells(y, x),
EFFECT: Have(x))
```

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

 $Have(Book) \land Have(Tea) \land Have(Biscuits) \land At(Home)$

FINISH

Op(ACTION: Buy(x),

PRECOND: At(y) \wedge Sells(y, x),

EFFECT: Have(x))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

PRECOND: At(y) \wedge Sells(y, x),

EFFECT: Have(x))

START

At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits)

Op(ACTION: Go(y),

PRECOND: At(x),

EFFECT: $At(y) \land \neg At(x)$

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

START At(Home) ∧ Sells(BS, Book) ∧ Sells(TS, Tea) ∧ Sells(TS, Biscuits) At(BS) At(Home) Go(BS) Go(TS) ¬ At(BS) → At(Home) At(BS) ∧ Sells(BS, Book) At(TS) ∧ Sells(TS, Tea) At(TS) ∧ Sells(TS, Biscuits) **Buy(Book)** Buy(Tea) **Buy(Biscuits)** $Have(Book) \land Have(Tea) \land Have(Biscuits) \land At(Home)$ **FINISH**

The Partial Order Planning Algorithm

```
Function POP( initial, goal, operators )
// Returns plan
         plan \leftarrow Make-Minimal-Plan(initial, goal)
         Loop do
                  If Solution( plan ) then return plan
                  S, c \leftarrow Select-Subgoal(plan)
                  Choose-Operator( plan, operators, S, c )
                  Resolve-Threats( plan )
         end
```

POP: Selecting Sub-Goals

```
Function Select-Subgoal( plan )

// Returns S, c

pick a plan step S from STEPS( plan )

with a precondition c that has not been achieved

Return S, c
```

POP: Choosing operators

Procedure Choose-Operator(plan, operators, S, c)

Choose a step S' from operators or STEPS(plan) that has c as an effect

If there is no such step then fail

Add the causal link $S' \rightarrow c$: S to LINKS(plan)

Add the ordering constraint $S' \prec S$ to ORDERINGS(plan)

If S' is a newly added step from *operators* then add S' to STEPS(*plan*) and add Start \prec S' \prec Finish to ORDERINGS(*plan*)

POP: Resolving Threats

```
Procedure Resolve-Threats( plan )
```

```
for each S' that threatens a link S_i \rightarrow c: S_j in LINKS( plan ) do choose either
```

Promotion: Add S' \prec S_i to ORDERINGS(plan)

Demotion: Add $S_i \prec S'$ to ORDERINGS(plan)

if not Consistent(plan) then fail

Partially instantiated operators

- So far we have not mentioned anything about binding constraints
- Should an operator that has the effect, say, $\neg At(x)$, be considered a threat to the condition, At(Home)?
 - Indeed it is a *possible threat* because *x* may be bound to *Home*

Dealing with potential threats

- ☐ Resolve now with an equality constraint
 - Bind x to something that resolves the threat (say x = TS)
- ☐ Resolve now with an inequality constraint
 - **Extend the language of variable binding to allow** $x \neq Home$
- ☐ Resolve later
 - Ignore possible threats. If x = Home is added later into the plan, then we will attempt to resolve the threat (by promotion or demotion)

```
Proc Choose-Operator( plan, operators, S, c )
        choose a step S' from operators or STEPS( plan ) that has c' as an effect
                 such that u = UNIFY(c, c', BINDINGS(plan))
        if there is no such step then fail
        add u to BINDINGS( plan )
        add the causal link S' \rightarrow c: S to LINKS( plan )
        add the ordering constraint S' \prec S to ORDERINGS( plan )
        if S' is a newly added step from operators then
                 add S' to STEPS( plan ) and add Start ≺ S' ≺ Finish to ORDERINGS( plan )
```

Procedure Resolve-Threats(plan) for each $S_i \rightarrow c$: S_i in LINKS(*plan*) do for each S" in STEPS(plan) do for each c' in EFFECTS(S") do if SUBST(BINDINGS(plan), c) = SUBST(BINDINGS(plan), \neg c') then choose either *Promotion:* Add $S'' \prec S_i$ to ORDERINGS(plan) *Demotion:* Add $S_i \prec S''$ to ORDERINGS(*plan*) if not Consistent(plan) then fail

USING PLANNING GRAPHS GraphPlan and SATPlan

Planning Graph

Start: Have(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

Op(ACTION: Eat(Cake),
 PRECOND: Have(Cake),
 EFFECT: Eaten(Cake) ∧ →Have(Cake))

Op(ACTION: Bake(Cake),

PRECOND: —Have(Cake),

EFFECT: Have(Cake))

Mutex Links in a Planning Graph

Planning Graphs

- Consists of a sequence of levels that correspond to time steps in the plan
- Each level contains a set of actions and a set of literals that could be true at that time step depending on the actions taken in previous time steps
- For every +ve and –ve literal C, we add a persistence action with precondition C and effect C

Planning Graph

Op(ACTION: Eat(Cake),

PRECOND: Have(Cake),

EFFECT: Eaten(Cake) ∧ ¬Have(Cake))

Op(ACTION: Bake(Cake),
PRECOND: ¬Have(Cake),
EFFECT: Have(Cake))

Start: Have(Cake) $\land \neg$ Eaten(Cake)

Finish: Have(Cake) ∧ Eaten(Cake)

In the world S₂ the goal predicates exist without mutexes, hence we need not expand the graph any further

Mutex Actions

- Mutex relation exists between two actions if:
 - Inconsistent effects one action negates an effect of the other Eat(Cake) causes — Have(Cake) and Bake(Cake) causes Have(Cake)
 - Interference one of the effects of one action is the negation of a precondition of the other Eat(Cake) causes Have(Cake) and the persistence of Have(Cake) needs Have(Cake)
 - Competing needs one of the preconditions of one action is mutually exclusive with a precondition of the other

Bake(Cake) needs — Have(Cake) and Eat(Cake) needs Have(Cake)

Mutex Literals

- Mutex relation exists between two literals if:
 - One is the negation of the other, or
 - Each possible pair of actions that could achieve the two literals is mutually exclusive (inconsistent support)

Function GraphPLAN(problem)

```
Il returns solution or failure
graph ← Initial-Planning-Graph( problem )
goals ← Goals[ problem ]
do
        if goals are all non-mutex in last level of graph then do
                 solution ← Extract-Solution( graph )
                 if solution ≠ failure then return solution
                 else if No-Solution-Possible (graph)
                          then return failure
        graph ← Expand-Graph( graph, problem )
```

Finding the plan

- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.
- The plan is shown in blue below

Termination of GraphPLAN when no plan exists

- Literals increase monotonically
- Actions increase monotonically
- Mutexes decrease monotonically

This guarantees the existence of a fixpoint

Exercise

```
Start: At( Flat, Axle ) ∧ At( Spare, Trunk )
Goal: At( Spare, Axle )
Op( ACTION: Remove( Spare, Trunk ),
    PRECOND: At( Spare, Trunk ),
    EFFECT: At( Spare, Ground )
                   \wedge \neg At( Spare, Trunk ))
Op( ACTION: Remove( Flat, Axle ),
    PRECOND: At( Flat, Axle ),
    EFFECT: At( Flat, Ground )
                   \wedge \neg At(Flat, Axle)
```

```
Op( ACTION: PutOn( Spare, Axle ),
     PRECOND: At( Spare, Ground )
                    \wedge \neg At( Flat, Axle ),
     EFFECT: At( Spare, Axle )
                    \wedge \neg At( Spare, Ground ))
Op( ACTION: LeaveOvernight,
     PRECOND:
     EFFECT: — At( Spare, Ground )

∧ ¬ At( Spare, Axle )

∧ ¬ At( Spare, Trunk )

                    \wedge \neg At( Flat, Ground )
                    \wedge \neg At(Flat, Axle)
```

Planning with Propositional Logic

- The planning problem is translated into a CNF satisfiability problem
- The goal is asserted to hold at a time step T, and clauses are included for each time step up to T.
- If the clauses are satisfiable, then a plan is extracted by examining the actions that are true.
- Otherwise, we increment T and repeat

Example

Aeroplanes P₁ and P₂ are at SFO and JFK respectively. We want P₁ at JFK and P₂ at SFO

Initial: At(P_1 , SFO)⁰ \wedge At(P_2 , JFK)⁰

Goal: At(P_1 , JFK) \wedge At(P_2 , SFO)⁰

Action: At(P_1 , JFK)¹ \Leftrightarrow [At(P_1 , JFK)⁰ $\land \neg$ (Fly(P_1 , JFK, SFO)⁰ \land At(P_1 , JFK)⁰)] \lor [At(P_1 , SFO)⁰ \land Fly(P_1 , SFO, JFK)⁰]

Check the satisfiability of:

initial state ∧ successor state axioms ∧ goal

Additional Axioms

Precondition Axioms:

Fly(
$$P_1$$
, JFK, SFO)⁰ \Rightarrow At(P_1 , JFK)⁰

Action Exclusion Axioms:

$$\neg$$
 (Fly(P₂, JFK, SFO)⁰ \land Fly(P₂, JFK, LAX)⁰)

State Constraints:

$$\forall$$
 p, x, y, t (x \neq y) $\Rightarrow \neg$ (At(p, x)^t \land At(p, y)^t)

SATPlan

```
Function SATPlan( problem, T<sub>max</sub> )
         Il returns solution or failure
 for T = 0 to T_{max} do
         cnf, mapping \leftarrow Trans-to-SAT(problem, T)
         assignment ← SAT-Solver( cnf )
         if assignment is not NULL then
                  return Extract-Solution(assignment, mapping)
 return failure
```


