Introduction to Planning

COURSE: CS40002

Pallab Dasgupta Professor, Dept. of Computer Sc & Engg

Outline

Planning versus Search

- **Representation of planning problems**
	- **F** Situation calculus
	- **STRIPS**
	- **ADL**

Planning Algorithms

- **Partial order planning**
- **GraphPlan**
- **SATPlan**

The Planning Problem

Get tea, biscuits, and a book.

Given:

- **Initial state: The agent is at** *home* **without tea, biscuits, book**
- **Goal state: The agent is at** *home* **with tea, biscuits, book**

The Planning Problem

States can be represented by predicates such as At(x), Have(y), Sells(x, y)

Actions:

- **Go(y) : Agent goes to y**
- **– causes At(y) to be true**
- **Buy(z): Agent buys z**
- **– causes Have(z) to be true**
- **Steal(z): Agent steals z**

Planning as Search

Actions are given as logical descriptions of preconditions and effects.

This enables the planner to make direct connections between states and actions.

 The planner is free to add actions to the plan wherever they are required, rather than in an incremental way starting from the initial state.

 Most parts of the world are independent of most other parts – hence divide & conquer works well.

Situation Calculus

Initial state:

```
At(Home, s0) \land \rightarrow Have(Tea, s0) \landHave(Biscuits, s0) ∧ -Have(Book, s0)
```
Goal state:

 \exists **s At(Home, s)** \land **Have(Tea, s)** \land Have(Biscuits, s) ∧ Have(Book, s)

Situation Calculus

Operators:

 \forall a,s Have(Tea, Result(a,s)) \Leftrightarrow **[(a = Buy(Tea) At(Tea-shop,s))** \vee (Have(Tea, s) \wedge a \neq Drop(Tea))]

Result(a,s) names the situation resulting from executing the action a in the situation s

Practical Planners

To make planning practical we need to:

- **Restrict the language with which we define problems. With a restrictive language, there are fewer possible solutions to search through**
- **Use a special-purpose algorithm called a** *planner* **rather than a general purpose theorem prover.**

STRIPS

STanford Research Institute Problem Solver

 Many planners today use specification languages that are variants of the one used in STRIPS.

Representing states

States are represented by conjunctions of function-free ground literals

```
At(Home) ∧ -Have(Tea) ∧
       Have(Biscuits) ∧ Have(Book)
```
Representing goals

Goals are also described by conjunctions of literals

At(Home) ∧ Have(Tea) ∧

Have(Biscuits) Have(Book)

Goals can also contain variables

 $At(x) \wedge$ Sells(x, Tea)

The above goal is *being at a shop that sells tea*

Representing Actions

- **Action description – serves as a name**
- **Precondition – a conjunction of positive literals (why positive?)**
- **Effect – a conjunction of literals (+ve or –ve)**
	- **The original version had an** *add list* **and a** *delete list.*

Op(ACTION: Go(there), PRECOND: At(here) Path(here, there), EFFECT: At(there) At(here))

Representing Plans

A set of plan steps. Each step is one of the operators for the problem.

 \Box A set of step ordering constraints. Each ordering constraint is of the form ${\bf S}_{\sf i}\prec{\bf S}_{\sf j}$, indicating **Sⁱ must occur sometime before S^j .**

 \Box A set of variable binding constraints of the form $v = x$, where v is a variable in some step, **and x is either a constant or another variable.**

A set of causal links written as S c: S' indicating S satisfies the precondition c for S'.

Example

 Actions Op(ACTION: RightShoe, PRECOND : RightSockOn, EFFECT : RightShoeOn) Op(ACTION: RightSock, EFFECT: RightSockOn) Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) Op(ACTION: LeftSock, EFFECT: LeftSockOn)

Example

```
 Initial plan
        Plan(
          STEPS: { 
                 S1: Op( ACTION: start ),
                 S2: Op( ACTION: finish, 
                            PRECOND: RightShoeOn 
                                     LeftShoeOn ) },
           ORDERINGS: {S1  S2
},
          BINDINGS: { },
          LINKS: { } )
```
Action Description Language (ADL)

Action Description Language (ADL)

Partial Order Planning

Initial state:

Op(ACTION: Start, EFFECT: At(Home) ∧ Sells(BS, Book) Sells(TS, Tea) Sells(TS, Biscuits))

Goal state:

Op(ACTION: Finish,

PRECOND: At(Home) Have(Tea)

Have(Biscuits)

Have(Book))

Partial Order Planning

Actions:

Op(ACTION: Go(there), PRECOND: At(here), EFFECT: At(there) $\land \neg$ At(here))

Op(ACTION: Buy(x),

PRECOND: At(store) ∧ Sells(store, x),

EFFECT: Have(x))

POP Example

Initial state:

Op(ACTION: Start, EFFECT: At(Home) ∧ Sells(BS, Book) Sells(TS, Tea) Sells(TS, Biscuits))

Goal state: Op(ACTION: Finish, PRECOND: At(Home) Have(Tea) Have(Biscuits) Have(Book))

Actions:

```
Op( ACTION: Go(y), 
    PRECOND: At(x), 
    EFFECT: At(y) \wedge \neg At(x)
```
Op(ACTION: Buy(x), PRECOND: At(y) ∧ Sells(y, x), **EFFECT: Have(x))**

At(Home) Sells(BS, Book) Sells(TS, Tea) Sells(TS, Biscuits)

Have(Book) Have(Tea) Have(Biscuits) At(Home)

FINISH

At(Home) Sells(BS, Book) Sells(TS, Tea) Sells(TS, Biscuits)

Partial Order Planning Algorithm

Function POP(*initial, goal, operators* **)**

// Returns *plan*

```
plan  Make-Minimal-Plan( initial, goal )
Loop do
        If Solution( plan ) then return plan
        S, c ← Select-Subgoal( plan )
        Choose-Operator( plan, operators, S, c )
        Resolve-Threats( plan )
```
end

POP Algorithm (Contd.)

Function Select-Subgoal(*plan* **)**

// Returns S, c

pick a plan step S from STEPS(*plan* **) with a precondition c that has not been achieved**

Return S, c

Proc Choose-Operator(*plan, operators***, S, c)**

choose a step S' from *operators* **or STEPS(** *plan* **) that has c as an effect**

if there is no such step then fail

add the causal link $S' \rightarrow c$: S to LINKS(*plan*)

add the ordering constraint $S' \prec S$ to ORDERINGS($plan$)

if S' is a newly added step from *operators* **then add S' to STEPS(** *plan* **) and add** $Stat \prec S' \prec Finish$ to ORDERINGS(*plan*)

POP Algorithm (Contd.)

Procedure Resolve-Threats(*plan* **)**

```
for each S'' that threatens a link 
Si  c: Sj
in LINKS( plan ) do
         choose either
                  Promotion: Add S''  Si
to ORDERINGS( plan )
                  Demotion: Add S_i \prec S'' to ORDERINGS( plan )
if not Consistent( plan ) then fail
```
Partially instantiated operators

So far we have not mentioned anything about binding constraints

 Should an operator that has the effect, say, *At(x)***, be considered a threat to the condition,** *At(Home)* **?**

Indeed it is a *possible threat* **because** *x* **may be bound to** *Home*

Dealing with possible threats

- **Resolve now with an equality constraint**
	- **Bind x to something that resolves the threat (say** *x = TS***)**
- **Resolve now with an inequality constraint**
	- **Extend the language of variable binding to allow** $x \neq$ *Home*
- **Resolve later**
	- **Ignore possible threats. If** *x = Home* **is added later into the plan, then we will attempt to resolve the threat (by promotion or demotion)**

Proc Choose-Operator(*plan, operators***, S, c)**

choose a step S' from *operators* **or STEPS(** *plan* **) that has c' as an effect s.t.** *u =* **UNIFY(c, c', BINDINGS(plan))**

if there is no such step then fail

add *u* **to BINDINGS(** *plan* **)**

add the causal link S' c: S to LINKS(*plan* **)**

add the ordering constraint S' S to ORDERINGS(*plan* **)**

if S' is a newly added step from *operators* **then add S' to STEPS(** *plan* **) and add Start S' Finish to ORDERINGS(** *plan* **)** **Procedure Resolve-Threats(** *plan* **)**

for each Si c: S^j in LINKS(*plan* **) do for each S'' in STEPS(** *plan* **) do for each c' in EFFECTS(S'') do if SUBST(BINDINGS(***plan***), c) = SUBST(BINDINGS(***plan***), c') then choose either** *Promotion:* **Add S'' Sⁱ to ORDERINGS(** *plan* **)** *Demotion:* Add $S_i \prec S''$ to ORDERINGS(*plan*) **if not Consistent(** *plan* **) then fail**