GraphPLAN and SATPlan

COURSE: CS40002

Pallab Dasgupta Professor, Dept. of Computer Sc & Engg

Planning Graph

Start:Have(Cake)Finish:Have(Cake) ∧ Eaten(Cake)

Op(ACTION: Eat(Cake), PRECOND: Have(Cake), EFFECT: Eaten(Cake) ∧ ¬Have(Cake))

Op(ACTION: Bake(Cake), PRECOND: ¬Have(Cake), EFFECT: Have(Cake))

Mutex Links in a Planning Graph

Planning Graphs

Consists of a sequence of levels that correspond to time steps in the plan

- □ Each level contains a set of actions and a set of literals that *could* be true at that time step depending on the actions taken in previous time steps
- □ For every +ve and –ve literal C, we add a *persistence action* with precondition C and effect C

Start: Have(Cake) Finish: Have(Cake) ∧ Eaten(Cake) In the world S_2 the goal predicates exist without mutexes, hence we need not expand the graph any further

Mutex Actions

□ Mutex relation exists between two actions if:

Inconsistent effects – one action negates an effect of the other

Eat(Cake) causes - Have(Cake) and Bake(Cake) causes Have(Cake)

- Interference one of the effects of one action is the negation of a precondition of the other Eat(Cake) causes – Have(Cake) and the persistence of Have(Cake) needs Have(Cake)
- Competing needs one of the preconditions of one action is mutually exclusive with a precondition of the other

Bake(Cake) needs - Have(Cake) and Eat(Cake) needs Have(Cake)

Mutex Literals

□ Mutex relation exists between two literals if:

- One is the negation of the other, or
- Each possible pair of actions that could achieve the two literals is mutually exclusive (inconsistent support)

Function GraphPLAN(problem)

```
Il returns solution or failure
```

```
goals ← Goals[ problem ]
```

do

if goals are all non-mutex in last level of graph then do
 solution ← Extract-Solution(graph)
 if solution ≠ failure then return solution
 else if No-Solution-Possible (graph)
 then return failure
graph ← Expand-Graph(graph, problem)

Finding the plan

- Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes
- Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.
- The plan is shown in blue below

Termination of GraphPLAN when no plan exists

- □ Literals increase monotonically
- □ Actions increase monotonically
- □ Mutexes decrease monotonically
- This guarantees the existence of a fixpoint

Exercise

```
Start: At( Flat, Axle ) ∧ At( Spare, Trunk )
Goal: At( Spare, Axle )
```

```
Op( ACTION: Remove( Spare, Trunk ),

PRECOND: At( Spare, Trunk ),

EFFECT: At( Spare, Ground )

^ At( Spare, Trunk ))
```

```
Op( ACTION: Remove( Flat, Axle ),

PRECOND: At( Flat, Axle ),

EFFECT: At( Flat, Ground )

^ At( Flat, Axle ))
```

```
Op( ACTION: PutOn( Spare, Axle ),

PRECOND: At( Spare, Ground )

∧¬ At( Flat, Axle ),

EFFECT: At( Spare, Axle )

∧¬ At( Spare, Ground ))
```

```
Op( ACTION: LeaveOvernight,

PRECOND:

EFFECT: ¬ At( Spare, Ground )

^ ~ At( Spare, Axle )

^ ~ At( Spare, Trunk )

^ ~ At( Flat, Ground )

^ ~ At( Flat, Axle ))
```

Symbolic Representation of State Spaces

- States are represented by state vectors: $\langle x_1, x_2, ..., x_k \rangle$
- Sets of states can be represented by formulae over the state variables
 - Consider the following set of states:

< 011>
< 001>
< 010>
< 000>
< 111>

- (100)
- The set of states can be represented as a formula: $\neg x_1 \lor (x_1 \land x_2 \land x_3) \lor (x_1 \land \neg x_2 \land \neg x_3)$

Symbolic Search

Variables: x, y: boolean

Set of states: Q = {(F,F), (F,T), (T,F), (T,T)}

Initial condition:

 $\mathbf{Q}_0 \equiv \neg \mathbf{X} \land \neg \mathbf{y}$

Transition relation (negates one variable at a time): $R \equiv [(x' = \neg x) \land (y' = y)] \lor [(x' = x) \land (y' = \neg y)] \qquad (= \text{means} \leftrightarrow)$ x' is the next value of x, and y' is the next value of y

The Simple Example Contd.

Suppose $p \equiv x \land y$ defines the goal states.

Our options:

FORWARD SEARCH: Start from the initial state and search for paths to the bad states.

BACKWARD SEARCH: Start from the bad states and work backwards to see whether we reach an initial state.

CORE STEP IN BACKWARD SEARCH: *Find the states that have a successor satisfying p*

Pre-Image(p) =
$$\exists V' R \land (x' \land y')$$

= $\exists V' [(x' = \neg x \land y' = y) \lor (x' = x \land y' = \neg y)] \land (x' \land y')$
= $\exists V' [(x' = \neg x \land y' = y) \land (x' \land y')] \lor [(x' = x \land y' = \neg y) \land (x' \land y')]$
= $\exists V' [\neg x \land y \land x' \land y'] \lor [x \land \neg y \land x' \land y']$
= $[\neg x \land y] \lor [x \land \neg y]$

This formula represents the set of states {(F,T), (T,F)}, which is the set of states having a successor satisfying p

The Simple Example Contd.

Suppose $p \equiv x \land y$ defines the set of bad states. Pre-Image(p) $\equiv [\neg x \land y] \lor [x \land \neg y]$

FIXPOINT COMPUTATION for BACWARD REACHABILITY $Z_0 = p$ $Z_1 = Z_0 \lor Pre-Image(Z_0)$

 $Z_2 = Z_1 \lor Pre-Image(Z_1)$

... and so on, until we have $Z_k = Z_{k-1}$ for some *k*. We call it Z^{*}

Then Z_k is a Boolean formula that represents the set of states that can reach the bad states.

The goal state is reachable if $Q_0 \wedge Z_k$ is satisfiable.

Planning with Propositional Logic

- The planning problem is translated into a CNF satisfiability problem
- The goal is asserted to hold at a time step T, and clauses are included for each time step up to T.
- If the clauses are satisfiable, then a plan is extracted by examining the actions that are true.
- Otherwise, we increment T and repeat

Example

Aeroplanes P₁ and P₂ are at SFO and JFK respectively. We want P₁ at JFK and P₂ at SFO

- Initial: At(P_1 , SFO)⁰ \wedge At(P_2 , JFK)⁰
- Goal: At(P_1 , JFK) \wedge At(P_2 , SFO)⁰

Action: At(P₁, JFK)¹ \Leftrightarrow [At(P₁, JFK)⁰ $\land \neg$ (Fly(P₁, JFK, SFO)⁰ \land At(P₁, JFK)⁰)] \lor [At(P₁, SFO)⁰ \land Fly(P₁, SFO, JFK)⁰]

Check the satisfiability of:

initial state ∧ successor state axioms ∧ goal

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Additional Axioms

Precondition Axioms:

Fly(P_1 , JFK, SFO)⁰ \Rightarrow At(P_1 , JFK)⁰

Action Exclusion Axioms:

 \neg (Fly(P₂, JFK, SFO)⁰ \land Fly(P₂, JFK, LAX)⁰)

State Constraints:

 $\forall p, x, y, t (x \neq y) \Longrightarrow \neg (At(p, x)^t \land At(p, y)^t)$

SATPlan

Function SATPlan(problem, T_{max}) // returns solution or failure

for T = 0 to T_{max} do *cnf, mapping* ← Trans-to-SAT(*problem*, T) *assignment* ← SAT-Solver(*cnf*) if *assignment* is not NULL then return Extract-Solution(*assignment, mapping*) return *failure*