
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Automated Problem Solving by Search
COURSE: CS60045

1

Pallab Dasgupta
Professor,
Dept. of Computer Sc & Engg

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

The book that we will follow mostly for this and
many other topics:

Artificial Intelligence – A Modern Approach
Stuart J Russell, Peter Norvig

Pearson Education India

COMPLEX PROBLEMS AND ALGORITHMS

3

Path Finding Chess Playing Robot Assembly

VLSI Chip Design Time-Table
Scheduling

Symbolic
Integration

AUTOMATED PROBLEM SOLVING BY SEARCH
Generalized Techniques for Solving Large Classes of Complex Problems
Problem Statement is the Input and solution is the Output, sometimes even the problem specific algorithm or
method could be the Output
Problem Formulation by AI Search Methods consists of the following key concepts

• Configuration or State
• Constraints or Definitions of Valid Configurations
• Rules for Change of State and their Outcomes
• Initial or Start Configurations
• Goal Satisfying Configurations
• An Implicit State or Configuration Space
• Valid Solutions from Start to Goal in the State Space
• General Algorithms which SEARCH for Solutions in this State Space

Issues
• Size of the Implicit Space, Capturing Domain Knowledge, Intelligent Algorithms that work in reasonable time

and Memory, Handling Incompleteness and Uncertainty

4

Multi-Peg Tower of Hanoi /
Brahma

TWO JUG PROBLEM

There is a large bucket B full of water and Two (02) jugs, J1 of volume 3 litre and J2 of volume 5 litre. You are
allowed to fill up any empty jug from the bucket, pour all water back to the bucket from a jug or pour from one jug
to another. The goal is to have jug J1 with exactly one (01) litre of water
State Definition: <J1, J2>
Rules:

• Fill (J1): <J1, J2> to <3,J2>
• Fill (J2): <J1, J2> to <J1, 5>
• Empty (J1), Empty (J2): Similarly defined
• Pour (J1, J2): <J1, J2> to <X,Y>, where

• X = 0 and Y = J1 + J2 if J1+J2 ≤ 5,
• Y = 5 and X = (J1+ J2) – 5, if J1+J2 > 5

• Pour (J2, J2): Similarly defined
Start: <0,0>, Goal: <1,0>
Part of State Space Shown on the right
(Not all Links shown here)

5

<0,0>

<3,0>
<0,5>

<0,3>
<3,2>

<3,5>

<0,2>
<2,0>

<2,5>
<3,4> <0,4>

<3,1><0,1><1,0>

<3,3>

<1,5>

STATE SPACES

6

R-Cube
Queens

Game

Manipulator Arm Planning Reasoning

CONSISTENT LABELLING BY CONSTRAINT SATISFACTION

7

Scene Analysis
Cryptarithmetic

Crossword

STATES, SPACES, SOLUTIONS, SEARCH
States

• Full / Perfect Information and Partial Information States
State Transformation Rules

• Deterministic Outcomes
• Non-Deterministic / Probabilistic Outcomes

State Spaces As Generalized Games
• Single Player: OR Graphs
• Multi-Player: And / Or, Adversarial, Probabilistic Graphs

Solutions
• Paths
• Sub-graphs
• Expected Outcomes

Costs
Sizes
Domain Knowledge
Algorithms for Heuristic Search

8Plate Cutting

Card Game

Control Plant

BASICS OF STATE SPACE MODELLING

STATE or CONFIGURATION:
• A set of variables which define a state or

configuration
• Domains for every variable and constraints

among variables to define a valid configuration

STATE TRANSFORMATION RULES or MOVES:
• A set of RULES which define which are the

valid set of NEXT STATE of a given State
• It also indicates who can make these Moves

(OR Nodes, AND nodes, etc)

STATE SPACE or IMPLICIT GRAPH
• The Complete Graph produced out of the State

Transformation Rules.
• Typically too large to store. Could be Infinite. 9

INITIAL or START STATE(s), GOAL STATE(s)

SOLUTION(s), COSTS
• Depending on the problem formulation, it

can be a PATH from Start to Goal or a Sub-
graph of And-ed Nodes

SEARCH ALGORITHMS
• Intelligently explore the Implicit Graph or

State Space by examining only a small
sub-set to find the solution

• To use Domain Knowledge or HEURISTICS
to try and reach Goals faster

OR-Graph: TRAVELLING SALESPERSON PROBLEM

10

75

50

110
80

9075

190200

120100

B

A

C

D E

<A>,0

<AB>,100 <AC>,120 <AD>,200 <AE>190

<ABC>,175 <ABD>,175 <ABE>,180

<ABCD>,285 <ABCE>,265

<ABCDE>,335 <ABCED>,315

<ABDC>,285 <ABDE>,225

<ABDCE>,375 <ABDEC>,315

<ABCDEA>,525 <ABCEDA>,515 <ABDCEA>,565 <ABDECA>,435

AND/OR GRAPHS: COMPOSITIONAL / ADVERSARIAL / PROBABILISTIC

11

OR Nodes are ones for which one has a choice. The
AND nodes could be compositional (sum, product,
min, max, etc, depending on the way the sub-
problems are composed), Adversarial (game where
the other parties have a choice) or Probabilistic
(Environmental Actions)

COMPOSITIONAL AND/OR GRAPHS: MATRIX CHAIN MULTIPLICATION

12

(M1 :M4)

(M1 :M4) (M1 :M4) (M1 :M4)

(M1 :M1) (M2 :M4) (M1 :M2) (M3 :M4) (M1 :M3) (M4 :M4)

(M2 :M4) (M2 :M4)

(M2 :M2) (M3 :M4) (M2 :M3)

(M1 :M3) (M1 :M3)

(M1 :M2) (M3 :M3)

OR NODE
(Min)

AND NODE
(Fn)

(M1 X (M2 X (M3 X M4))) = ((M1 x M2) X (M3 X M4)) = (((M1 x M2) X M3) X M4) = (M1 X (M2 X M3))
X M4)

BUT THE NUMBER OF MULTIPLICATIONS TO GET THE ANSWER DIFFER !!

SEARCHING IMPLICIT GRAPHS
• Given the start state the SEARCH Algorithm will slowly create successors based on the State

Transformation Rules and make part of the Graph EXPLICIT. It will slowly EXPAND the Explicit graph
INTELLGENTLY to rapidly search for a solution without exploring the entire Implicit Graph or State
Space

• For OR Graphs, the solution is a PATH from start to Goal. Cost is usually sum of the edge costs on
the path, though it could be something based on the problem

• For And/OR Graphs, the Solution is an AND Subgraph rooted at the Start and each leaf is a Goal
Node. The Cost of OR Node is usually a Min or Max. The Cost at the AND Node depends on the type
of Node (Compositional, Adversarial, Probabilistic). For Adversarial two player games, Max / Min is
used at AND Node (reverse of Or Node)

• The various Search Algorithms include
• BASIC Algorithms: Depth-First (DFS), Breadth-first (BFS), Iterative Deepening (IDS)
• COST-based Algorithms: Depth-First Branch-and-Bound, Best First Search, Best-First Iterative

Deepening
• Widely Used: A* (Or Graphs), AO* (And/Or Graphs), IDA*, Alpha-beta Pruning (Game-Trees) 13

BASIC ALGORITHMS in OR GRAPHS: DFS, BFS, IDS

1. [Initialize] Initially the OPEN List contains the Start Node s. CLOSED List is Empty.
2. [Select] Select the first Node n on the OPEN List. If OPEN is empty, Terminate
3. [Goal Test] If n is Goal, then decide on Termination or Continuation / Cost Updation
4. [Expand]

a) Generate the successors n_1, n_2, …. n_k, of node n, based on the State Transformation Rules
b) Put n in LIST CLOSED
c) For each n_i, not already in OPEN or CLOSED List, put n_i in the FRONT (for DFS) / END (for

BFS) of OPEN List
d) For each n_i already in OPEN or CLOSED decide based on cost of the paths

5. [Continue] Go to Step 2

Algorithm IDS Performs DFS Level by Level Iteratively (DFS (1), DFS (2), ……. and so on)

14

EXAMPLE: SEARCHING A STATE SPACE GRAPH

15

DETERMINE THE EXECUTION TRACES:

• DEPTH-FIRST SEARCH (DFS)

• BREADTH-FIRST SEARCH (BFS)

• ITERATIVE DEEPENDING SEARCH (IDS)

• PROPERTIES
• SOLUTION GUARANTEES
• MEMORY REQUIREMENTS

A

B C

E F G

I J

D

H

START

GOAL GOAL

GOAL

EXAMPLE: SEARCHING A STATE SPACE GRAPH

16

DEPTH-FIRST SEARCH:
1. OPEN ={A}, CLOSED = {}
2. OPEN = {B,C,D}, CLOSED = {A}
3. OPEN = {E,F,G,C,D}, CLOSED = (A,B}
4. OPEN = {I,J,F,G,C,D}, CLOSED = {A,B,E}
5. Goal Node I Found. Can Terminate with

Path from A to I or may Continue for
more Goal nodes if minimum length or
cost is a criteria

DFS MAY NOT TERMINATE IF THERE IS AN
INFINITE DEPTH PATH EVEN IF THERE IS A
GOAL NODE AT FINITE DEPTH

DFS HAS LOW MEMORY REQUIREMENT

B C D

E F G

A START

I J

GOAL GOAL

EXAMPLE: SEARCHING A STATE SPACE GRAPH

17

BREADTH-FIRST SEARCH:
1. OPEN ={A}, CLOSED = {}
2. OPEN = {B,C,D}, CLOSED = {A}
3. OPEN = {C,D,E,F,G}, CLOSED = (A,B}
4. OPEN = {D,E,F,G}, CLOSED = {A,B,C}
5. OPEN = {E,F,G,H}. CLOSED = {A,B,C,D}
6. OPEN = {F,G,H,I,J}, CLOSED = {A,B,C,D,E}
7. OPEN = {G,H,I,J}, CLOSED = {A,B,C,D,E,F}
8. OPEN = {H,I,J}, CLOSED = {A,B,C,D,E,F,G}
9. Goal Node H Found. Can Terminate with

Path from A to H. This is guaranteed to be
the minimum length path.

BFS GUARANTEES SHORTEST LENGTH PATH
TO GOAL BUT HAS HIGHER MEMORY
REQUIREMENT

B C D

E F G

A START

I J

GOAL GOAL

H

GOAL

EXAMPLE: SEARCHING A STATE SPACE GRAPH

18

ITERATIVE DEEPENING SEARCH:
1. PERFORM DFS TILL LENGTH 1. NO

SOLUTION FOUND
2. PERFORM DFS TILL LEVEL 2. GOAL

NODE H REACHED.
3. Can Terminate with Path from A to H.

This is guaranteed to be the minimum
length path.

IDS GUARANTEES SHORTEST LENGTH
PATH TO GOAL

IDS MAY RE-EXPAND NODES MANY TIMES

IDS HAS LOWER MEMORY REQUIREMENT
THAN BFS

A

B C

E F G

I J

D

H

START

GOAL GOAL

GOAL

NEXT: SEARCHING STATE SPACE GRAPHS WITH EDGE COSTS

19

DETERMINE THE EXECUTION TRACES:

• COST ORDERED SEARCH:
• DFBB
• Best First Search,
• Best First IDS
• Use of HEURISTIC Estimates:

Algorithm A* (Or Graphs), AO*
(And/Or Graphs)

• PROPERTIES
• SOLUTION GUARANTEES
• MEMORY REQUIREMENTS

A

B C

E F G

I J

D

H

START

GOAL GOAL

GOAL

Uniform Cost Search

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 20

This algorithm assumes that all operators have a cost:

1. Initialize: Set OPEN = {s},
CLOSED = { } Set C(s) = 0

2. Fail: If OPEN = { }, Terminate & fail

3. Select: Select the minimum cost state, n,
from OPEN and save n in CLOSED

4. Terminate: If n ∈ G, terminate with success

Uniform Cost Search

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 21

5. Expand:
Generate the successors of n using O.
For each successor, m:
If m ∉[OPEN ∪ CLOSED]

Set C(m) = C(n) + C(n,m)
and insert m in OPEN

If m ∈ [OPEN ∪ CLOSED]
Set C(m) = min {C(m), C(n) + C(n,m)}
If C(m) has decreased and

m ∈ CLOSED, move it to OPEN

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 22

Sequence of selection of nodes from OPEN:
1 3 6 2 4

1

2 3

4
5 6 7

8 9

Searching with costs

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 23

 If all operator costs are positive, then the algorithm finds the minimum cost sequence of
transitions to a goal.

 No state comes back to OPEN from CLOSED

 If operators have unit cost, then this is same as BFS

 What happens if negative operator costs are allowed?

SUMMARY

• State Space Search consists of definitions of States, State Transformation Rules, Constraints, Initial
and Goal States, Costs

• The Implicit State Space is created using OR Nodes (Choice) and AND Nodes (Compositional,
Adversarial, Probabilistic / Environment)

• Solutions can be Paths or Sub-Graphs of the Implicit State Space
• The problem is solved by finding a solution path or sub-graph in the state space so that we reach

from start to goal in some optimal way and the solution path must satisfy the constraints in the
states as well as follow valid state transformation rules

• Costs are problem specific and goals include Minimization, Maximization, or can be Multi-Objective
• The complete state space is extremely large and usually cannot be completely searched or stored

in any reasonable time and space
• Basic Algorithms Include DFS, BFS, IDS,
• Cost Ordered Search required more sophisticated Algorithms

24

	Automated Problem Solving by Search
	Slide Number 2
	COMPLEX PROBLEMS AND ALGORITHMS
	AUTOMATED PROBLEM SOLVING BY SEARCH
	TWO JUG PROBLEM
	STATE SPACES
	CONSISTENT LABELLING BY CONSTRAINT SATISFACTION
	STATES, SPACES, SOLUTIONS, SEARCH
	BASICS OF STATE SPACE MODELLING
	OR-Graph: TRAVELLING SALESPERSON PROBLEM
	AND/OR GRAPHS: COMPOSITIONAL / ADVERSARIAL / PROBABILISTIC
	COMPOSITIONAL AND/OR GRAPHS: MATRIX CHAIN MULTIPLICATION
	SEARCHING IMPLICIT GRAPHS
	BASIC ALGORITHMS in OR GRAPHS: DFS, BFS, IDS
	EXAMPLE: SEARCHING A STATE SPACE GRAPH
	EXAMPLE: SEARCHING A STATE SPACE GRAPH
	EXAMPLE: SEARCHING A STATE SPACE GRAPH
	EXAMPLE: SEARCHING A STATE SPACE GRAPH
	NEXT: SEARCHING STATE SPACE GRAPHS WITH EDGE COSTS
	Uniform Cost Search
	Uniform Cost Search
	Slide Number 22
	Searching with costs
	SUMMARY

