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The ML problem in regression

What is the function f(.) ?

Solution: This is where the different ML methods come in

Linear model: f(x) = wlx

Linear basis functions: f(x) = w! ¢ (x)

» Where ¢p(x) = [¢o(x) ¢p1(x) ... (x)]T and ¢;(x) is the basis function.
 Choices for the basis function:
* Powers of x: ¢;(x) = x!
 Gaussian / Sigmoidal / Fourier / ...
Neural networks
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Classification

Given training data set with:
* Inputvalues: x, = [x; x5 ... xy]T forn=1..N.
» Output class labels, for example:

* 0/ or —1/+1 for binary classification problems
- 1... Kfor multi-class classification problems
 1-of-K coding scheme:

y=1[0..010 ..0]"

where, if x,, belongs to class k, then the ki bit is 1 and all others are 0.

Objective: Predict the output class for new, unknown inputs x,,,.
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Classification strategies

Linear discriminants
(2-class classifiers)
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Combining 2-class classifiers to obtain multi-class classifiers is a bad idea !!

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



Neural Networks

A neural network consists of a set of nodes

&
(neurons/units) connected by links $é\°}\
 Each link has a numeric weight ap=—-1 Q’;\"’% a; = g(in,)
i . 1,4 i— 9 l
Each unit has: 0,i _ _
. : : : g
a set of input I|n.ks from other u!1|ts, Wji\> |
* a set of output links to other units, a; ' in; a;
* a current activation level, and —
* an activation function to compute the Input Links  |nput — Output
activation level in the next time step. Function Activation
Function

n n
in; = z W;ia; a; =g(in;)) = g 2 W;.a;
j=0 j=0
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Types of Neural Networks - et
y p Name Formula
X4 Identity Alx) = I
Single neuron: perceptron, —
y =0 (b"'zwijxi) 4 P P Sigmoid Alx) = -
X, -" linear / logistic regression rr—— ‘
Tanh Alx) =
e*+e~*
X3 Recurrent network -1 ifx<0
Step Alx) = 1 ifx>0
Feed-forward network
(no cycles) -- non-linear
classification & regression
| g
—— output layer
input layer \ Y 4 (class/target)
hidden layers: “deep” if > 1
P (input | hidden) @ Symmetric (RBM)
‘@ P (hidden | input)  unsupervised, trained
b + zwijhj = ° = to maximize likelihood
J h))=0|b, + E WX, of input data
X i =
G 'T‘ a mixture model ©

same set of weights



Learning in Single Layered Networks

Idea: Optimize the weights so as to minimize error function:

2
E = %ET‘I"Z — %(_‘y — g(Z}LO W]x]))

We can use gradient descent to reduce the squared error by

calculating the partial derivative of E with respect to each weight.

J0E
6Wj

JErr
= Err X W

J

—Errxaw y—g ZWx]

Weight update rule:
W< W;+aXxErrx g'(in) X x;

where o is the learning rate

= —Err X g'(in) X x;
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Multi-Layer Feed-Forward Network

’ O. Output units

EBESEE
/4%”?1':“:0
//? f// fp“/

|, Input units

Weight updation rule at the output layer: W; « W; + a x Err x g'(in) x x; (same as single layer)

However in multilayer networks, the hidden layers also contribute to the error at the output.

So the important question is: How do we revise the hidden layers?
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Back-Propagation Learning

» To update the connections between the input units and the hidden units, we need to define a quantity
analogous to the error term for output nodes

« We do an error back-propagation, defining error as A; = Err; X g'(in;)

» The idea is that a hidden node j is responsible for some fraction of the error in each of the output
nodes to which it connects

« Thus the A, values are divided according to the strength of the connection between the hidden node
and the output node and are propagated back to provide the A; values for the hidden layer.

* The propagation rule for the A values is the following:
Aj = g'(iny) Y; W, ;A

The update rule for the hidden layers is: W ; « W, ; + a x a;, X A;
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The mathematics behind the updation rule

The squared on a single example is defined as:

1
E=:2%i—a;)°

where the sum is over the nodes in the output layer. To obtain the gradient with respect to a specific

weight W;; in the output layer, we need only expand out the activation a; as all other terms in the

summation are unaffected by W

OE dg(in;) din;
=—(yi — a) = -y —a;) = —(¥i —ay)g (in;)
aW]’l yl l aW yl l aW]’l yl l g l

N - W-.:.:a:

= —(y; —apg'(iny)a; = —a;A;

OW]-,,-

=—-(yi—a)g

Wj,i — Wj,i + a X (1]- X Ai
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The mathematics contd.

a [ ai [
Z( Yi— i g(ln ) Z(yl _al)g,(lnl) e

OWk] 6Wk] Oij
ag(in;
— z A; 0Wk,j (2 Wji“i) 2 AW, OWk] z AW, (')Wk]
adin;
z AW;ig (m]) J

Cm O (O

d
A;W m ZW . ‘
z jid ( OWkJ- ( - kj k) I/Vj,i ,

= —z AW;ig'(inj)ay, = —agA; ‘ ’ ‘ 9 ’
i

Wk,j «— Wk,j+a>< ay XA]




Gradient Descent

The weight updation rules define a single step of gradient descent

Each training sample is presented and weights are updated

This continues, until the training error converges to a (possibly local) minima

At the end of the learning phase, the network is ready for use (generalization)
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Boltzmann Machines

A Boltzmann machine is a network of units with an energy defined for the overall network. Its units
produce binary results. The global energy, E, is:

E = —(Zi<jWijSiSj + Y, 0;s;)

where:
* w;; is the connection strength between unit j and unit .
 s;is the state, s; e { 0,1}, of unit i
« 0, is the bhias of unit i in the global energy function. (—8; is the activation threshold for the unit)

AE; = Z w;is; + Z w;j;sj + 0;

j>i j<i
» From this we obtain (the scalar T is called the temperature):
1

1+ exp (— ATI::")

Pi=on =
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