
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Introduction to Planning
COURSE: CS40002

1

Pallab Dasgupta

Professor,

Dept. of Computer Sc & Engg

Outline

 Planning versus Search

 Representation of planning problems

 Situation calculus

 STRIPS

 ADL

 Planning Algorithms

 Partial order planning

 GraphPlan

 SATPlan

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

The Planning Problem

Get tea, biscuits, and a book.

 Given:

 Initial state: The agent is at home without tea, biscuits, book

 Goal state: The agent is at home with tea, biscuits, book

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

The Planning Problem

 States can be represented by predicates such as At(x), Have(y), Sells(x, y)

 Actions:

 Go(y) : Agent goes to y

– causes At(y) to be true

 Buy(z): Agent buys z

– causes Have(z) to be true

 Steal(z): Agent steals z

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

Planning as Search

 Actions are given as logical descriptions of preconditions and effects.

 This enables the planner to make direct connections between states and actions.

 The planner is free to add actions to the plan wherever they are required, rather than in an
incremental way starting from the initial state.

 Most parts of the world are independent of most other parts – hence divide & conquer
works well.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

Situation Calculus

 Initial state:

At(Home, s0)   Have(Tea, s0) 

 Have(Biscuits, s0)  Have(Book, s0)

 Goal state:

s At(Home, s)  Have(Tea, s) 

Have(Biscuits, s)  Have(Book, s)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6

Situation Calculus

Operators:

 a,s Have(Tea, Result(a,s))

[(a = Buy(Tea)  At(Tea-shop,s))

 (Have(Tea, s)  a  Drop(Tea))]

Result(a,s) names the situation resulting from executing the action a in the situation s

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 7

Practical Planners

 To make planning practical we need to:

 Restrict the language with which we define problems. With a restrictive language, there are
fewer possible solutions to search through

 Use a special-purpose algorithm called a planner rather than a general purpose theorem
prover.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 8

STRIPS

 STanford Research Institute Problem Solver

 Many planners today use specification languages that are variants of the one used in

STRIPS.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

Representing states

 States are represented by conjunctions of function-free ground literals

At(Home)  Have(Tea) 

Have(Biscuits)  Have(Book)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
0

Representing goals

 Goals are also described by conjunctions of literals

At(Home)  Have(Tea) 

Have(Biscuits)  Have(Book)

 Goals can also contain variables

At(x)  Sells(x, Tea)

 The above goal is being at a shop that sells tea

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
1

Representing Actions

 Action description – serves as a name

 Precondition – a conjunction of positive literals (why positive?)

 Effect – a conjunction of literals (+ve or –ve)

• The original version had an add list and a delete list.

Op(ACTION: Go(there),

PRECOND: At(here)  Path(here, there),

EFFECT: At(there)  At(here))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
2

Representing Plans

 A set of plan steps. Each step is one of the operators for the problem.

 A set of step ordering constraints. Each ordering constraint is of the form Si  Sj, indicating
Si must occur sometime before Sj.

 A set of variable binding constraints of the form v = x, where v is a variable in some step,
and x is either a constant or another variable.

 A set of causal links written as Sc: S’ indicating S satisfies the precondition c for S’.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
3

Example

 Actions

Op(ACTION: RightShoe,

PRECOND: RightSockOn,

EFFECT: RightShoeOn)

Op(ACTION: RightSock,

EFFECT: RightSockOn)

Op(ACTION: LeftShoe,

PRECOND: LeftSockOn,

EFFECT: LeftShoeOn)

Op(ACTION: LeftSock,

EFFECT: LeftSockOn)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
4

Example

 Initial plan

Plan(

STEPS: {

S1: Op(ACTION: start),

S2: Op(ACTION: finish,

PRECOND: RightShoeOn 
LeftShoeOn) },

ORDERINGS: {S1  S2},

BINDINGS: { },

LINKS: { })

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
5

Action Description Language (ADL)

STRIPS ADL

Only +ve literals in states

Fat  Slow

Both +ve and –ve literals in states

Thin  Fast

Closed World: Unmentioned literals are false Open World:

Unmentioned literals are unknown

Effect PQ means add P, delete Q Effect PQ means add P, Q and delete Q,

P

16

Action Description Language (ADL)

STRIPS ADL

Only ground literals in goals

Fat  Slow

Quantified variables in goals

x At(Tea,x) 

At(Coffee,x)

Goals are conjunctions Goals allow conjunctions and

disjunctions

17

Partial Order Planning

Initial state:

Op(ACTION: Start,

EFFECT: At(Home)  Sells(BS, Book)

 Sells(TS, Tea)

 Sells(TS, Biscuits))

Goal state:

Op(ACTION: Finish,

PRECOND: At(Home)  Have(Tea)

 Have(Biscuits)

 Have(Book))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
8

Partial Order Planning

Actions:

Op(ACTION: Go(there),

PRECOND: At(here),

EFFECT: At(there)  At(here))

Op(ACTION: Buy(x),

PRECOND: At(store)  Sells(store, x),

EFFECT: Have(x))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
9

POP Example

Initial state:

Op(ACTION: Start,

EFFECT: At(Home)  Sells(BS, Book)

 Sells(TS, Tea)

 Sells(TS, Biscuits))

Goal state:

Op(ACTION: Finish,

PRECOND: At(Home)  Have(Tea)

 Have(Biscuits)

 Have(Book))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
0

Actions:

Op(ACTION: Go(y),

PRECOND: At(x),

EFFECT: At(y)  At(x))

Op(ACTION: Buy(x),

PRECOND: At(y)  Sells(y, x),

EFFECT: Have(x))

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
1

FINISH

Have(Book)  Have(Tea)  Have(Biscuits)  At(Home)

START

At(Home)  Sells(BS, Book)  Sells(TS, Tea)  Sells(TS, Biscuits)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
2

FINISH

Have(Book)  Have(Tea)  Have(Biscuits)  At(Home)

START

At(Home)  Sells(BS, Book)  Sells(TS, Tea)  Sells(TS, Biscuits)

Buy(Book)

Op(ACTION: Buy(x),

PRECOND: At(y)  Sells(y, x),

EFFECT: Have(x))

Buy(Tea) Buy(Biscuits)

At(y1)  Sells(y1, Book) At(y2)  Sells(y2, Tea) At(y3)  Sells(y3, Biscuits)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
3

FINISH

Have(Book)  Have(Tea)  Have(Biscuits)  At(Home)

START

At(Home)  Sells(BS, Book)  Sells(TS, Tea)  Sells(TS, Biscuits)

Buy(Book)

Op(ACTION: Buy(x),

PRECOND: At(y)  Sells(y, x),

EFFECT: Have(x))

Buy(Tea) Buy(Biscuits)

At(BS)  Sells(BS, Book) At(TS)  Sells(TS, Tea) At(TS)  Sells(TS, Biscuits)

{ y1 \ BS } { y2 \ TS } { y3 \ TS }

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
4

FINISH

Have(Book)  Have(Tea)  Have(Biscuits)  At(Home)

START

At(Home)  Sells(BS, Book)  Sells(TS, Tea)  Sells(TS, Biscuits)

Buy(Book)

Op(ACTION: Go(y),

PRECOND: At(x),

EFFECT: At(y)  At(x))

Buy(Tea) Buy(Biscuits)

At(BS)  Sells(BS, Book) At(TS)  Sells(TS, Tea) At(TS)  Sells(TS, Biscuits)

Go(BS)

 At(y1)

At(y1)

Go(TS)

 At(y2)

At(y2)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
5

FINISH

Have(Book)  Have(Tea)  Have(Biscuits)  At(Home)

START

At(Home)  Sells(BS, Book)  Sells(TS, Tea)  Sells(TS, Biscuits)

Buy(Book) Buy(Tea) Buy(Biscuits)

At(BS)  Sells(BS, Book) At(TS)  Sells(TS, Tea) At(TS)  Sells(TS, Biscuits)

Go(BS)

 At(Home)

At(Home)

Go(TS)

 At(Home)

At(Home)

The problem here is that

Go(BS) and Go(TS)

destroy each other’s

precondition. Neither can

precede the other.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
6

FINISH

Have(Book)  Have(Tea)  Have(Biscuits)  At(Home)

START

At(Home)  Sells(BS, Book)  Sells(TS, Tea)  Sells(TS, Biscuits)

Buy(Book) Buy(Tea) Buy(Biscuits)

At(BS)  Sells(BS, Book) At(TS)  Sells(TS, Tea) At(TS)  Sells(TS, Biscuits)

Go(BS)

 At(Home)

At(Home)

Go(TS)

 At(y2)

At(y2)

Can y2 be instantiated with

something else?

Indeed !!

We can try BS for example.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
7

FINISH

Have(Book)  Have(Tea)  Have(Biscuits)  At(Home)

START

At(Home)  Sells(BS, Book)  Sells(TS, Tea)  Sells(TS, Biscuits)

Buy(Book) Buy(Tea) Buy(Biscuits)

At(BS)  Sells(BS, Book) At(TS)  Sells(TS, Tea) At(TS)  Sells(TS, Biscuits)

Go(BS)

 At(Home)

At(Home)

Go(TS)

 At(BS)

At(BS)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
8

FINISH

Have(Book)  Have(Tea)  Have(Biscuits)  At(Home)

START

At(Home)  Sells(BS, Book)  Sells(TS, Tea)  Sells(TS, Biscuits)

Buy(Book) Buy(Tea) Buy(Biscuits)

At(BS)  Sells(BS, Book) At(TS)  Sells(TS, Tea) At(TS)  Sells(TS, Biscuits)

Go(BS)

 At(Home)

At(Home)

Go(TS)

 At(BS)

At(BS)

The red link prevents me

from going to TS before

buying the book

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
9

FINISH

Have(Book)  Have(Tea)  Have(Biscuits)  At(Home)

START

At(Home)  Sells(BS, Book)  Sells(TS, Tea)  Sells(TS, Biscuits)

Buy(Book)

Buy(Tea) Buy(Biscuits)

At(BS)  Sells(BS, Book)

At(TS)  Sells(TS, Tea) At(TS)  Sells(TS, Biscuits)

Go(BS)

 At(Home)

At(Home)

Go(TS)

 At(BS)

At(BS)

Go(Home)

At(z)

 At(z)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
0

FINISH

Have(Book)  Have(Tea)  Have(Biscuits)  At(Home)

START

At(Home)  Sells(BS, Book)  Sells(TS, Tea)  Sells(TS, Biscuits)

Buy(Book)

Buy(Tea) Buy(Biscuits)

At(BS)  Sells(BS, Book)

At(TS)  Sells(TS, Tea) At(TS)  Sells(TS, Biscuits)

Go(BS)

 At(Home)

At(Home)

Go(TS)

 At(BS)

At(BS)

Go(Home)

At(TS)

 At(TS)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
1

FINISH

Have(Book)  Have(Tea)  Have(Biscuits)  At(Home)

START

At(Home)  Sells(BS, Book)  Sells(TS, Tea)  Sells(TS, Biscuits)

Buy(Book)

Buy(Tea) Buy(Biscuits)

At(BS)  Sells(BS, Book)

At(TS)  Sells(TS, Tea) At(TS)  Sells(TS, Biscuits)

Go(BS)

 At(Home)

At(Home)

Go(TS)

 At(BS)

At(BS)

Go(Home)

At(TS)

 At(TS)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
2

FINISH

START

Buy(Book)

Buy(Tea) Buy(Biscuits)

Go(BS)

Go(TS)

Go(Home)

Partial Order Planning Algorithm

Function POP(initial, goal, operators)

// Returns plan

plan Make-Minimal-Plan(initial, goal)

Loop do

If Solution(plan) then return plan

S, c  Select-Subgoal(plan)

Choose-Operator(plan, operators, S, c)

Resolve-Threats(plan)

end

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
3

POP Algorithm (Contd.)

Function Select-Subgoal(plan)

// Returns S, c

pick a plan step S from STEPS(plan)

with a precondition c that

has not been achieved

Return S, c

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
4

Proc Choose-Operator(plan, operators, S, c)

choose a step S’ from operators or STEPS(plan) that has c as an effect

if there is no such step then fail

add the causal link S’  c: S to LINKS(plan)

add the ordering constraint S’  S to ORDERINGS(plan)

if S’ is a newly added step from operators then add S’ to STEPS(plan) and add

Start  S’  Finish to ORDERINGS(plan)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
5

POP Algorithm (Contd.)

Procedure Resolve-Threats(plan)

for each S’’ that threatens a link

Si  c: Sj in LINKS(plan) do

choose either

Promotion: Add S’’  Si to ORDERINGS(plan)

Demotion: Add Sj  S’’ to ORDERINGS(plan)

if not Consistent(plan) then fail

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
6

Partially instantiated operators

 So far we have not mentioned anything about binding constraints

 Should an operator that has the effect, say, At(x), be considered a threat to the condition,

At(Home) ?

 Indeed it is a possible threat because x may be bound to Home

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
7

Dealing with possible threats

 Resolve now with an equality constraint

 Bind x to something that resolves the threat (say x = TS)

 Resolve now with an inequality constraint

 Extend the language of variable binding to allow x  Home

 Resolve later

 Ignore possible threats. If x = Home is added later into the plan, then we will attempt to
resolve the threat (by promotion or demotion)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
8

Proc Choose-Operator(plan, operators, S, c)

choose a step S’ from operators or STEPS(plan) that has c’ as an effect

s.t. u = UNIFY(c, c’, BINDINGS(plan))

if there is no such step then fail

add u to BINDINGS(plan)

add the causal link S’ c: S to LINKS(plan)

add the ordering constraint S’  S to ORDERINGS(plan)

if S’ is a newly added step from operators then

add S’ to STEPS(plan) and add Start  S’  Finish to ORDERINGS(plan)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
9

Procedure Resolve-Threats(plan)

for each Si  c: Sj in LINKS(plan) do

for each S’’ in STEPS(plan) do

for each c’ in EFFECTS(S’’) do

if SUBST(BINDINGS(plan), c) = SUBST(BINDINGS(plan), c’)

then choose either

Promotion: Add S’’  Si to ORDERINGS(plan)

Demotion: Add Sj  S’’ to ORDERINGS(plan)

if not Consistent(plan) then fail

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
0

