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Planning Graph

Start: Have(Cake)

Finish: Have(Cake)  Eaten(Cake)
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Op(  ACTION: Eat(Cake), 

PRECOND: Have(Cake), 

EFFECT: Eaten(Cake)  Have(Cake))

Op(  ACTION: Bake(Cake),

PRECOND: Have(Cake),

EFFECT: Have(Cake))

Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Persistence action

(carries over a predicate to the next world)

Have(Cake)

Eat( Cake )

 Have(Cake)

Eaten(Cake)

S0 A0 S1



Mutex Links in a Planning Graph
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Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Have(Cake)

Eat( Cake )

 Have(Cake)

Eaten(Cake)

S0 A0 S1

Mutual exclusion 

among actions  

Mutual exclusion 

among derived 

predicates  



Planning Graphs

 Consists of a sequence of levels that correspond to time steps in the plan

 Each level contains a set of actions and a set of literals that could be true at that time

step depending on the actions taken in previous time steps

 For every +ve and –ve literal C, we add a persistence action with precondition C and

effect C
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Planning Graph
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Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Have(Cake)

Eat( Cake )

 Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat( Cake )

Bake( Cake )

Have(Cake)

 Eaten(Cake)

 Have(Cake)

Eaten(Cake)

A1 S2

Start: Have(Cake)

Finish: Have(Cake)  Eaten(Cake)

Op(  ACTION: Eat(Cake), 

PRECOND: Have(Cake), 

EFFECT: Eaten(Cake)  Have(Cake))

Op(  ACTION: Bake(Cake),

PRECOND: Have(Cake),

EFFECT: Have(Cake))

In the world S2 the goal 

predicates exist without 

mutexes, hence we need not 

expand the graph any further 



Mutex Actions

 Mutex relation exists between two actions if:

 Inconsistent effects – one action negates an effect of the other

Eat( Cake ) causes  Have(Cake) and Bake( Cake ) causes Have(Cake)

 Interference – one of the effects of one action is the negation of a precondition of the other

Eat( Cake ) causes  Have(Cake) and the persistence of Have( Cake ) needs Have(Cake)

 Competing needs – one of the preconditions of one action is mutually exclusive with a 

precondition of the other

Bake( Cake ) needs  Have(Cake) and Eat( Cake ) needs Have(Cake)

Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Have(Cake)

Eat( Cake )

 Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat( Cake )

Bake( Cake )

Have(Cake)

 Eaten(Cake)

 Have(Cake)

Eaten(Cake)

A1
S2



Mutex Literals

 Mutex relation exists between two literals if:

 One is the negation of the other, or

 Each possible pair of actions that could achieve the two literals is mutually exclusive

(inconsistent support)
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Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Have(Cake)

Eat( Cake )

 Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat( Cake )

Bake( Cake )

Have(Cake)

 Eaten(Cake)

 Have(Cake)

Eaten(Cake)

A1
S2



Function GraphPLAN( problem )

// returns solution or failure

graph  Initial-Planning-Graph( problem )

goals  Goals[ problem ]

do

if goals are all non-mutex in last level of graph then do

solution  Extract-Solution( graph )

if solution  failure then return solution

else if No-Solution-Possible (graph )

then return failure

graph  Expand-Graph( graph, problem )
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Finding the plan

• Once a world is found having all goal predicates without mutexes, the plan can be

extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes

• Creating the planning graph can be done in polynomial time, but planning is known to be a

PSPACE-complete problem. The hardness is in the CSP.

• The plan is shown in blue below
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Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Have(Cake)

Eat( Cake )

 Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat( Cake )

Bake( Cake )

Have(Cake)

 Eaten(Cake)

 Have(Cake)

Eaten(Cake)

A1
S2



Termination of GraphPLAN when no plan exists

 Literals increase monotonically

 Actions increase monotonically

 Mutexes decrease monotonically

This guarantees the existence of a fixpoint
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Have(Cake)

 Eaten(Cake)  Eaten(Cake)

Have(Cake)

Eat( Cake )

 Have(Cake)

Eaten(Cake)

S0 A0 S1

Eat( Cake )

Bake( Cake )

Have(Cake)

 Eaten(Cake)

 Have(Cake)

Eaten(Cake)

A1
S2



Exercise

Start: At( Flat, Axle )  At( Spare, Trunk )

Goal: At( Spare, Axle )

Op(  ACTION: Remove( Spare, Trunk ), 

PRECOND: At( Spare, Trunk ), 

EFFECT: At( Spare, Ground ) 

  At( Spare, Trunk ))

Op(  ACTION: Remove( Flat, Axle ), 

PRECOND: At( Flat, Axle ), 

EFFECT: At( Flat, Ground ) 

  At( Flat, Axle ))
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Op(  ACTION: PutOn( Spare, Axle ), 

PRECOND: At( Spare, Ground ) 

  At( Flat, Axle ), 

EFFECT: At( Spare, Axle ) 

  At( Spare, Ground ))

Op(  ACTION: LeaveOvernight,

PRECOND:

EFFECT:  At( Spare, Ground ) 

  At( Spare, Axle )

  At( Spare, Trunk )

  At( Flat, Ground )

  At( Flat, Axle ))



Symbolic Representation of State Spaces

• States are represented by state vectors:  x1, x2, …, xk 

• Sets of states can be represented by formulae over the state variables

• Consider the following set of states:

 0 1 1 

 0 0 1 

 0 1 0 

 0 0 0 

 1 1 1 

 1 0 0 

• The set of states can be represented as a formula:   x1  ( x1  x2  x3 )  ( x1   x2   x3 )
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Symbolic Search

Variables: x, y: boolean

Set of states:

Q = {(F,F), (F,T), (T,F), (T,T)}

Initial condition:

Q0   x   y

Transition relation (negates one variable at a time):

R  [ (x’= x)  (y’= y) ]  [ (x’= x)  (y’= y) ] (= means )

x’ is the next value of x, and y’ is the next value of y

F,T

F,F

T,T

T,F
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The Simple Example Contd.

Suppose p  x  y defines the goal states. 

Our options:

FORWARD SEARCH: Start from the initial state and search for paths to the bad states.

BACKWARD SEARCH: Start from the bad states and work backwards to see whether we reach an initial 
state.

CORE STEP IN BACKWARD SEARCH: Find the states that have a successor satisfying p

Pre-Image(p)  V’ R  (x’ y’)

 V’ [(x’=x  y’=y)  (x’=x  y’=y )]  (x’ y’)

 V’ [(x’=x  y’=y)  (x’  y’)]  [(x’=x  y’=y)  (x’  y’)]

V’ [x  y  x’  y’]  [x  y  x’  y’]

 [x  y]  [x  y]

This formula represents the set of states {(F,T), (T,F)}, which is the set of states having  a successor 
satisfying p

F,T

F,F

T,T

T,F



The Simple Example Contd.

Suppose p  x  y defines the set of bad states. 

Pre-Image(p)  [x  y]  [x  y]

FIXPOINT COMPUTATION for BACWARD REACHABILITY

Z0= p

Z1= Z0  Pre-Image(Z0)

Z2= Z1  Pre-Image(Z1)

… and so on, until we have Zk = Zk—1 for some k. We call it Z*

Then Zk is a Boolean formula that represents the set of states that can reach the bad states. 

The goal state is reachable if Q0  Zk is satisfiable.

F,T

F,F

T,T

T,F

1

2

3



Planning with Propositional Logic

• The planning problem is translated into a CNF satisfiability problem

• The goal is asserted to hold at a time step T, and clauses are included for each time step up
to T.

• If the clauses are satisfiable, then a plan is extracted by examining the actions that are true.

• Otherwise, we increment T and repeat
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Example

Aeroplanes P1 and P2 are at SFO and JFK respectively. We want P1 at JFK and P2 at SFO

Initial: At( P1, SFO )0  At( P2, JFK )0

Goal: At( P1, JFK )  At( P2, SFO )0

Action: At( P1, JFK )1  [ At( P1, JFK )0   ( Fly( P1, JFK, SFO)0  At( P1, JFK )0 ) ]

 [ At( P1, SFO )0  Fly( P1, SFO, JFK)0 ]

Check the satisfiability of:

initial state  successor state axioms  goal
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Additional Axioms

Precondition Axioms:

Fly( P1, JFK, SFO)0  At( P1, JFK )0

Action Exclusion Axioms:

 ( Fly( P2, JFK, SFO)0  Fly( P2, JFK, LAX)0 ) 

State Constraints:

 p, x, y, t  ( x  y )  ( At( p, x )t  At( p, y )t )
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SATPlan

Function SATPlan( problem, Tmax )

// returns solution or failure

for T = 0 to Tmax do

cnf, mapping Trans-to-SAT(problem, T)

assignment  SAT-Solver( cnf )

if assignment is not NULL then

return Extract-Solution(assignment, mapping)

return failure
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