Neural Networks and Deep Learning

COURSE: CS40002

Pallab Dasgupta Professor, Dept. of Computer Sc & Engg

The ML problem in regression

What is the function $f(.)$ *?*

Solution: *This is where the different ML methods come in*

- Linear model: $f(x) = w^T x$
- Linear basis functions: $f(x) = w^T \phi(x)$
	- Where $\phi(x) = [\phi_0(x) \phi_1(x) ... \phi_L(x)]^T$ and $\phi_l(x)$ is the basis function.
	- **Choices for the basis function:**
		- Powers of x : $\boldsymbol{\phi}_l(x) = x^l$
		- **Gaussian / Sigmoidal / Fourier / …**
- **Neural networks**
- *…*

Classification

Given training data set with:

- Input values: $x_n = [x_1 x_2 ... x_M]^T$ for $n = 1 ... N$.
- **Output class labels, for example:**
	- **0/1 or 1/+1 for binary classification problems**
	- **1 … K for multi-class classification problems**
	- **1-of-K coding scheme:**

 $\mathbf{y} = [\mathbf{0} \; ... \; \mathbf{0} \; \mathbf{1} \; \mathbf{0} \; ... \; \mathbf{0}]^T$

where, if $\bm{x_n}$ belongs to class $\bm{k},$ then the $\bm{k^{th}}$ bit is 1 and all others are 0.

Objective: Predict the output class for new, unknown inputs $\widehat{\mathbf{x}}_{m}$ **.**

Neural Networks

A neural network consists of a set of nodes (neurons/units) connected by links

- **Each link has a numeric weight Each unit has:**
	- **a set of input links from other units,**
	- **a set of output links to other units,**
	- **a current activation level, and**
	- **an activation function to compute the activation level in the next time step.**

Types of Neural Networks

Feed-forward network

(no cycles) -- non-linear classification & regression

Symmetric (RBM)

unsupervised, trained to maximize likelihood of input data

Learning in Single Layered Networks

Idea: Optimize the weights so as to minimize error function:

$$
E = \frac{1}{2}Err^2 = \frac{1}{2}(y - g(\sum_{j=0}^n W_j x_j))^2
$$

We can use gradient descent to reduce the squared error by calculating the partial derivative of E with respect to each weight.

 ∂E ∂W_j $= Err \times$ ∂Err ∂W_j $= Err \times$ $\boldsymbol{\partial}$ ∂W_j $y-g\left(\begin{array}{c} \end{array}\right)$ W_jx_j \boldsymbol{n} $j=0$ $= -Err \times g'(in) \times x_i$

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR ⁷

 $W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$ **Weight update rule:** where α is the learning rate

Multi-Layer Feed-Forward Network

Weight updation rule at the output layer: $W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j$ (same as single layer)

However in multilayer networks, the hidden layers also contribute to the error at the output.

So the important question is: *How do we revise the hidden layers?*

Back-Propagation Learning

- **To update the connections between the input units and the hidden units, we need to define a quantity analogous to the error term for output nodes**
- We do an error back-propagation, defining error as $\Delta_i = Err_i\times g'(in_i)$
- **The idea is that a hidden node** *j* **is** *responsible* **for some fraction of the error in each of the output nodes to which it connects**
- Thus the Δ_i values are divided according to the strength of the connection between the hidden node and the output node and are propagated back to provide the Δ_j values for the hidden layer.
- The propagation rule for the Δ values is the following:

 $\Delta_i = g'(in_i) \sum_i W_{i,i} \Delta_i$

• The update rule for the hidden layers is: $W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$

The mathematics behind the updation rule

The squared on a single example is defined as:

$$
E = \frac{1}{2} \sum_i (y_i - a_i)^2
$$

where the sum is over the nodes in the output layer. To obtain the gradient with respect to a specific weight $W_{j,i}$ in the output layer, we need only expand out the activation \boldsymbol{a}_i as all other terms in the **summation are unaffected by** *Wj,i*

$$
\frac{\partial E}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial a_i}{\partial W_{j,i}} = -(y_i - a_i) \frac{\partial g(in_i)}{\partial W_{j,i}} = -(y_i - a_i)g'(in_i) \frac{\partial in_i}{\partial W_{j,i}}
$$
\n
$$
= -(y_i - a_i)g'(in_i) \frac{\partial}{\partial W_{j,i}} \left(\sum_j W_{j,i} a_j\right)
$$
\n
$$
= -(y_i - a_i)g'(in_i) a_j = -a_j \Delta_i
$$
\n
$$
W_{j,i} \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i
$$

The mathematics contd.

$$
\frac{\partial E}{\partial W_{kj}} = -\sum_{i} (y_i - a_i) \frac{\partial g(in_i)}{\partial W_{kj}} = -\sum_{i} (y_i - a_i)g'(in_i) \frac{\partial in_i}{\partial W_{kj}}
$$

\n
$$
= -\sum_{i} \Delta_i \frac{\partial}{\partial W_{kj}} \left(\sum_{j} W_{j,i} a_j \right) = -\sum_{i} \Delta_i W_{j,i} \frac{\partial a_j}{\partial W_{kj}} = -\sum_{i} \Delta_i W_{j,i} \frac{\partial g(in_i)}{\partial W_{kj}}
$$

\n
$$
= -\sum_{i} \Delta_i W_{j,i} g'(in_j) \frac{\partial in_j}{\partial W_{kj}}
$$

\n
$$
= -\sum_{i} \Delta_i W_{j,i} g'(in_j) \frac{\partial}{\partial W_{kj}} \left(\sum_{k} W_{kj} a_k \right)
$$

\n
$$
= -\sum_{i} \Delta_i W_{j,i} g'(in_j) a_k = -a_k \Delta_j
$$

\n
$$
W_{kj} \leftarrow W_{kj} + \alpha \times a_k \times \Delta_j
$$

 $W_{k,j} \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j$

Gradient Descent

- **The weight updation rules define a single step of gradient descent**
- **Each training sample is presented and weights are updated**
- **This continues, until the training error converges to a (possibly local) minima**
- **At the end of the learning phase, the network is ready for use (generalization)**

Boltzmann Machines

A Boltzmann machine is a network of units with an *energy* **defined for the overall network. Its units produce binary results. The global energy,** *E***, is:**

$$
E = -(\sum_{i < j} w_{ij} s_i s_j + \sum_i \theta_i s_i)
$$

where:

- w_{ii} is the connection strength between unit *j* and unit *i*.
- s_i is the state, $s_i \in \{0,1\}$, of unit *i*
- **is the bias of unit** *i* **in the global energy function. (**− **is the activation threshold for the unit)**

$$
\Delta E_i = \sum_{j>i} w_{ij} s_j + \sum_{j
$$

• **From this we obtain (the scalar T is called the** *temperature***):**

$$
p_{i=On} = \frac{1}{1+exp\left(-\frac{\Delta E_i}{T}\right)}
$$

Explainable AI - Why Do You Think It Will Be Successful?

Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)