Automated Problem Solving by Search

COURSE: CS60045

Professor,

Pallab Dasgupta
Dept. of Computer Sc & Engg

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

74 | Artificial

Intelligence
T . o TBTTIOR The book that we will follow mostly for this and

Stuart J. Russell many other tOpiCS:

Peter Norvig

e e —

» Y

oy

Artificial Intelligence — A Modern Approach
Stuart J Russell, Peter Norvig

-
>, -
L1 i1 b
A
/ b

l Pearson Education India

N

Plomsaaar ol
PEARSON

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR N

COI\/IPLEX PROBLEI\/IS AND ALGORITHMS

iy

L Madame Tussauds
e St
5"" New York o
35, 39% = i m
!5y ?n'n‘r“\,(\\ = 11 il [Times Sq- 42 5t
: 3 miles

m4zst-t

"Ors,.,

&

NG
& S
£

= 5y

o

. -":: ¥,
i e
gy 2 s, .
Sy < &
; ‘ifré & s
i s, & &
o =z >ws "\ &
5 Bela g, e New Yorker g
/' Sy A Wiridham : 54 W 39t
\\'/)
. B y
y
s,

34 51 - Penn Station [

¥
¥
&
&

-'/4\9', i 1.2 miles

The b

33rd St - Herald (=] Library & M

Square Subway

& Empire State Builc

VLSI Chip DeS|gn

(S I e

[Ve Iroan Qe Dk Tock ‘Windzw - Hilp == R R

EEdlle MresRd

! o e P
1o N e L R
For] Pl - o R
:_ [- T o T TH]
|4tk s+ ThE N
[T TR EH
| =k A e T NN

|| L AN TR TREE

LRI
| - Hpdad oW 158 o 1

| 1= 02 t'.”-.-..'n::--:'sl.'ﬁ.ﬁ--:-Ll
L5s (B, -:*-r:'i-_':lé--'::-.:u_.-':-i-—'
Fou Ay & bR e 4 5T B -

! o
I.|| el

U* Examplel - Prime Timetab r

C | © www.primetimetable.com/Application/?demo#id=69e5bf8d-74a5-4984-b9

Loading maker 78%

a3l - =
| B So- e
- TOoEn Soo - 6
ngﬁﬂgﬁﬁmnnam

e =
E--ﬁ-ﬁ-ﬁﬁ-E
Time-Table

Scheduling

Robot Ass-embly

g4

@ In Exercises 43-46, evaluate the definite integral by hand. Then
use a symbolic integration utility to evaluate the definite integral.
Briefly explain any differences in your results.

43. f — 9 dx
3
; bzl
44, —_—
L 2+ 2x—3 %
3
= 2et
45, [dx
o 2t e

209 4 3
46 [2+ Inx 8
1 X

Symbolic
Integration ™

AUTOMATED PROBLEM SOLVING BY SEARCH

Generalized Techniques for Solving Large Classes of Complex Problems

Problem Statement is the Input and solution is the Output, sometimes even the problem specific algorithm or
method could be the Output

Problem Formulation by Al Search Methods consists of the following key concepts

15 g O, TR
b Calt s

 Configuration or State
 Constraints or Definitions of Valid Configurations
 Rules for Change of State and their Outcomes
* Initial or Start Configurations
 Goal Satisfying Configurations S —
* An Implicit State or Configuration Space Multi-Peg Tower of Hanoi /
« Valid Solutions from Start to Goal in the State Space Brahma
 General Algorithms which SEARCH for Solutions in this State Space

ISsues

« Size of the Implicit Space, Capturing Domain Knowledge, Intelligent Algorithms that work in reasonable time
and Memory, Handling Incompleteness and Uncertainty

TWO JUG PROBLEM

There is a large bucket B full of water and Two (02) jugs, J1 of volume 3 litre and J2 of volume 5 litre. You are
allowed to fill up any empty jug from the bucket, pour all water back to the bucket from a jug or pour from one jug
to another. The goal is to have jug J1 with exactly one (01) litre of water

State Definition: <J1, J2>
Rules:

e Fill (J1): <J1, J2> to <3,J2>
e Fill (J2): <J1, J2> to <J1, 5>
« Empty (J1), Empty (J2): Similarly defined
* Pour (J1, J2): <J1,J2> to <X,Y>, where
e X=0andY=J1+J2if J1+J2 <5,
e Y=5and X=(J1+J2)-5,ifJ1+J2>5
 Pour (J2, J2): Similarly defined
Start: <0,0>, Goal: <1,0>

Part of State Space Shown on the right
(Not all Links shown here)

~

<0,0> >
/ — <0,5>
<3.0> k //> <3.5> \
ﬁ"‘
N\ <3,2>
) <0,3> <2,0> ::
<0,2>
<3/,\3> < 5>
v <3’4> s
<1,5>]\ <O,\4>
<1,0> [« <0,1> [—{ <3,1>

STATE SPACES
o X X's turn (MAX)
olx| _
—-—F”;H_F’ H——_._
A | -1 =
‘ e 0lo|x 0|o|x o|o|x
0 2 - X| X X x|
0|x o |X| x o|x
f /’Q/ T ;/;[\3 T £1 \+1 < /\0 G/\+1
- : ! olo|x o0lo|x ololx o|o|x olo|x o]|o|x
0| X|X i O|X x| 0 X [X|0 XX
2 // \//,\ 1 0|X OX|0 OX|x O|X|X 0|X o[X|o
;(;?(X‘Q ;X Q
o 2 g i ‘-I—l ‘O ‘O ‘+1
00| X 0|0 X 00| X 0|0|X
//\\ /| & XXX X |X|0 X|X|0 XXX
Y3 of T o|x|o olx|x o|x|x olx|o
Q
Q

Assertions
And-Or Graph
Forward state-space search P .
Gripper __Joint 4 (progression planning) f a
» Successors: all states that can be reached with an n ‘ b
action whose preconditions are satisfied in current state c
At(Home) WalkWithUmbrella arcwork) .
'__,_rJnmt 3 TakeObject(H Umbrella) Holding{Umbrella) Home, Work, Holding(Umbrella) a b = d
akeUbjec ome. Umbrella Tmb 2 = =
CanBeCarried(Umbrella) mbreta) CanBeCarried(Umbrella) 1] d a C=re
/ IsUmbrella(Umbrella) WalkWithoutUm | stmbrella(Umbrella) b - d = f
At(Home) brella(Home,
Dry Dry =
IsAt(Umbrella, Home) - Work) - f * g
GOAL! - —
CanBeCarried(Umbrella) a e=xh
IsUmbrella(Umbrella) At(Work) WalkWithout
Joint 2 HandEmpty IsAt(Umbrella, Home) Umbrella(Wor | AiHome)
— Dry CanBeCatried(Unbrella) k. Home) IsAt(Umbrella, Home) p p
WalkWithoutUnta] IsUmbrella(Umbrella) CanBeCarried(Umbrella) / qvr=p q o= p
brella(Home, HandEmpiy IsUmbrella(Umbrella)
Joint 1 Work) HandEmpty q T q r
— WalkWithoutUmbrella(ﬂND
Home, Umbrella) (1) OR

Manipulator Arm

Planning

Reasoning

CONSISTENT LABELLING BY CONSTRAINT SATISFACTION

Al M| I| N| D B
"al 1| vl v
Tree
O
La
p— =
o
police
Door officer
ar
o)
% o
4 Road a
Bench ==~ | Child
Construction
N S Worker
5
= o -
Dog * 5

Scene Analysis

Cryptarithmetic

STATES, SPACES, SOLUTIONS, SEARCH

South Deals A KJTES
States N-S Val v 1102
_ _ _ ¢ J8
» Full / Perfect Information and Partial Information States i % AT104 oS
State Transformation Rules v A643 Js i v 875
o ¢ AK1052 5 ¢+ Q963
e Deterministic OQutcomes % Q2 o1 % K86
» Non-Deterministic / Probabilistic Outcomes v KQ9
State Spaces As Generalized Games e
» Single Player: OR Graphs et Pomm - Sa
» Multi-Player: And / Or, Adversarial, Probabilistic Graphs . e i};pﬂﬁ 2
Solutions
Control Plant -
» Paths
gy D 11 12
» Sub-graphs _ ﬁﬁ* | 10
 Expected Outcomes] 8 .
4
Costs L] 13
. ;:JA EE FURNACE m 9y ™ SUPE:HEMER et ’ 1
S'Zes Wr‘ :: - XD W by ATTEMPORATOR _p_"r, T !
] J & o W,
Domain Knowledge = h . o o [
. . . .: :ECONDMIZER 1 \,EF 5 REHEATER E,: i - L 6
Algorithms for Heuristic Search iy [: 1 §
- Plate Cutting 0

BASICS OF STATE SPACE MODELLING

STATE or CONFIGURATION:

A set of variables which define a state or
configuration

« Domains for every variable and constraints
among variables to define a valid configuration

STATE TRANSFORMATION RULES or MOVES:

» A set of RULES which define which are the
valid set of NEXT STATE of a given State

e |t also indicates who can make these Moves
(OR Nodes, AND nodes, etc)

STATE SPACE or IMPLICIT GRAPH

» The Complete Graph produced out of the State
Transformation Rules.
* Typically too large to store. Could be Infinite.

INITIAL or START STATE(s), GOAL STATE(S)

SOLUTION(s), COSTS

* Depending on the problem formulation, it
can be a PATH from Start to Goal or a Sub-
graph of And-ed Nodes

SEARCH ALGORITHMS

* Intelligently explore the Implicit Graph or
State Space by examining only a small
sub-set to find the solution

 To use Domain Knowledge or HEURISTICS
to try and reach Goals faster

OR-Graph: TRAVELLING SALESPERSON PROBLEM

<A>.0

L

<AB>,100

<AC>,120

<AD>,200

<AE>190

<ABC>,175

<ABD>,175

<ABE>,180

<ABCD>,285

<ABCDE>,335

<ABCDEA>,525

\N

T N T

<ABCE>,265

<ABDC>,285

<ABDE>,225

<ABCED>,315

<ABDCE>,375

\/2

<ABDEC>,315

<ABCEDA>515

<ABDCEA>,565

<ABDECA>,435

AND/OR GRAPHS: COMPOSITIONAL / ADVERSARIAL / PROBABILISTIC

0 0Jo|x
> X's turn (MAX)
O|X
la—-—'—‘’// |‘1\0‘
OO0 X 0|0 X O|0]| X
x| ¥ | %
0| X 0| X| x 0] B¢
-1/\+1 -1/\0 0/\+1
00X O[O0 X 00| X 010| X 0|0 X 0|0 X
O X]| X X | X O|X X0 X|X|0O X | X
OX O|X|0 0| X| X O|X|[X 0| X O|X|0
“l—l ‘U ‘O ‘+1
O|0|X 0|10| X 210 X 0|0 X
A X|X[0 X|X|O X[%] %
0|X|0 O[X|X O|X|x O0O|X|0

y R C
AR AN AN
) P\) ([7 I 0 ¢ O B
S O s S0d f

OR Nodes are ones for which one has a choice. The
AND nodes could be compositional (sum, product,
min, max, etc, depending on the way the sub-
problems are composed), Adversarial (game where
the other parties have a choice) or Probabilistic
(Environmental Actions)

—
—i

COMPOSITIONAL AND/OR GRAPHS: MATRIX CHAIN MULTIPLICATION

(ML X (M2 X (M3 X M4))) = (ML x M2) X (M3 X M4)) = (M1 x M2) X M3) X M4) = (M1 X (M2 X M3))
X M4)
BUT THE NUMBER OF MULTIPLICATIONS TO GET THE ANSWER DIFFER !!

SEARCHING IMPLICIT GRAPHS

» Given the start state the SEARCH Algorithm will slowly create successors based on the State
Transformation Rules and make part of the Graph EXPLICIT. It will slowly EXPAND the Explicit graph
INTELLGENTLY to rapidly search for a solution without exploring the entire Implicit Graph or State
Space

o For OR Graphs, the solution is a PATH from start to Goal. Cost is usually sum of the edge costs on
the path, though it could be something based on the problem

e For And/OR Graphs, the Solution is an AND Subgraph rooted at the Start and each leaf is a Goal
Node. The Cost of OR Node is usually a Min or Max. The Cost at the AND Node depends on the type
of Node (Compositional, Adversarial, Probabilistic). For Adversarial two player games, Max / Min is
used at AND Node (reverse of Or Node)

* The various Search Algorithms include

« BASIC Algorithms: Depth-First (DFS), Breadth-first (BFS), Iterative Deepening (IDS)

» COST-based Algorithms: Depth-First Branch-and-Bound, Best First Search, Best-First Iterative
Deepening

» Widely Used: A* (Or Graphs), AO* (And/Or Graphs), IDA*, Alpha-beta Pruning (Game-Trees) ™

BASIC ALGORITHMS in OR GRAPHS: DFS, BFS, IDS

Initialize] Initially the OPEN List contains the Start Node s. CLOSED List is Empty.
Select] Select the first Node n on the OPEN List. If OPEN is empty, Terminate

(Goal Test] If n is Goal, then decide on Termination or Continuation / Cost Updation

> L e

Expand]

a) Generate the successorsn_1,n 2,n_k, of node n, based on the State Transformation Rules
b) PutninLIST CLOSED

c) Foreach n_i, not already in OPEN or CLOSED List, put n_i in the FRONT (for DES) / END (for
BES) of OPEN List

d) Foreach n_ialready in OPEN or CLOSED decide based on cost of the paths
5. [Continue] Go to Step 2

Algorithm IDS Performs DFS Level by Level Iteratively (DFS (1), DFS (2), and so on)

EXAMPLE: SEARCHING A STATE SPACE GRAPH

DETERMINE THE EXECUTION TRACES:

e DEPTH-FIRST SEARCH (DFS)

e BREADTH-FIRST SEARCH (BFS)

« |TERATIVE DEEPENDING SEARCH (IDS)
 PROPERTIES

e SOLUTION GUARANTEES
« MEMORY REQUIREMENTS

EXAMPLE: SEARCHING A STATE SPACE GRAPH

° START

DEPTH-FIRST SEARCH:

OPEN ={A}, CLOSED = {}

OPEN ={B,C,D}, CLOSED = {A}

OPEN = {E,F,G,C,D}, CLOSED = (A,B}
OPEN ={I,J,F,G,C,D}, CLOSED ={A,B,E}
Goal Node | Found. Can Terminate with
Path from A to | or may Continue for
more Goal nodes if minimum length or

e @ G cost is a criteria

DFS MAY NOT TERMINATE IF THERE IS AN
INFINITE DEPTH PATH EVEN IF THERE ISA

G ° GOAL NODE AT FINITE DEPTH

GOAL GOAL DFS HAS LOW MEMORY REQUIREMENT

ok owh e

EXAMPLE: SEARCHING A STATE SPACE GRAPH

© oo ~No Ok W

BREADTH-FIRST SEARCH:

OPEN ={A}, CLOSED = {}

OPEN ={B,C,D}, CLOSED ={A}

OPEN ={C,D,E,F,G}, CLOSED = (A,B}
OPEN ={D,E,F,G}, CLOSED ={AB,C}
OPEN = {E,F,G,H}. CLOSED ={A,B,C,D}
OPEN ={F,G,H,I,J}, CLOSED = {A,B,C,D,E}
OPEN ={G,H,l,J}, CLOSED ={A,B,C,D,E,F}
OPEN ={H,I,J}, CLOSED ={A,B,C,D,E,F.G}
Goal Node H Found. Can Terminate with
Path from A to H. This is guaranteed to be
the minimum length path.

BFS GUARANTEES SHORTEST LENGTH PATH
TO GOAL BUT HAS HIGHER MEMORY
REQUIREMENT

EXAMPLE: SEARCHING A STATE SPACE GRAPH

ITERATIVE DEEPENING SEARCH:

1. PERFORM DFS TILL LENGTH 1. NO
SOLUTION FOUND

2. PERFORM DFS TILL LEVEL 2. GOAL
NODE H REACHED.

3. Can Terminate with Path from A to H.
This is guaranteed to be the minimum
length path.

IDS GUARANTEES SHORTEST LENGTH
PATH TO GOAL

IDS MAY RE-EXPAND NODES MANY TIMES

IDS HAS LOWER MEMORY REQUIREMENT
THAN BFS

NEXT: SEARCHING STATE SPACE GRAPHS WITH EDGE COSTS

DETERMINE THE EXECUTION TRACES:

e COST ORDERED SEARCH:

« DFBB
Best First Search,
Best First IDS
Use of HEURISTIC Estimates:
Algorithm A* (Or Graphs), AO*
(And/Or Graphs)

 PROPERTIES
e SOLUTION GUARANTEES
« MEMORY REQUIREMENTS

Uniform Cost Search

This algorithm assumes that all operators have a cost:

1. Initialize: Set OPEN = {s},
CLOSED ={}SetC(s)=0

2. Fall: If OPEN = { }, Terminate & falil

3. Select: Select the minimum cost state, n,
from OPEN and save n in CLOSED

4. Terminate: If n e G, terminate with success

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Uniform Cost Search

5. Expand:
Generate the successors of n using O.
For each successor, m:
If m ¢[OPEN U CLOSED]
Set C(m) = C(n) + C(n,m)
and insert m in OPEN
If m € [OPEN w CLOSED]
Set C(m) = min {C(m), C(n) + C(n,m)}
If C(m) has decreased and
m e CLOSED, move it to OPEN

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Sequence of selection of nodes from OPEN:
123262224

9
4 5
[x] = g(n) 7] [8]

path cost of hode n

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Searching with costs

(1 If all operator costs are positive, then the algorithm finds the minimum cost sequence of
transitions to a goal.

= No state comes back to OPEN from CLOSED

(1 If operators have unit cost, then this is same as BFS

1 What happens if negative operator costs are allowed?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

SUMMARY

» State Space Search consists of definitions of States, State Transformation Rules, Constraints, Initial
and Goal States, Costs

* The Implicit State Space is created using OR Nodes (Choice) and AND Nodes (Compositional,
Adversarial, Probabilistic / Environment)

» Solutions can be Paths or Sub-Graphs of the Implicit State Space

« The problem is solved by finding a solution path or sub-graph in the state space so that we reach
from start to goal in some optimal way and the solution path must satisfy the constraints in the
states as well as follow valid state transformation rules

» Costs are problem specific and goals include Minimization, Maximization, or can be Multi-Objective

* The complete state space is extremely large and usually cannot be completely searched or stored
In any reasonable time and space

« Basic Algorithms Include DFS, BFS, IDS,

e Cost Ordered Search required more sophisticated Algorithms

	Automated Problem Solving by Search
	Slide Number 2
	COMPLEX PROBLEMS AND ALGORITHMS
	AUTOMATED PROBLEM SOLVING BY SEARCH
	TWO JUG PROBLEM
	STATE SPACES
	CONSISTENT LABELLING BY CONSTRAINT SATISFACTION
	STATES, SPACES, SOLUTIONS, SEARCH
	BASICS OF STATE SPACE MODELLING
	OR-Graph: TRAVELLING SALESPERSON PROBLEM
	AND/OR GRAPHS: COMPOSITIONAL / ADVERSARIAL / PROBABILISTIC
	COMPOSITIONAL AND/OR GRAPHS: MATRIX CHAIN MULTIPLICATION
	SEARCHING IMPLICIT GRAPHS
	BASIC ALGORITHMS in OR GRAPHS: DFS, BFS, IDS
	EXAMPLE: SEARCHING A STATE SPACE GRAPH
	EXAMPLE: SEARCHING A STATE SPACE GRAPH
	EXAMPLE: SEARCHING A STATE SPACE GRAPH
	EXAMPLE: SEARCHING A STATE SPACE GRAPH
	NEXT: SEARCHING STATE SPACE GRAPHS WITH EDGE COSTS
	Uniform Cost Search
	Uniform Cost Search
	Slide Number 22
	Searching with costs
	SUMMARY

