Reasoning with Bayes Networks

Course: CS40022 Instructor: Dr. Pallab Dasgupta

Department of Computer Science & Engineering Indian Institute of Technology Kharagpur

Belief Network Example

Conditional independence

 $P(x_{1},..., x_{n})$ $= P(x_{n} | x_{n-1},..., x_{1})P(x_{n-1},..., x_{1})$ $= P(x_{n} | x_{n-1},..., x_{1})P(x_{n-1} | x_{n-2},..., x_{1})$ $...P(x_{2} | x_{1})P(x_{1})$

$$= \prod_{i=1}^{n} P(\mathbf{x}_{i} | \mathbf{x}_{i-1}, \dots, \mathbf{x}_{1})$$

The belief network represents conditional independence:

 $P(X_i | X_i, ..., X_i) = P(X_i | Parents(X_i))$

Inferences using belief networks

 Diagnostic inferences (from effects to causes)
Given that JohnCalls, infer that P(Burglary | JohnCalls) = 0.016

 Causal inferences (from causes to effects)
Given Burglary, infer that P(JohnCalls | Burglary) = 0.86 and P(MaryCalls | Burglary) = 0.67

Inferences using belief networks

- Intercausal inferences (between causes of a common effect)
 - Given Alarm, we have

P(Burglary | Alarm) = 0.376.

- If we add evidence that Earthquake is true, then P(Burglary | Alarm > Earthquake) goes down to 0.003
- Mixed inferences
 - ◆ Setting the effect JohnCalls to true and the cause Earthquake to false gives P(Alarm | JohnCalls ∧ ¬ Earthquake) = 0.003

The four patterns

Answering queries

- We consider cases where the belief network is a poly-tree
 - There is at most one undirected path between any two nodes

Answering queries

Answering queries

- $U = U_1 \dots U_m$ are parents of node X
- $Y = Y_1 \dots Y_n$ are children of node X
- X is the query variable
- E is a set of evidence variables
- The aim is to compute P(X | E)

Definitions

E_X⁺ is the causal support for X
The evidence variables "above" X that are

connected to X through its parents

E_X⁻ is the evidential support for X
The evidence variables "below" X that are

connected to X through its children

E_{Ui \ X} refers to all the evidence connected to node U_i except via the path from X

E_{Yi \ X}⁺ refers to all the evidence connected to node Y_i through its parents for X

The computation of P(X|E) $P(X|E) = P(X|E_{X}^{-}, E_{X}^{+})$ $= \frac{P(E_{X}^{-}|X, E_{X}^{+})P(X|E_{X}^{+})}{P(E_{X}^{-}|E_{X}^{+})}$

- Since X d-separates E_X^+ from E_X^- , we can use conditional independence to simplify the first term in the numerator
- We can treat the denominator as a constant

$\mathsf{P}(\mathsf{X} | \mathsf{E}) = \alpha \, \mathsf{P}(\mathsf{E}_{\mathsf{X}}^{-} | \mathsf{X}) \mathsf{P}(\mathsf{X} | \mathsf{E}_{\mathsf{X}}^{+})$

The computation of P(X | E_X⁺)

We consider all possible configurations of the parents of X and how likely they are given E_X^+ .

Let U be the vector of parents $U_1, ..., U_m$, and let u be an assignment of values to them.

 $P(X | E_X^+) = \sum_u P(X | u, E_X^+) P(u | E_X^+)$

The computation of $P(X | E_x^+)$ $P(X | E_X^+) = \sum P(X | u, E_X^+) P(u | E_X^+)$ u d-separates X from E_{x}^{+} , so the first term simplifies to P(X | u)We can simplify the second term by noting $- E_{x}^{+}$ d-separates each U_i from the others, the probability of a conjunction of independent variables is equal to the product of their individual probabilities

 $P(X | E_X^+) = \sum_{u} P(X | u) \prod_{i} P(u_i | E_X^+)$

The computation of $P(X | E_X^+)$ $P(X | E_X^+) = \sum_{u} P(X | u) \prod_{i} P(u_i | E_X^+)$

The last term can be simplified by partitioning E_X^+ into $E_{U1\setminus X}$, ..., $E_{Um\setminus X}$ and noting that $E_{Ui\setminus X}$ d-separates U_i from all the other evidence in E_X^+

$$P(X | E_X^+) = \sum_{u} P(X | u) \prod_{i} P(u_i | E_{Ui \setminus X})$$

• P(X | u) is a lookup in the cond prob table of X

• $P(u_i | E_{Ui \setminus X})$ is a recursive (smaller) sub-problem

The computation of $P(E_X^{-}|X)$

Let Z_i be the parents of Y_i other than X, and let z_i be an assignment of values to the parents

- The evidence in each Y_i box is conditionally independent of the others given X

 $\mathsf{P}(\mathsf{E}_{\mathsf{X}}^{-} \mid \mathsf{X}) = \prod_{i} \mathsf{P}(\mathsf{E}_{\mathsf{Yi} \setminus \mathsf{X}} \mid \mathsf{X})$

The computation of $P(E_X^{-}|X)$

$P(E_X^- | X) = \prod_i P(E_{Yi \setminus X} | X)$

Averaging over Y_i and z_i yields:

 $P(E_X^- \mid X) = \prod_i \sum_{y_i} \sum_{z_i} P(E_{Y_i \setminus X} \mid X, y_i, z_i) P(y_i, z_i \mid X)$

The computation of $P(E_X^- | X)$ $P(E_X^- | X) = \prod_i \sum_{y_i} \sum_{z_i} P(E_{Yi \setminus X} | X, y_i, z_i) P(y_i, z_i | X)$

Breaking $E_{Yi|X}$ into the two independent components E_{Yi}^{-} and $E_{Yi|X}^{+}$

 $P(E_X^- \mid X) = \prod_i \sum_{y_i} \sum_{z_i} P(E_{Y_i}^- \mid X, y_i, z_i)$ $P(E_{Y_i \setminus X}^+ \mid X, y_i, z_i) P(y_i, z_i \mid X)$

The computation of $P(E_X^- | X)$ $P(E_X^- | X) = \prod_i \sum_{y_i} \sum_{z_i} P(E_{Y_i}^- | X, y_i, z_i)$ $P(E_{Y_i \setminus X}^+ | X, y_i, z_i) P(y_i, z_i | X)$

 E_{Yi}^{-} is independent of X and z_i given y_i , and E_{YiX}^{+} is independent of X and y_i

 $P(E_{X}^{-} | X) = \prod_{i} \sum_{y_{i}} P(E_{Y_{i}}^{-} | y_{i}) \sum_{z_{i}} P(E_{Y_{i}X}^{+} | z_{i}) P(y_{i}, z_{i} | X)$

The computation of $P(E_X^{-}|X)$

$P(E_{X}^{-} | X) = \prod_{i} \sum_{y_{i}} P(E_{Y_{i}}^{-} | y_{i}) \sum_{z_{i}} P(E_{Y_{\lambda}X}^{+} | z_{i}) P(y_{i}, z_{i} | X)$

Apply Bayes' rule to $P(E_{Yi\setminus X}^+ | z_i)$:

 $P(E_{X}^{-} | X) = \prod_{i} \sum_{y_{i}} P(E_{Y_{i}}^{-} | y_{i}) \sum_{z_{i}} \frac{P(z_{i} | E_{Y_{\lambda}X}^{+})P(E_{Y_{\lambda}X}^{+})}{P(z_{i})} P(y_{i}, z_{i} | X)$

The computation of $P(E_X^- | X)$ $P(E_X^- | X) =$

 $\prod_{i} \sum_{y_i} P(E_{Y_i}^- | y_i) \sum_{z_i} \frac{P(z_i | E_{Y_i X}^+) P(E_{Y_i X}^+)}{P(z_i)} P(y_i, z_i | X)$

• Rewriting the conjunction of Y_i and z_i : $P(E_X^- \mid X) = \prod_i \sum_{y_i} P(E_{Y_i}^- \mid y_i)$ $\sum_{z_i} \frac{P(z_i \mid E_{Y_i \setminus X}^+) P(E_{Y_i \setminus X}^+)}{P(z_i)} P(y_i \mid X, z_i) P(z_i \mid X)$

The computation of $P(E_X^- | X)$ $P(E_X^- | X) = \prod_i \sum_{y_i} P(E_{Y_i}^- | y_i)$ $\sum_{z_i} \frac{P(z_i | E_{Y_i \setminus X}^+) P(E_{Y_i \setminus X}^+)}{P(z_i)} P(y_i | X, z_i) P(z_i | X)$

 $P(z_i | X) = P(z_i) \text{ because } Z \text{ and } X \text{ are}$ d-separated. Also $P(E_{Yi \setminus X}^+) \text{ is a constant}$ $P(E_X^- | X) =$ $\prod_{i} \sum_{y_i} P(E_{Yi}^- | y_i) \sum_{z_i} \beta_i P(z_i | E_{Yi \setminus X}^+) P(y_i | X, z_i)$

The computation of $P(E_x^{-}|X)$ $P(E_{x}^{-} | X) =$ $\sum P(E_{Y_i}^- | y_i) \sum \beta_i P(z_i | E_{Y_i \setminus X}^+) P(y_i | X, z_i)$ Zi • The parents of Y_i (the Z_{ii}) are independent of each other. • We also combine the β_i into one single β

The computation of $P(E_X^{-}|X)$

 $P(E_{X}^{-} | X) = \beta \prod_{i} \sum_{y_{i}} P(E_{Y_{i}}^{-} | y_{i}) \sum_{z_{i}} P(y_{i} | X, z_{i}) \prod_{j} P(z_{ij} | E_{Z_{ij} \setminus Y_{i}})$

- $P(E_{Yi}^{-} | y_i)$ is a recursive instance of $P(E_X^{-} | X)$
- $P(y_i | X, z_i)$ is a cond prob table entry for Y_i
- $P(z_{ij} | E_{Zij \setminus Yi})$ is a recursive sub-instance of the P(X | E) calculation

Inference in multiply connected belief networks

- Clustering methods
 - Transform the net into a probabilistically equivalent (but topologically different) polytree by merging offending nodes
- Conditioning methods
 - Instantiate variables to definite values, and then evaluate a poly-tree for each possible instantiation

Inference in multiply connected belief networks

Stochastic simulation methods

- Use the network to generate a large number of concrete models of the domain that are consistent with the network distribution.
- They give an approximation of the exact evaluation.

Default reasoning

- Some conclusions are made by default unless a counter-evidence is obtained
 - Non-monotonic reasoning
- Points to ponder
 - Whats the semantic status of default rules?
 - What happens when the evidence matches the premises of two default rules with conflicting conclusions?
 - If a belief is retracted later, how can a system keep track of which conclusions need to be retracted as a consequence?

Issues in Rule-based methods for Uncertain Reasoning

Locality

 ◆ In logical reasoning systems, if we have A ⇒ B, then we can conclude B given evidence A, without worrying about any other rules. In probabilistic systems, we need to consider all available evidence.

Issues in Rule-based methods for Uncertain Reasoning

Detachment

 Once a logical proof is found for proposition B, we can use it regardless of how it was derived (*it can be detached from its justification*). In probabilistic reasoning, the source of the evidence is important for subsequent reasoning.

Issues in Rule-based methods for Uncertain Reasoning

- Truth functionality
 - In logic, the truth of complex sentences can be computed from the truth of the components. Probability combination does not work this way, except under strong independence assumptions.

A famous example of a truth functional system for uncertain reasoning is the *certainty factors model*, developed for the Mycin medical diagnostic program

Dempster-Shafer Theory

Designed to deal with the distinction between uncertainty and ignorance.

We use a belief function Bel(X) – probability that the evidence supports the proposition

When we do not have any evidence about X, we assign Bel(X) = 0 as well as Bel(¬X) = 0

Dempster-Shafer Theory

For example, if we do not know whether a coin is fair, then: Bel(Heads) = Bel(¬Heads) = 0

If we are given that the coin is fair with 90% certainty, then: Bel(Heads) = 0.9 X 0.5 = 0.45 Bel(¬Heads) = 0.9 X 0.5 = 0.45 Note that we still have a gap of 0.1 that is not accounted for by the evidence

Fuzzy Logic

- Fuzzy set theory is a means of specifying how well an object satisfies a vague description
 - Truth is a value between 0 and 1
 - Uncertainty stems from lack of evidence, but given the dimensions of a man concluding whether he is fat has no uncertainty involved

The rules for evaluating the fuzzy truth, T, of a complex sentence are

 $T(A \land B) = min(T(A), T(B))$ $T(A \lor B) = max(T(A), T(B))$ $T(\neg A) = 1 - T(A)$