Planning in Artificial Intelligence

 The intelligent way to do thingsCOURSE: CS60045

Pallab Dasgupta
Professor,
Dept. of Computer Sc \& Engg

Blocks World


```
Predicates describing the initial state:
On(C, A), On(A, Table), On(B, Table), Clear(C), Clear(B)
```

Predicates describing the target state:
On(A, B), On(B, C)

ACTIONS:

Move(X, Y)
Precond: Clear(X), Clear(Y) Effect: On(X, Y)

Move(X, Table)
Precond: Clear(X)
Effect: On(X, Table)

Choosing Actions

ACTIONS:

Move(X, Y)	Move(X, Table)
Precond: Clear(X), Clear(Y)	Precond: $\operatorname{Clear}(\mathbf{X})$
Effect: On(X, Y)	Effect: On(X, Table)

On(C, A), On(A, Table), On(B, Table), Clear(C), Clear(B)

- We can move C to the table
- This achieves none of the goal predicates
- We can move C to top of B
- This achieves none of the goal predicates
- We can move B to top of C
- This achieves $\mathrm{On}(\mathrm{B}, \mathrm{C})$

Partial Solutions

ACTIONS:

Move(X, Y)	Move(X, Table)
Precond: Clear(X), Clear(Y)	Precond: Clear(X)
Effect: On(X, Y)	Effect: On(X, Table)

On(C, A), On(A, Table), On(B, Table), Clear(C), Clear(B)

We use Move(B, C) to achieve the sub-goal, On(B, C).

But if we apply this move at the beginning, we get:

Which is not what we want !!

Partial Solutions

ACTIONS:

Move(X, Y)	Move(X, Table)
Precond: Clear(X), Clear(Y)	Precond: Clear (X)
Effect: On(X, Y)	Effect: On(X, Table)

The sub-goal $\operatorname{On}(A, B)$ is achieved by moving C to the table and then moving A to top to B. But this gives us:

But this too is not what we want !!

Ordering Partial Solutions

ACTIONS:

Move(X, Y)	Move(X, Table)
Precond: Clear(X), Clear(Y)	Precond: Clear (X)
Effect: On(X, Y)	Effect: On(X, Table)

Ordering Partial Solutions

ACTIONS:

Move(X, Y)	Move(X, Table)
Precond: Clear(X), Clear(Y)	Precond: Clear(X)
Effect: On(X, Y)	Effect: On(X, Table)

Move(A, B) removes the Clear(B) predicate which is essential for Move(B, C). Hence Move(B, C) must precede $\operatorname{Move}(A, B)$.

Therefore the only total order is:

1. Move(C, Table)
2. $\operatorname{Move}(B, C)$
3. $\operatorname{Move}(A, B)$

Sometimes Partial Order may stay

ACTIONS

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)

Op(ACTION: RightSock, EFFECT: RightSockOn)

Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)

Op(ACTION: LeftSock, EFFECT: LeftSockOn)

Which of these situations are allowed by these actions?

Sometimes Partial Order may stay

ACTIONS

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)

Op(ACTION: RightSock, EFFECT: RightSockOn)

Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)

Op(ACTION: LeftSock, EFFECT: LeftSockOn)

Planning is an integral part of automation

Recommended clip from Charlie Chaplin's Modern Times to see what can go wrong:
https://www.youtube.com/watch?v=n_1apYo6-Ow

What we intend to learn:

1. Partial Order Planning
2. GraphPlan and SATPlan

Partial Order Planning

- Basic Idea: Make choices only that are relevant to solving the current part of the problem
- Least Commitment Choices
- Orderings: Leave actions unordered, unless they must be sequential
- Bindings: Leave variables unbound, unless needed to unify with conditions being achieved
- Actions: Usually not subject to "least commitment"

Terminology

- Totally Ordered Plan
- There exists sufficient orderings \mathbf{O} such that all actions in A are ordered with respect to each other
- Fully Instantiated Plan
- There exists sufficient constraints in B such that all variables are constrained to be equal to some constant
- Consistent Plan
- There are no contradictions in O or B
- Complete Plan
- Every precondition P of every action A_{i} in A is achieved:
- There exists an effect of an action A_{j} that comes before A_{i} and unifies with P, and no action A_{k} that deletes P comes between A_{j} and A_{i}

Early Days: STRIPS

- STanford Research Institute Problem Solver
- Many planners today use specification languages that are variants of the one used in STRIPS

Our running example:

- Given:
- Initial state: The agent is at home without tea, biscuits, book
- Goal state: The agent is at home with tea, biscuits, book
- A set of actions as shown next

Representing States

- States are represented by conjunctions of function-free ground literals

$$
\begin{aligned}
& \text { At(Home) } \wedge \neg \text { Have }(\text { Tea }) \wedge \\
& \neg \text { Have(Biscuits) } \wedge \neg \text { Have }(\text { Book })
\end{aligned}
$$

- Goals are also described by conjunctions of literals

$$
\begin{aligned}
& \text { At (Home) } \wedge \text { Have }(\text { Tea }) \wedge \\
& \text { Have }(\text { Biscuits }) \wedge \text { Have }(\text { Book })
\end{aligned}
$$

- Goals can also contain variables

$$
\operatorname{At}(x) \wedge \operatorname{Sells}(x, T e a)
$$

- The above goal is being at a shop that sells tea

Representing Actions

- Action description - serves as a name
- Precondition - a conjunction of positive literals (why positive?)
- Effect - a conjunction of literals (+ve or -ve)
- The original version had an add list and a delete list.

Op(ACTION:	Go(there),
PRECOND:	At(here) \wedge Path(here, there)
EFFECT:	At(there) $\wedge \neg A t($ here $)$

Representing Plans

- A set of plan steps. Each step is one of the operators for the problem.
- A set of step ordering constraints. Each ordering constraint is of the form $\mathrm{S}_{\mathrm{i}} \prec \mathrm{S}_{\mathrm{j}}$, indicating S_{i} must occur sometime before S_{j}.
- A set of variable binding constraints of the form $\mathrm{v}=\mathrm{x}$, where v is a variable in some step, and x is either a constant or another variable.
- A set of causal links written as $S \rightarrow c$: S^{\prime} indicating S satisfies the precondition c for S^{\prime}.

Example

- Initial plan

```
Plan(
    STEPS: {
```

 S1: Op(ACTION: start),
 S2: Op(ACTION: finish,
 PRECOND: RightShoeOn ^ LeftShoeOn)
 \},
 ORDERINGS: \(\left\{\mathrm{S}_{1} \prec \mathrm{~S}_{2}\right\}\),
 BINDINGS: \{ \},
 LINKS: \{\})

POP Example: Get Tea, Biscuits, Book

Initial state:

Op(ACTION: Start,
EFFECT: At(Home) ^ Sells(BS, Book) \wedge Sells(TS, Tea) \wedge Sells(TS, Biscuits))

Goal state:
Op(ACTION: Finish, PRECOND: At(Home) ^ Have(Tea) \wedge Have(Biscuits) \wedge Have(Book))

Actions:

Op(ACTION: Go(y), PRECOND: At(x), EFFECT: At $(\mathrm{y}) \wedge \neg \mathrm{At}(\mathrm{x}))$

Op(ACTION: Buy (x), PRECOND: At(y) ^Sells(y, x), EFFECT: Have(x))

At(Home) \wedge Sells $($ BS, Book $) \wedge$ Sells(TS, Tea) \wedge Sells(TS, Biscuits)

Op(ACTION: Go(y), PRECOND: At(x), EFFECT: At $(\mathrm{y}) \wedge \neg \mathrm{At}(\mathrm{x}))$

The problem here is that Go(BS) and Go(TS) destroy each other's precondition. Neither can precede the other.

FINISH

The Partial Order Planning Algorithm

Function POP(initial, goal, operators)
// Returns plan
plan \leftarrow Make-Minimal-Plan(initial, goal)
Loop do
If Solution(plan) then return plan
S, c \leftarrow Select-Subgoal(plan)
Choose-Operator(plan, operators, S, c)
Resolve-Threats(plan)
end

POP: Selecting Sub-Goals

Function Select-Subgoal(plan)
// Returns S, c
pick a plan step S from STEPS(plan)
with a precondition c that has not been achieved
Return S, c

POP: Choosing operators

Procedure Choose-Operator(plan, operators, S, c)

Choose a step S' from operators or STEPS(plan) that has cas an effect

If there is no such step then fail
Add the causal link $\mathbf{S}^{\prime} \rightarrow \mathrm{c}$: S to LINKS(plan)
Add the ordering constraint $S^{\prime} \prec S$ to ORDERINGS(plan)
If S is a newly added step from operators then add S to STEPS(plan) and add Start $\prec S^{\prime} \prec$ Finish to ORDERINGS(plan)

POP: Resolving Threats

Procedure Resolve-Threats(plan)

for each S' that threatens a link $\mathrm{S}_{\mathrm{i}} \rightarrow \mathrm{c}$: S_{j} in LINKS(plan) do choose either

> Promotion: Add $\mathrm{S}^{\prime} \prec \mathrm{S}_{\mathrm{i}}$ to ORDERINGS(plan)
> Demotion: Add $\mathrm{S}_{\mathrm{j}} \prec \mathrm{S}^{\prime}$ to ORDERINGS(plan)
if not Consistent(plan) then fail

Partially instantiated operators

- So far we have not mentioned anything about binding constraints
- Should an operator that has the effect, say, $\neg A t(x)$, be considered a threat to the condition, At(Home) ?
- Indeed it is a possible threat because x may be bound to Home

Dealing with potential threats

\square Resolve now with an equality constraint

- Bind x to something that resolves the threat (say $x=T S$)
\square Resolve now with an inequality constraint
- Extend the language of variable binding to allow $x \neq$ Home
\square Resolve later
- Ignore possible threats. If $x=$ Home is added later into the plan, then we will attempt to resolve the threat (by promotion or demotion)

Proc Choose-Operator(plan, operators, S, c)
choose a step S from operators or STEPS(plan) that has c' as an effect such that $u=$ UNIFY(c, c', BINDINGS(plan))
if there is no such step then fail
add u to BINDINGS(plan)
add the causal link $S^{\prime} \rightarrow \mathrm{c}$: S to LINKS(plan)
add the ordering constraint $S^{\prime} \prec S$ to ORDERINGS(plan)
if S is a newly added step from operators then
add S to STEPS(plan) and add Start $\prec S^{\prime} \prec$ Finish to ORDERINGS(plan)

Procedure Resolve-Threats(plan)

$$
\begin{aligned}
& \text { for each } \mathrm{S}_{\mathrm{i}} \rightarrow \text { c: } \mathrm{S}_{\mathrm{j}} \text { in LINKS(plan) do } \\
& \text { for each S" in STEPS(plan) do } \\
& \text { for each c' in EFFECTS(} \left.\mathrm{S}^{\prime \prime}\right) \text { do } \\
& \left.\quad \text { if SUBST(BINDINGS(plan), c) = SUBST(BINDINGS(plan), } \neg c^{\prime}\right)
\end{aligned}
$$

then choose either
Promotion: Add S" $\prec \mathrm{S}_{\mathrm{i}}$ to ORDERINGS(plan)
Demotion: Add $\mathrm{S}_{\mathrm{j}} \prec \mathrm{S}^{\prime \prime}$ to ORDERINGS(plan)
if not Consistent (plan) then fail

USING PLANNING GRAPHS GraphPlan and SATPlan

Planning Graph

Op(ACTION Eat(Cake), PRECOND Have(Cake),
EFFECT Eaten(Cake) $\wedge \neg$ Have(Cake))
Start: Have(Cake)
Finish: Have(Cake) ^Eaten(Cake)
Op(ACTION Bake(Cake), PRECOND \neg Have(Cake), EFFECT: Have(Cake))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Mutex Links in a Planning Graph

Planning Graphs

- Consists of a sequence of levels that correspond to time steps in the plan
- Each level contains a set of actions and a set of literals that could be true at that time step depending on the actions taken in previous time steps
- For every +ve and -ve literal C , we add a persistence action with precondition C and effect C

Planning Graph

Op(ACTION Eat(Cake), PRECOND Have(Cake), EFFECT Eaten(Cake) $\wedge \neg$ Have(Cake))

Op(ACTION Bake(Cake), PRECOND \neg Have(Cake), EFFECT: Have(Cake))

In the world S_{2} the goal predicates exist without mutexes, hence we need not expand the graph any further

Mutex Actions

- Mutex relation exists between two actions if:
- Inconsistent effects - one action negates an effect of the other

$$
\text { Eat(Cake) causes } \neg \text { Have(Cake) and Bake(Cake) causes Have(Cake) }
$$

- Interference - one of the effects of one action is the negation of a precondition of the other

Eat(Cake) causes \neg Have(Cake) and the persistence of Have(Cake) needs Have(Cake)

- Competing needs - one of the preconditions of one action is mutually exclusive with a precondition of the other

Bake(Cake) needs \neg Have(Cake) and Eat(Cake) needs Have(Cake)

Mutex Literals

- Mutex relation exists between two literals if:
- One is the negation of the other, or
- Each possible pair of actions that could achieve the two literals is mutually exclusive (inconsistent support)

Function GraphPLAN(problem) II returns solution or failure graph \leftarrow Initial-Planning-Graph $($ problem) goals \leftarrow Goals[problem]
 do

if goals are all non-mutex in last level of graph then do solution \leftarrow Extract-Solution (graph) if solution \neq failure then return solution else if No-Solution-Possible (graph) then return failure
graph \leftarrow Expand-Graph (graph, problem)

Finding the plan

- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.
- The plan is shown in blue below

Termination of GraphPLAN when no plan exists

- Literals increase monotonically
- Actions increase monotonically
- Mutexes decrease monotonically

This guarantees the existence of a fixpoint

Exercise

Start: At(Flat, Axle) ^At(Spare, Trunk)
Goal: At(Spare, Axle)

Op(ACTION Remove(Spare, Trunk), PRECOND At(Spare, Trunk), EFFECT At(Spare, Ground)
$\wedge \neg \mathrm{At}($ Spare, Trunk))
Op(ACTION Remove(Flat, Axle), PRECOND At(Flat, Axle), EFFECT At(Flat, Ground)

$$
\wedge \neg \text { At (Flat, Axle)) }
$$

```
Op( ACTION PutOn( Spare, Axle ),
    PRECOND At( Spare, Ground)
            \wedge\negAt(Flat, Axle ),
    EFFECT At(Spare, Axle )
    \wedge\negAt(Spare, Ground ))
Op( ACTION LeaveOvernight,
    PRECOND
    EFFECT \negAt(Spare, Ground )
    \wedge\negAt(Spare, Axle )
    \wedge\negAt(Spare, Trunk )
    \wedge At(Flat, Ground)
    \wedge\negAt(Flat, Axle ))
```


Planning with Propositional Logic

- The planning problem is translated into a CNF satisfiability problem
- The goal is asserted to hold at a time step T , and clauses are included for each time step up to T .
- If the clauses are satisfiable, then a plan is extracted by examining the actions that are true.
- Otherwise, we increment T and repeat

Example

Aeroplanes P_{1} and P_{2} are at SFO and JFK respectively. We want P_{1} at JFK and P_{2} at SFO

Initial: $\quad \operatorname{At}\left(P_{1}, S F O\right)^{0} \wedge A t\left(P_{2}, J F K\right)^{0}$
Goal: $\quad \operatorname{At}\left(P_{1}, J F K\right) \wedge \operatorname{At}\left(P_{2}, S F O\right)^{0}$

Action: At $\left(P_{1}, J F K\right)^{1} \Leftrightarrow\left[\operatorname{At}\left(P_{1}, J F K\right)^{0} \wedge \neg\left(F l y\left(P_{1}, J F K, S F O\right)^{0} \wedge \operatorname{At}\left(P_{1}, J F K\right)^{0}\right)\right]$ $\vee\left[\operatorname{At}\left(\mathrm{P}_{1}, \mathrm{SFO}\right)^{0} \wedge \mathrm{Fly}\left(\mathrm{P}_{1}, \mathrm{SFO}, \mathrm{JFK}\right)^{0}\right]$

Check the satisfiability of:
initial state \wedge successor state axioms \wedge goal

Additional Axioms

Precondition Axioms:
$\operatorname{Fly}\left(P_{1}, \mathrm{JFK}, \mathrm{SFO}\right)^{0} \Rightarrow \operatorname{At}\left(\mathrm{P}_{1}, \mathrm{JFK}\right)^{0}$

Action Exclusion Axioms:
$\neg\left(\operatorname{Fly}\left(\mathrm{P}_{2}, \mathrm{JFK}, \mathrm{SFO}\right)^{0} \wedge \mathrm{Fly}\left(\mathrm{P}_{2}, \mathrm{JFK}, \mathrm{LAX}\right)^{0}\right)$

State Constraints:

$$
\forall p, x, y, t(x \neq y) \Rightarrow \neg\left(\operatorname{At}(p, x)^{t} \wedge \operatorname{At}(p, y)^{t}\right)
$$

SATPlan

```
Function SATPlan( problem, T}\mp@subsup{T}{\mathrm{ max }}{}\mathrm{ )
    I/ returns solution or failure
for T=0 to T Tmax do
    cnf, mapping < Trans-to-SAT(problem, T)
    assignment < SAT-Solver( cnf)
    if assignment is not NULL then
        return Extract-Solution(assignment, mapping)
    return failure
```


