

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Mid-Autumn Semester 2019-20

Date of examination: \qquad Session (FN / AN): \qquad Duration: 2 hours
Subject No.: \qquad
Session ($/$ / AN)

Dept: Computer Science \& Engineering.
Full marks: 60 Subject: ARTIFICIAL INTELLIGENCE

Instructions: Answer all questions. Write your answers in the space provided.

Figure 1.

1. Assume we run $\alpha \beta$-pruning, expanding successors from left to right, on a game tree shown in Figure 1 (a). The max nodes are represented by Δ and the min nodes are represented by ∇. For each of the following statements, indicate True / False in the box provided.
[6 marks]
(a) For some choice of pay-off values, no pruning will be achieved (shown in Figure 1 (a))
(b) For some choice of pay-off values, the pruning shown in Figure 1 (b) will be achieved
(c) For some choice of pay-off values, the pruning shown in Figure 1 (c) will be achieved
(d) For some choice of pay-off values, the pruning shown in Figure 1 (d) will be achieved
(e) For some choice of pay-off values, the pruning shown in Figure 1 (e) will be achieved
(f) For some choice of pay-off values, the pruning shown in Figure 1 (f) will be achieved

True
True
False
False
False
False

Page $\mathbf{3}$ of 8

2. Consider the state space graph shown below. A is the start state and G is the goal state. The costs for each edge are shown on the graph. Each edge can be traversed in both directions. Note that the heuristic h_{1} is monotonic but the heuristic h_{2} is not monotonic.
$[12+6+2=20$ marks $]$

Node	h_{1}	h_{2}
A	9.5	10
B	9	12
C	8	10
D	7	8
E	1.5	1
F	4	4.5
G	0	0

(a) For each of the following graph search strategies examine which, if any, of the listed paths it could return. Write Yes / No in the table accordingly. Note that for some search strategies the specific path returned might depend on tie-breaking behaviour. In any such cases, make sure to write Yes in all the boxes corresponding to paths that could be returned under some tie-breaking scheme.

Search Algorithm	A-B-D-G	A-C-D-G	A-B-C-D-F-G
Depth First Search	YES	YES	YES
Breadth First Search	YES	YES	NO
Uniform Cost Search	NO	NO	YES
A * search with heuristic h_{1}	NO	NO	YES
A * search with heuristic h_{2}	NO	NO	YES

(b) Consider the new heuristic function h_{3} shown below. All the values are known except $h_{3}(\mathrm{~B})$.

Node	A	B	C	D	E	F	G
h_{3}	10	$?$	9	7	1.5	4.5	0

Fill in the blanks to answer the following questions:
(i) What values of $h_{3}(\mathrm{~B})$ make h_{3} admissible?
(ii) What values of $h_{3}(\mathrm{~B})$ make h_{3} monotonic?
(iii) What values of $h_{3}(\mathrm{~B})$ will cause A^{*} graph search to expand node A , then node C , then node B , then node D in order?

Ans: $0 \leq h_{3}(\mathrm{~B}) \leq 12$

Ans: $9 \leq h_{3}(\mathrm{~B}) \leq 10$

Ans: $12 \leq h_{3}(\mathrm{~B}) \leq 13$
(c) When should A^{*} test and declare a node to be a goal node? For the wrong option below, indicate the consequences had A* taken that option. Assume that the heuristic is admissible and monotonic.
(i) At the time it selects a node from OPEN
(ii) At the time it generates the node by expanding its parent

Choice: \qquad Consequence of the other option: It may terminate with a non-optimal solution

Page 4 of 8

3. Lord Voldemort wishes to acquire the elder wand, the resurrection stone, and the invisibility cloak. There are actions by which he wishes to get these, but the actions also have other side effects. He has written down the actions as follows:
[$4+2+4=10$ marks]
Op (ACTION: GetWand, PRECOND: At(x), EFFECT: Have(wand) $\wedge \neg$ Happy)
Op(ACTION: GetStone, PRECOND: At(x), EFFECT: Have(stone) ^ Safe)
Op(ACTION: StealCloak, PRECOND: At(x), EFFECT: Have(cloak) ^ Invisible ^ Happy)
Op(ACTION: BuyCloak, PRECOND: At(x), EFFECT: Have(cloak) ^ \neg Invisible $\wedge \neg$ Safe)
Op(ACTION: Start, EFFECT: At(Hogwarts))
Op(ACTION: Finish, PRECOND: Have(wand) ^ Have(stone) ^ Have(cloak))
(a) Voldemort has decided to use the GraphPlan algorithm to choose his plan. Draw the planning graph after one iteration clearly indicating all the mutex links.

(b) Is any further iteration necessary? Explain.

All though the goal predicates are present after this level without mutexes, a plan does not exist at this level. Therefore more iterations are needed to find a plan if it exists.

Page 5 of 8

(c) Will GraphPlan terminate with a plan in this case? If so, draw the plan. If not, explain why.

GraphPlan will terminate after two iterations with the following plan.

4. Complete the following definitions for predicate logic:
(a) A formula is said to be valid if \qquad
\qquad
(b) A formula is said to be satisfiable if \qquad
\qquad
(c) In first order logic formulas \qquad and \qquad cannot be quantified by for-all and there-exist operators.
(d) A propositional logic formula of n Boolean variables can have \qquad number of interpretations.
(e) A predicate logic formula of n variables, k predicate symbols (including propositions), and w function symbols (including constants) can have \qquad number of interpretations.
(c) Will GraphPlan terminate with a plan in this case? If so, draw the plan. If not, explain why.

GraphPlan will terminate after two iterations with the following plan.

4. Complete the following definitions for predicate logic:
[6 marks]
(a) A formula is said to be valid if it is true under all interpret actions
\qquad
(b) A formula is said to be satisfiable if \qquad
it is tue for at heat one interpretation
\qquad
(c) In first order logic formulas \qquad and

functions

 cannot be quantified by for-all and there-exist operators.(d) A propositional logic formula of n Boolean variables can have \qquad number of interpretations.
(e) A predicate logic formula of n variables, k predicate symbols (including propositions), and w function symbols (including constants) can have \qquad infinite number of interpretations.
5. Consider the first order predicate Likes (x, y) meaning x likes y. Write the following sentences in first order calculus without using the \forall (for-all) operator, that is, by only using the \exists (exists) operator and other Boolean connectors, namely $\wedge($ and $), \vee($ or $), \neg$ (negation), and \Rightarrow (implication). Make sure you put brackets properly to clearly specify the scope rules:
(a) Someone likes everyone: \qquad
$[2+2+2+2=8$ marks $]$

$$
\begin{aligned}
& \exists x(7 \exists y(7 \text { Likes }(x, y))) \\
& (7 \exists x(7 \exists y(\text { Likes }(x, y)))
\end{aligned}
$$

(b) Everyone likes someone:
(c) If everyone likes everyone then someone likes someone:

$$
(7 \exists x \exists y(7 \text { Likes }(x, y))) \rightarrow(\exists \omega \exists v(\text { Likes }(\omega, v)))
$$

(d) If someone does not like anyone then everyone does not like everyone: Any one of the tho is ok:
(1) $(\exists x \neg \exists y$ Likes $(x, y)) \rightarrow(\exists x \exists y \neg$ likes $(x, y))$
(2) $\left(\frac{3}{3} \neg \exists y\right.$ Likes $\left.(x, y)\right) \rightarrow(7 \exists x \neg \exists y$ likes $(x, y))$
6. Consider the following deduction problem to be coded and solved in propositional (Boolean) logic. The following propositions are to be used:

PROPOSITION	MEANING
Study	True, if I study. False, otherwise
Do-Well	True, if I do well in exams. False, otherwise
Relax	True, if I relax. False, otherwise
Enjoy	True, if I enjoy. False, otherwise

(a) Write the following sentences in propositional logic without using the implication (\Rightarrow) operator, that is, using only and (\wedge), or (\vee), and not (\neg) operators. Use the boxes provided.

(b) Present a complete Truth Table Method to show that the sequence of sentences in (a) is valid.

