
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

GraphPLAN and SATPlan
COURSE: CS40002

1

Pallab Dasgupta

Professor,

Dept. of Computer Sc & Engg

Planning Graph

Start: Have(Cake)

Finish: Have(Cake)  Eaten(Cake)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

Op(ACTION: Eat(Cake),

PRECOND: Have(Cake),

EFFECT: Eaten(Cake)  Have(Cake))

Op(ACTION: Bake(Cake),

PRECOND: Have(Cake),

EFFECT: Have(Cake))

Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Persistence action

(carries over a predicate to the next world)

Have(Cake)

Eat(Cake)

 Have(Cake)

Eaten(Cake)

S0 A0 S1

Mutex Links in a Planning Graph

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Have(Cake)

Eat(Cake)

 Have(Cake)

Eaten(Cake)

S0 A0 S1

Mutual exclusion

among actions

Mutual exclusion

among derived

predicates

Planning Graphs

 Consists of a sequence of levels that correspond to time steps in the plan

 Each level contains a set of actions and a set of literals that could be true at that time

step depending on the actions taken in previous time steps

 For every +ve and –ve literal C, we add a persistence action with precondition C and

effect C

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

Planning Graph

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Have(Cake)

Eat(Cake)

 Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat(Cake)

Bake(Cake)

Have(Cake)

 Eaten(Cake)

 Have(Cake)

Eaten(Cake)

A1 S2

Start: Have(Cake)

Finish: Have(Cake)  Eaten(Cake)

Op(ACTION: Eat(Cake),

PRECOND: Have(Cake),

EFFECT: Eaten(Cake)  Have(Cake))

Op(ACTION: Bake(Cake),

PRECOND: Have(Cake),

EFFECT: Have(Cake))

In the world S2 the goal

predicates exist without

mutexes, hence we need not

expand the graph any further

Mutex Actions

 Mutex relation exists between two actions if:

 Inconsistent effects – one action negates an effect of the other

Eat(Cake) causes  Have(Cake) and Bake(Cake) causes Have(Cake)

 Interference – one of the effects of one action is the negation of a precondition of the other

Eat(Cake) causes  Have(Cake) and the persistence of Have(Cake) needs Have(Cake)

 Competing needs – one of the preconditions of one action is mutually exclusive with a

precondition of the other

Bake(Cake) needs  Have(Cake) and Eat(Cake) needs Have(Cake)

Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Have(Cake)

Eat(Cake)

 Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat(Cake)

Bake(Cake)

Have(Cake)

 Eaten(Cake)

 Have(Cake)

Eaten(Cake)

A1
S2

Mutex Literals

 Mutex relation exists between two literals if:

 One is the negation of the other, or

 Each possible pair of actions that could achieve the two literals is mutually exclusive

(inconsistent support)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 7

Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Have(Cake)

Eat(Cake)

 Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat(Cake)

Bake(Cake)

Have(Cake)

 Eaten(Cake)

 Have(Cake)

Eaten(Cake)

A1
S2

Function GraphPLAN(problem)

// returns solution or failure

graph  Initial-Planning-Graph(problem)

goals  Goals[problem]

do

if goals are all non-mutex in last level of graph then do

solution  Extract-Solution(graph)

if solution  failure then return solution

else if No-Solution-Possible (graph)

then return failure

graph  Expand-Graph(graph, problem)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 8

Finding the plan

• Once a world is found having all goal predicates without mutexes, the plan can be

extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes

• Creating the planning graph can be done in polynomial time, but planning is known to be a

PSPACE-complete problem. The hardness is in the CSP.

• The plan is shown in blue below

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Have(Cake)

Eat(Cake)

 Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat(Cake)

Bake(Cake)

Have(Cake)

 Eaten(Cake)

 Have(Cake)

Eaten(Cake)

A1
S2

Termination of GraphPLAN when no plan exists

 Literals increase monotonically

 Actions increase monotonically

 Mutexes decrease monotonically

This guarantees the existence of a fixpoint

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
0

Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Have(Cake)

Eat(Cake)

 Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat(Cake)

Bake(Cake)

Have(Cake)

 Eaten(Cake)

 Have(Cake)

Eaten(Cake)

A1
S2

Exercise

Start: At(Flat, Axle)  At(Spare, Trunk)

Goal: At(Spare, Axle)

Op(ACTION: Remove(Spare, Trunk),

PRECOND: At(Spare, Trunk),

EFFECT: At(Spare, Ground)

  At(Spare, Trunk))

Op(ACTION: Remove(Flat, Axle),

PRECOND: At(Flat, Axle),

EFFECT: At(Flat, Ground)

  At(Flat, Axle))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
1

Op(ACTION: PutOn(Spare, Axle),

PRECOND: At(Spare, Ground)

  At(Flat, Axle),

EFFECT: At(Spare, Axle)

  At(Spare, Ground))

Op(ACTION: LeaveOvernight,

PRECOND:

EFFECT:  At(Spare, Ground)

  At(Spare, Axle)

  At(Spare, Trunk)

  At(Flat, Ground)

  At(Flat, Axle))

Symbolic Representation of State Spaces

• States are represented by state vectors:  x1, x2, …, xk 

• Sets of states can be represented by formulae over the state variables

• Consider the following set of states:

 0 1 1 

 0 0 1 

 0 1 0 

 0 0 0 

 1 1 1 

 1 0 0 

• The set of states can be represented as a formula:  x1  (x1  x2  x3)  (x1   x2   x3)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
2

Symbolic Search

Variables: x, y: boolean

Set of states:

Q = {(F,F), (F,T), (T,F), (T,T)}

Initial condition:

Q0   x   y

Transition relation (negates one variable at a time):

R  [(x’= x)  (y’= y)]  [(x’= x)  (y’= y)] (= means )

x’ is the next value of x, and y’ is the next value of y

F,T

F,F

T,T

T,F

5

The Simple Example Contd.

Suppose p  x  y defines the goal states.

Our options:

FORWARD SEARCH: Start from the initial state and search for paths to the bad states.

BACKWARD SEARCH: Start from the bad states and work backwards to see whether we reach an initial
state.

CORE STEP IN BACKWARD SEARCH: Find the states that have a successor satisfying p

Pre-Image(p)  V’ R  (x’ y’)

 V’ [(x’=x  y’=y)  (x’=x  y’=y)]  (x’ y’)

 V’ [(x’=x  y’=y)  (x’  y’)]  [(x’=x  y’=y)  (x’  y’)]

V’ [x  y  x’  y’]  [x  y  x’  y’]

 [x  y]  [x  y]

This formula represents the set of states {(F,T), (T,F)}, which is the set of states having a successor
satisfying p

F,T

F,F

T,T

T,F

The Simple Example Contd.

Suppose p  x  y defines the set of bad states.

Pre-Image(p)  [x  y]  [x  y]

FIXPOINT COMPUTATION for BACWARD REACHABILITY

Z0= p

Z1= Z0  Pre-Image(Z0)

Z2= Z1  Pre-Image(Z1)

… and so on, until we have Zk = Zk—1 for some k. We call it Z*

Then Zk is a Boolean formula that represents the set of states that can reach the bad states.

The goal state is reachable if Q0  Zk is satisfiable.

F,T

F,F

T,T

T,F

1

2

3

Planning with Propositional Logic

• The planning problem is translated into a CNF satisfiability problem

• The goal is asserted to hold at a time step T, and clauses are included for each time step up
to T.

• If the clauses are satisfiable, then a plan is extracted by examining the actions that are true.

• Otherwise, we increment T and repeat

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
6

Example

Aeroplanes P1 and P2 are at SFO and JFK respectively. We want P1 at JFK and P2 at SFO

Initial: At(P1, SFO)0  At(P2, JFK)0

Goal: At(P1, JFK)  At(P2, SFO)0

Action: At(P1, JFK)1  [At(P1, JFK)0   (Fly(P1, JFK, SFO)0  At(P1, JFK)0)]

 [At(P1, SFO)0  Fly(P1, SFO, JFK)0]

Check the satisfiability of:

initial state  successor state axioms  goal

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
7

Additional Axioms

Precondition Axioms:

Fly(P1, JFK, SFO)0  At(P1, JFK)0

Action Exclusion Axioms:

 (Fly(P2, JFK, SFO)0  Fly(P2, JFK, LAX)0)

State Constraints:

 p, x, y, t (x  y)  (At(p, x)t  At(p, y)t)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
8

SATPlan

Function SATPlan(problem, Tmax)

// returns solution or failure

for T = 0 to Tmax do

cnf, mapping Trans-to-SAT(problem, T)

assignment  SAT-Solver(cnf)

if assignment is not NULL then

return Extract-Solution(assignment, mapping)

return failure

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
9

