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Planning Graph Op( ACTION Eat(Cake),
PRECOND Have(Cake),

EFFECT Eaten(Cake) A —Have(Cake))
Start:  Have(Cake)

Finish: Have(Cake) A Eaten(Cake) o ﬁggg\lm? akﬁga:&g;ke)
—fav ’

EFFECT: Have(Cake))

S A, S,

Have(Cake) Have(Cake)
\ — Have(Cake)
Eat( Cake ) <

Eaten(Cake)

— Eaten(Cake) — Eaten(Cake)

\ Persistence action

(carries over a predicate to the next world)
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Mutex Links in a Planning Graph

So A S,

Have(Cake) Have(Cake)
\ < < — Have(Cake) >
ol Cake ) Eaten(Cake)

C

— Eaten(Cake) — Eaten(Cake)
Mutual exclusion Mutual exclusion
among actions among derived

predicates
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Planning Graphs

1 Consists of a sequence of levels that correspond to time steps in the plan

1 Each level contains a set of actions and a set of literals that could be true at that time
step depending on the actions taken in previous time steps

O For every +ve and —ve literal C, we add a persistence action with precondition C and
effect C
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Planning Graph

S, Ag

Have(Cake)

C

Eat( Cake )

C

<

— Eaten(Cake)
Start:  Have(Cake)
Finish: Have(Cake) A Eaten(Cake)
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Op( ACTION Eat(Cake),
PRECOND Have(Cake),
EFFECT Eaten(Cake) A —Have(Cake))
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Op( ACTION Bake(Cake),
PRECOND —Have(Cake),
EFFECT: Have(Cake))

Have(Cake)
— Have(Cake) >\><

A S,
Bake( Cake )
7 2>\) \ Have(Cake)
— Have(Cake) >
N oo <
Eat( Cake )
Eaten(Cake)

Eaten(Cake) > /
— Eaten(Cake)

%

In the world S, the goal
predicates exist without
mutexes, hence we need not
expand the graph any further

— Eaten(Cake) >




Mutex Actions

] Mutex relation exists between two actions if:

= Inconsistent effects — one action negates an effect of the other
Eat( Cake ) causes — Have(Cake) and Bake( Cake ) causes Have(Cake)

= Interference — one of the effects of one action is the negation of a precondition of the other
Eat( Cake ) causes — Have(Cake) and the persistence of Have( Cake ) needs Have(Cake)

= Competing needs — one of the preconditions of one action is mutually exclusive with a
precondition of the other

Bake( Cake ) needs — Have(Cake) and Eat( Cake ) needs Have(Cake)

A
S, A, S, 1 S
/ Bake( Cake ) \ 2
Have(Cake) - Have(Cake) AN > Have(Cake)
C — Have(Cake) >\X\ < ) . Have(Cake) )
Eat( Cake ) <
Eaten(Cake)

Eat( Cake ) <
Eaten(Cake)

— Eaten(Cake) — Eaten(Cake)>/ Ij — Eaten(Cake) >




Mutex Literals

] Mutex relation exists between two literals if:

= One is the negation of the other, or

= Each possible pair of actions that could achieve the two literals is mutually exclusive
(inconsistent support)

A
S, Ao S, 1 S,
/ Bake( Cake ) \
Have(Cake) - Have(Cake) \>< 7 2>\) *  Have(Cake)
C — Have(Cake) ) = _, Have(Cake) )
Eat( Cake) < X Eat( Cake ) <
< Eaten(Cake) Eaten(Cake)

— Eaten(Cake) — Eaten(Cake)>/ |j — Eaten(Cake) >
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Function GraphPLAN( problem )

Il returns solution or failure
graph < Initial-Planning-Graph( problem )
goals < Goals[ problem ]
do
if goals are all non-mutex in last level of graph then do
solution € Extract-Solution( graph )
if solution = failure then return solution
else if No-Solution-Possible (graph )
then return failure
graph € Expand-Graph( graph, problem )
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Finding the plan

 Once a world is found having all goal predicates without mutexes, the plan can be
extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes

 Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

* The plan is shown in blue below

A
S A, S, 1 S,

/ Bake( Cake ) \
Have(Cake) - Have(Cake) AN > Have(Cake)
C — Have(Cake) >\X\ < 22 )  Have(Cake) )
Eat( Cake < Eat( Cake )<

< Eaten(Cake)

Eaten(Cake) j?
— Eaten(Cake) — Eaten(Cake)>/ — Eaten(Cake) >
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Termination of GraphPLAN when no plan exists

[ Literals increase monotonically
(] Actions increase monotonically

(] Mutexes decrease monotonically

This guarantees the existence of a fixpoint

S, Ay

Have(Cake)

C
Eat( Cake ) <

C

— Eaten(Cake)
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A,
S,

Bake( Cake )
\ Have(Cake)

Have(Cake)
— Have(Cake) >\><

AN
(F22)

AN

Eaten(Cake) /
— Eaten( Cake)>

Ij — Eaten(Cake)

< — Have(Cake) >
Eat( Cake ) <
Eaten(Cake) >
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Exercise

Start: At( Flat, Axle ) A At( Spare, Trunk ) Op( ACTION PutOn( Spare, Axle ),

Goal: At( Spare, Axle ) PRECOND At( Spare, Ground )
A — At( Flat, Axle ),

EFFECT At( Spare, Axle )

Op( ACTION Remove( Spare, Trunk ), A — At( Spare, Ground ))

PRECOND At( Spare, Trunk ),
EFFECT At( Spare, Ground )

A — At( Spare, Trunk )) Op( ACTION LeaveOvernight,

PRECOND

EFFECT — At( Spare, Ground )
A — At( Spare, Axle )
A — At( Spare, Trunk )
A — At( Flat, Ground )
A — At( Flat, Axle ))

Op( ACTION Remove( Flat, Axle ),
PRECOND At( Flat, Axle ),
EFFECT At( Flat, Ground )

A — At( Flat, Axle ))
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Symbolic Representation of State Spaces

« States are represented by state vectors: ( x,, X, ..., X, )

+ Sets of states can be represented by formulae over the state variables

« Consider the following set of states:
(011)
(001)
(010)
(000)
(111)
(100)
 The set of states can be represented as a formula: —X; v (X, AXy A X3 ) V(X4 A= X3 A= X5)
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Symbolic Search

Variables: x, y: boolean

Set of states:
Q ={(F,F), (F,T), (T,F), (T,T)}

Initial condition:
QO =—XAY

Transition relation (negates one variable at a time):
R=[(X'==X)A(y' =y) IV =X) Ay ==y)] (= means <)
X’ is the next value of x, and y’ is the next value of y




The Simple Example Contd.

Suppose p = x Ay defines the goal states.
Our options:
FORWARD SEARCH: Start from the initial state and search for paths to the bad states.

BACKWARD SEARCH: Start from the bad states and work backwards to see whether we reach an initial
state.

CORE STEP IN BACKWARD SEARCH: Find the states that have a successor satisfying p
Pre-Image(p)= 3V’ RA (X' AY)

= 3V [(X =—xAY =y) V(X' =XAY =y )IA (X AY)
= V' [(X ==X AY =Y)A X AY VK =XAY ==y) A (X AY)]
=3V’ [ - XAYAX AY ]VIXA=YAX AY']

=[-XAY]V[XA-Y]

This formula represents the set of states {(F,T), (T,F)}, which is the set of states having a successor
satisfying p




The Simple Example Contd.

Suppose p= x Ay defines the set of bad states.

Pre-Image(p) =[x A Y] v [X A —Y]

FIXPOINT COMPUTATION for BACWARD REACHABILITY
Z=p

Z,=Z,v Pre-lmage(Z,) e

Z,=Z, v Pre-lmage(Z,)
... and so on, until we have Z, =Z,_, for some k. We call it Z*
Then Z, is a Boolean formula that represents the set of states that can reach the bad states.

The goal state is reachable if Q, A Z, is satisfiable.




Planning with Propositional Logic

« The planning problem is translated into a CNF satisfiability problem

* The goal is asserted to hold at a time step T, and clauses are included for each time step up
toT.

* [f the clauses are satisfiable, then a plan is extracted by examining the actions that are true.
* Otherwise, we increment T and repeat
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Example

Aeroplanes P, and P, are at SFO and JFK respectively. We want P, at JFK and P, at SFO

Initial:  At(P,, SFO )? A At(P,, JFK )0
Goal: At(P,, JFK) A At(P,, SFO )’

Action: At(P., JFK)! < [At(P,, JFK )0 A — ( Fly( P,, JFK, SFO)° A At( P,, JFK))]
v [ At(P,, SFO )° A Fly( P,, SFO, JFK)]

Check the satisfiability of:

initial state A successor state axioms A goal
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Additional Axioms

Precondition Axioms:
Fly( P,, JFK, SFO)’ = At( P,, JFK )"

Action Exclusion Axioms:
— ( Fly( P,, JFK, SFO)? A Fly( P,, JFK, LAX)?)

State Constraints:

Vp, Xyt (xzy)=>-=(At(p,x) AAt(p,y))
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SATPlan

Function SATPlan( problem, T
Il returns solution or failure

max )

forT=0to T, do
cnf, mapping € Trans-to-SAT(problem, T)
assignment €< SAT-Solver( cnf)
if assignment is not NULL then
return Extract-Solution(assignment, mapping)

return failure

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



