GraphPLAN and SATPIlan

COURSE: CS40002

Professor,

Pallab Dasgupta
Dept. of Computer Sc & Engg

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Planning Graph Op(ACTION Eat(Cake),
PRECOND Have(Cake),

EFFECT Eaten(Cake) A —Have(Cake))
Start: Have(Cake)

Finish: Have(Cake) A Eaten(Cake) o ﬁggg\lm? akﬁga:&g;ke)
—fav ’

EFFECT: Have(Cake))

S A, S,

Have(Cake) Have(Cake)
\ — Have(Cake)
Eat(Cake) <

Eaten(Cake)

— Eaten(Cake) — Eaten(Cake)

\ Persistence action

(carries over a predicate to the next world)
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR N

Mutex Links in a Planning Graph

So A S,

Have(Cake) Have(Cake)
\ < < — Have(Cake) >
ol Cake) Eaten(Cake)

C

— Eaten(Cake) — Eaten(Cake)
Mutual exclusion Mutual exclusion
among actions among derived

predicates

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR ™

Planning Graphs

1 Consists of a sequence of levels that correspond to time steps in the plan

1 Each level contains a set of actions and a set of literals that could be true at that time
step depending on the actions taken in previous time steps

O For every +ve and —ve literal C, we add a persistence action with precondition C and
effect C

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR <

Planning Graph

S, Ag

Have(Cake)

C

Eat(Cake)

C

<

— Eaten(Cake)
Start: Have(Cake)
Finish: Have(Cake) A Eaten(Cake)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Op(ACTION Eat(Cake),
PRECOND Have(Cake),
EFFECT Eaten(Cake) A —Have(Cake))

5

Op(ACTION Bake(Cake),
PRECOND —Have(Cake),
EFFECT: Have(Cake))

Have(Cake)
— Have(Cake) >\><

A S,
Bake(Cake)
7 2>\) \ Have(Cake)
— Have(Cake) >
N oo <
Eat(Cake)
Eaten(Cake)

Eaten(Cake) > /
— Eaten(Cake)

%

In the world S, the goal
predicates exist without
mutexes, hence we need not
expand the graph any further

— Eaten(Cake) >

Mutex Actions

] Mutex relation exists between two actions if:

= Inconsistent effects — one action negates an effect of the other
Eat(Cake) causes — Have(Cake) and Bake(Cake) causes Have(Cake)

= Interference — one of the effects of one action is the negation of a precondition of the other
Eat(Cake) causes — Have(Cake) and the persistence of Have(Cake) needs Have(Cake)

= Competing needs — one of the preconditions of one action is mutually exclusive with a
precondition of the other

Bake(Cake) needs — Have(Cake) and Eat(Cake) needs Have(Cake)

A
S, A, S, 1 S
/ Bake(Cake) \ 2
Have(Cake) - Have(Cake) AN > Have(Cake)
C — Have(Cake) >\X\ <) . Have(Cake))
Eat(Cake) <
Eaten(Cake)

Eat(Cake) <
Eaten(Cake)

— Eaten(Cake) — Eaten(Cake)>/ Ij — Eaten(Cake) >

Mutex Literals

] Mutex relation exists between two literals if:

= One is the negation of the other, or

= Each possible pair of actions that could achieve the two literals is mutually exclusive
(inconsistent support)

A
S, Ao S, 1 S,
/ Bake(Cake) \
Have(Cake) - Have(Cake) \>< 7 2>\) * Have(Cake)
C — Have(Cake)) = _, Have(Cake))
Eat(Cake) < X Eat(Cake) <
< Eaten(Cake) Eaten(Cake)

— Eaten(Cake) — Eaten(Cake)>/ |j — Eaten(Cake) >

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR M~

Function GraphPLAN(problem)

Il returns solution or failure
graph < Initial-Planning-Graph(problem)
goals < Goals[problem]
do
if goals are all non-mutex in last level of graph then do
solution € Extract-Solution(graph)
if solution = failure then return solution
else if No-Solution-Possible (graph)
then return failure
graph € Expand-Graph(graph, problem)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR S

Finding the plan

 Once a world is found having all goal predicates without mutexes, the plan can be
extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes

 Creating the planning graph can be done in polynomial time, but planning is known to be a
PSPACE-complete problem. The hardness is in the CSP.

* The plan is shown in blue below

A
S A, S, 1 S,

/ Bake(Cake) \
Have(Cake) - Have(Cake) AN > Have(Cake)
C — Have(Cake) >\X\ < 22) Have(Cake))
Eat(Cake < Eat(Cake)<

< Eaten(Cake)

Eaten(Cake) j?
— Eaten(Cake) — Eaten(Cake)>/ — Eaten(Cake) >

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR o

Termination of GraphPLAN when no plan exists

[Literals increase monotonically
(] Actions increase monotonically

(] Mutexes decrease monotonically

This guarantees the existence of a fixpoint

S, Ay

Have(Cake)

C
Eat(Cake) <

C

— Eaten(Cake)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

S

A,
S,

Bake(Cake)
\ Have(Cake)

Have(Cake)
— Have(Cake) >\><

AN
(F22)

AN

Eaten(Cake) /
— Eaten(Cake)>

Ij — Eaten(Cake)

< — Have(Cake) >
Eat(Cake) <
Eaten(Cake) >

o
—

Exercise

Start: At(Flat, Axle) A At(Spare, Trunk) Op(ACTION PutOn(Spare, Axle),

Goal: At(Spare, Axle) PRECOND At(Spare, Ground)
A — At(Flat, Axle),

EFFECT At(Spare, Axle)

Op(ACTION Remove(Spare, Trunk), A — At(Spare, Ground))

PRECOND At(Spare, Trunk),
EFFECT At(Spare, Ground)

A — At(Spare, Trunk)) Op(ACTION LeaveOvernight,

PRECOND

EFFECT — At(Spare, Ground)
A — At(Spare, Axle)
A — At(Spare, Trunk)
A — At(Flat, Ground)
A — At(Flat, Axle))

Op(ACTION Remove(Flat, Axle),
PRECOND At(Flat, Axle),
EFFECT At(Flat, Ground)

A — At(Flat, Axle))

11

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Symbolic Representation of State Spaces

« States are represented by state vectors: (x,, X, ..., X,)

+ Sets of states can be represented by formulae over the state variables

« Consider the following set of states:
(011)
(001)
(010)
(000)
(111)
(100)
 The set of states can be represented as a formula: —X; v (X, AXy A X3) V(X4 A= X3 A= X5)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Symbolic Search

Variables: x, y: boolean

Set of states:
Q ={(F,F), (F,T), (T,F), (T,T)}

Initial condition:
QO =—XAY

Transition relation (negates one variable at a time):
R=[(X'==X)A(y' =y) IV =X) Ay ==y)] (= means <)
X’ is the next value of x, and y’ is the next value of y

The Simple Example Contd.

Suppose p = x Ay defines the goal states.
Our options:
FORWARD SEARCH: Start from the initial state and search for paths to the bad states.

BACKWARD SEARCH: Start from the bad states and work backwards to see whether we reach an initial
state.

CORE STEP IN BACKWARD SEARCH: Find the states that have a successor satisfying p
Pre-Image(p)= 3V’ RA (X' AY)

= 3V [(X =—xAY =y) V(X' =XAY =y)IA (X AY)
= V' [(X ==X AY =Y)A X AY VK =XAY ==y) A (X AY)]
=3V’ [- XAYAX AY]VIXA=YAX AY']

=[-XAY]V[XA-Y]

This formula represents the set of states {(F,T), (T,F)}, which is the set of states having a successor
satisfying p

The Simple Example Contd.

Suppose p= x Ay defines the set of bad states.

Pre-Image(p) =[x A Y] v [X A —Y]

FIXPOINT COMPUTATION for BACWARD REACHABILITY
Z=p

Z,=Z,v Pre-lmage(Z,) e

Z,=Z, v Pre-lmage(Z,)
... and so on, until we have Z, =Z,_, for some k. We call it Z*
Then Z, is a Boolean formula that represents the set of states that can reach the bad states.

The goal state is reachable if Q, A Z, is satisfiable.

Planning with Propositional Logic

« The planning problem is translated into a CNF satisfiability problem

* The goal is asserted to hold at a time step T, and clauses are included for each time step up
toT.

* [f the clauses are satisfiable, then a plan is extracted by examining the actions that are true.
* Otherwise, we increment T and repeat

16

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example

Aeroplanes P, and P, are at SFO and JFK respectively. We want P, at JFK and P, at SFO

Initial: At(P,, SFO)? A At(P,, JFK)0
Goal: At(P,, JFK) A At(P,, SFO)’

Action: At(P., JFK)! < [At(P,, JFK)0 A — (Fly(P,, JFK, SFO)° A At(P,, JFK))]
v [At(P,, SFO)° A Fly(P,, SFO, JFK)]

Check the satisfiability of:

initial state A successor state axioms A goal

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Additional Axioms

Precondition Axioms:
Fly(P,, JFK, SFO)’ = At(P,, JFK)"

Action Exclusion Axioms:
— (Fly(P,, JFK, SFO)? A Fly(P,, JFK, LAX)?)

State Constraints:

Vp, Xyt (xzy)=>-=(At(p,x) AAt(p,y))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

SATPlan

Function SATPlan(problem, T
Il returns solution or failure

max)

forT=0to T, do
cnf, mapping € Trans-to-SAT(problem, T)
assignment €< SAT-Solver(cnf)
if assignment is not NULL then
return Extract-Solution(assignment, mapping)

return failure

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

