GraphPLAN and SATPlan

COURSE: CS40002

Pallab Dasgupta Professor, Dept. of Computer Sc & Engg

Planning Graph

Start: Have(Cake) Finish: Have(Cake) Eaten(Cake) **Op(ACTION: Eat(Cake), PRECOND: Have(Cake), EFFECT: Eaten(Cake) Have(Cake))**

Op(ACTION: Bake(Cake), PRECOND: Have(Cake), EFFECT: Have(Cake))

Mutex Links in a Planning Graph

Planning Graphs

Consists of a sequence of levels that correspond to time steps in the plan

 Each level contains a set of actions and a set of literals that *could* **be true at that time step depending on the actions taken in previous time steps**

 For every +ve and –ve literal C, we add a *persistence action* **with precondition C and effect C**

Start: Have(Cake) Finish: Have(Cake) Eaten(Cake) **predicates exist without mutexes, hence we need not expand the graph any further**

Mutex Actions

Mutex relation exists between two actions if:

Inconsistent effects – one action negates an effect of the other

Eat(Cake) causes *Have(Cake)* **and Bake(Cake) causes** *Have(Cake)*

- **Interference – one of the effects of one action is the negation of a precondition of the other Eat(Cake) causes** *Have(Cake)* **and the persistence of** *Have(Cake)* **needs** *Have(Cake)*
- **Competing needs – one of the preconditions of one action is mutually exclusive with a precondition of the other**

Bake(Cake) needs *Have(Cake)* **and Eat(Cake) needs** *Have(Cake)*

Mutex Literals

Mutex relation exists between two literals if:

- **One is the negation of the other, or**
- **Each possible pair of actions that could achieve the two literals is mutually exclusive (inconsistent support)**

Function GraphPLAN(problem)

```
// returns solution or failure
```

```
graph  Initial-Planning-Graph( problem )
goals  Goals[ problem ]
```
do

if goals are all non-mutex in last level of graph then do solution ← Extract-Solution(graph) if solution \neq **failure then return solution else if No-Solution-Possible (graph) then return failure graph Expand-Graph(graph, problem)**

Finding the plan

- **Once a world is found having all goal predicates without mutexes, the plan can be extracted by solving a constraint satisfaction problem (CSP) for resolving the mutexes**
- **Creating the planning graph can be done in polynomial time, but planning is known to be a PSPACE-complete problem. The hardness is in the CSP.**
- **The plan is shown in blue below**

Termination of GraphPLAN when no plan exists

- **Literals increase monotonically**
- **Actions increase monotonically**
- **Mutexes decrease monotonically**
- *This guarantees the existence of a fixpoint*

Exercise

```
Start: At( Flat, Axle )  At( Spare, Trunk )
Goal: At( Spare, Axle )
```

```
Op( ACTION: Remove( Spare, Trunk ), 
    PRECOND: At( Spare, Trunk ), 
    EFFECT: At( Spare, Ground ) 
                   \wedge \neg At( Spare, Trunk ))
```

```
Op( ACTION: Remove( Flat, Axle ), 
     PRECOND: At( Flat, Axle ), 
     EFFECT: At( Flat, Ground ) 
                    \wedge \neg At( Flat, Axle ))
```

```
Op( ACTION: PutOn( Spare, Axle ), 
     PRECOND: At( Spare, Ground ) 
                      \wedge \rightarrow At( Flat, Axle ),
     EFFECT: At( Spare, Axle ) 
                      \wedge 
ogg At( Spare, Ground ))
```

```
Op( ACTION: LeaveOvernight,
    PRECOND:
    EFFECT:  At( Spare, Ground ) 
                 At( Spare, Axle )
                 At( Spare, Trunk )
                 At(Flat, Ground)
                 \wedge \neg At( Flat, Axle ))
```
Symbolic Representation of State Spaces

- States are represented by state vectors: $\langle x_1, x_2, ..., x_k \rangle$
- **Sets of states can be represented by formulae over the state variables**
	- **Consider the following set of states:**

- (111)
- **1 0 0**
- The set of states can be represented as a formula: $x_1 \vee (x_1 \wedge x_2 \wedge x_3) \vee (x_1 \wedge \neg x_2 \wedge \neg x_3)$

Symbolic Search

Variables: x, y: boolean

Set of states: Q = {(F,F), (F,T), (T,F), (T,T)}

Initial condition:

 $Q_0 \equiv -X \wedge -Y$

Transition relation (negates one variable at a time): $R \equiv [(x' = -x) \wedge (y' = y)] \vee [(x' = x) \wedge (y')]$ $(=$ means \leftrightarrow **x' is the next value of x, and y' is the next value of y**

The Simple Example Contd.

Suppose $p \equiv x \wedge y$ defines the goal states.

Our options:

FORWARD SEARCH: Start from the initial state and search for paths to the bad states.

BACKWARD SEARCH: Start from the bad states and work backwards to see whether we reach an initial state.

CORE STEP IN BACKWARD SEARCH: *Find the states that have a successor satisfying p*

$$
\begin{aligned} &\text{Pre-Image(p)} \equiv \exists V' \ R \wedge (x' \wedge y') \\ &\equiv \exists V' \ \big[(x' = \neg x \wedge y' = y) \vee (x' = x \wedge y' = \neg y) \big] \wedge (x' \wedge y') \\ &\equiv \exists V' \ \big[(x' = \neg x \wedge y' = y) \wedge (x' \wedge y') \big] \vee \big[(x' = x \wedge y' = \neg y) \wedge (x' \wedge y') \big] \\ &\equiv \exists V' \ \big[\neg x \wedge y \wedge x' \wedge y' \big] \vee \big[x \wedge \neg y \wedge x' \wedge y' \big] \\ &\equiv \big[\neg x \wedge y \big] \vee \big[x \wedge \neg y \big] \end{aligned}
$$

This formula represents the set of states {(F,T), (T,F)}, which is the set of states having a successor satisfying p

The Simple Example Contd.

Suppose $p = x \wedge y$ defines the set of bad states. Pre -Image(p) \equiv $[-x \wedge y] \vee [x \wedge \neg y]$

FIXPOINT COMPUTATION for BACWARD REACHABILITY Z0 = p Z_1 = Z_0 \vee Pre-Image(Z_0)

 Z_2 = $\mathsf{Z}_1 \vee \mathsf{Pre\text{-}Image}(\mathsf{Z}_1)$

… and so on, until we have $Z_k = Z_{k-1}$ for some *k.* We call it Z^*

Then Z^k is a Boolean formula that represents the set of states that can reach the bad states.

The goal state is reachable if $\mathbf{Q}_{\mathbf{0}} \wedge \mathbf{Z}_{\mathbf{k}}$ is satisfiable.

Planning with Propositional Logic

- **The planning problem is translated into a CNF satisfiability problem**
- The goal is asserted to hold at a time step T, and clauses are included for each time step up **to T.**
- **If the clauses are satisfiable, then a plan is extracted by examining the actions that are true.**
- **Otherwise, we increment T and repeat**

Example

Aeroplanes P¹ and P² are at SFO and JFK respectively. We want P¹ at JFK and P² at SFO

- $\mathsf{Initial:}$ $\mathsf{At}(\mathsf{P}_1, \mathsf{SFO})^0 \wedge \mathsf{At}(\mathsf{P}_2, \mathsf{JFK})^0$
- Goal: **At(P**₁, JFK) \wedge At(P₂, SFO)⁰

 $\mathsf{Action:}~~\mathsf{At}(&\mathsf{P}_1, \mathsf{JFK}\,)^1 \Leftrightarrow [~\mathsf{At}(&\mathsf{P}_1, \mathsf{JFK}\,)^0 \wedge \neg(~\mathsf{Fly}(&\mathsf{P}_1, \mathsf{JFK}\, \mathsf{SFO})^0 \wedge \mathsf{At}(&\mathsf{P}_1, \mathsf{JFK}\,)^0\:)\,]$ \lor [At(P₁, SFO) 0 \land Fly(P₁, SFO, JFK) 0]

Check the satisfiability of:

initial state successor state axioms goal

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Additional Axioms

Precondition Axioms:

 $\text{FIy}(\text{ }P_1, \text{ JFK}, \text{SFO})^0 \Rightarrow \text{At}(\text{ }P_1, \text{ JFK})^0$

Action Exclusion Axioms:

 \rightarrow (Fly(P₂, JFK, SFO)⁰ \land Fly(P₂, JFK, LAX)⁰)

State Constraints:

 \forall **p**, **x**, **y**, **t** (**x** \neq **y**) \Rightarrow \rightarrow (**At(p**, **x**)^t \wedge **At(p**, **y**)^t)

SATPlan

Function SATPlan(problem, T_{max}) // *returns solution or failure*

for $T = 0$ to T_{max} do *cnf, mapping* **Trans-to-SAT(***problem***, T)** $\mathsf{assignment} \leftarrow \mathsf{SAT\text{-}Solver}(\text{cnf})$ **if** *assignment* **is not NULL then return Extract-Solution(***assignment, mapping***) return** *failure*