
Introduction to PlanningIntroduction to Planning

Course: CS40022Course: CS40022
Instructor: Dr. Instructor: Dr. Pallab DasguptaPallab Dasgupta

Department of Computer Science & EngineeringDepartment of Computer Science & Engineering
Indian Institute of Technology Indian Institute of Technology KharagpurKharagpur

2CSE, IIT CSE, IIT KharagpurKharagpur

OutlineOutline
Planning versus SearchPlanning versus Search
Representation of planning problemsRepresentation of planning problems

Situation calculusSituation calculus
STRIPSSTRIPS
ADLADL

Planning AlgorithmsPlanning Algorithms
Partial order planningPartial order planning
GraphPlanGraphPlan
SATPlanSATPlan

3CSE, IIT CSE, IIT KharagpurKharagpur

The Planning ProblemThe Planning Problem

Get tea, biscuits, and a book.Get tea, biscuits, and a book.

Given:Given:
Initial state:Initial state: The agent is at The agent is at homehome without without
tea, biscuits, booktea, biscuits, book
Goal state:Goal state: The agent is at The agent is at homehome with tea, with tea,
biscuits, bookbiscuits, book

4CSE, IIT CSE, IIT KharagpurKharagpur

The Planning ProblemThe Planning Problem

States can be represented by predicates States can be represented by predicates
such as such as At(x), Have(y), Sells(x, y)At(x), Have(y), Sells(x, y)

Actions:Actions:
Go(y) :Go(y) : Agent goes to y Agent goes to y

–– causes At(y) to be truecauses At(y) to be true
Buy(z):Buy(z): Agent buys z Agent buys z

–– causes Have(z) to be truecauses Have(z) to be true
Steal(z):Steal(z): Agent steals zAgent steals z

5CSE, IIT CSE, IIT KharagpurKharagpur

Planning as SearchPlanning as Search
Actions are given as logical descriptions of Actions are given as logical descriptions of
preconditions and effects. preconditions and effects.

This enables the planner to make direct This enables the planner to make direct
connections between states and actions.connections between states and actions.

The planner is free to add actions to the plan The planner is free to add actions to the plan
wherever they are required, rather than in an wherever they are required, rather than in an
incremental way starting from the initial state.incremental way starting from the initial state.

Most parts of the world are independent of Most parts of the world are independent of
most other parts most other parts –– hence divide & conquer hence divide & conquer
works well.works well.

6CSE, IIT CSE, IIT KharagpurKharagpur

Situation Calculus
Initial state:

At(Home, s0) ∧ ¬ Have(Tea, s0) ∧
¬ Have(Biscuits, s0) ∧ ¬Have(Book, s0)

Goal state:
∃s At(Home, s) ∧ Have(Tea, s) ∧

Have(Biscuits, s) ∧ Have(Book, s)

7CSE, IIT CSE, IIT KharagpurKharagpur

Situation Calculus
Operators:
∀ a,s Have(Tea, Result(a,s)) ⇔

[(a = Buy(Tea) ∧ At(Tea-shop,s))
∨ (Have(Tea, s) ∧ a ≠ Drop(Tea))]

Result(a,s) names the situation resulting from
executing the action a in the situation s

8CSE, IIT CSE, IIT KharagpurKharagpur

Practical PlannersPractical Planners

To make planning practical we need to:To make planning practical we need to:

Restrict the language with which we define Restrict the language with which we define
problems. With a restrictive language, problems. With a restrictive language,
there are fewer possible solutions to there are fewer possible solutions to
search throughsearch through

Use a specialUse a special--purpose algorithm called a purpose algorithm called a
planner planner rather than a general purpose rather than a general purpose
theorem theorem proverprover..

9CSE, IIT CSE, IIT KharagpurKharagpur

STRIPSSTRIPS

STanfordSTanford Research Institute Problem SolverResearch Institute Problem Solver

Many planners today use specification Many planners today use specification
languages that are variants of the one used in languages that are variants of the one used in
STRIPS.STRIPS.

10CSE, IIT CSE, IIT KharagpurKharagpur

Representing statesRepresenting states

States are represented by conjunctions of States are represented by conjunctions of
functionfunction--free ground literalsfree ground literals

At(Home) At(Home) ∧∧ ¬¬Have(Tea) Have(Tea) ∧∧
¬¬Have(Biscuits) Have(Biscuits) ∧∧ ¬¬Have(Book)Have(Book)

11CSE, IIT CSE, IIT KharagpurKharagpur

Representing goalsRepresenting goals
Goals are also described by conjunctions of Goals are also described by conjunctions of
literalsliterals

At(Home) At(Home) ∧∧ Have(Tea) Have(Tea) ∧∧
Have(Biscuits) Have(Biscuits) ∧∧ Have(Book)Have(Book)

Goals can also contain variablesGoals can also contain variables
At(x) At(x) ∧∧ Sells(x, Tea)Sells(x, Tea)

The above goal is The above goal is being at a shop that being at a shop that
sells teasells tea

12CSE, IIT CSE, IIT KharagpurKharagpur

Representing ActionsRepresenting Actions
Action descriptionAction description –– serves as a nameserves as a name
PreconditionPrecondition –– a conjunction of positive a conjunction of positive
literals (why positive?)literals (why positive?)
EffectEffect –– a conjunction of literals (+a conjunction of literals (+veve or or ––veve))

The original version had an The original version had an add listadd list and a and a
delete listdelete list..

Op(Op(ACTION:ACTION: Go(there),Go(there),
PRECOND:PRECOND: At(here) At(here) ∧∧ Path(here, there),Path(here, there),
EFFECT:EFFECT: At(there) At(there) ∧∧ ¬¬At(here))At(here))

13CSE, IIT CSE, IIT KharagpurKharagpur

Representing PlansRepresenting Plans
A set of plan steps. Each step is one of the A set of plan steps. Each step is one of the
operators for the problem.operators for the problem.

A set of step ordering constraints. Each A set of step ordering constraints. Each
ordering constraint is of the form ordering constraint is of the form SSii pp SSjj, ,
indicating indicating SSii must occur sometime before must occur sometime before SSjj..

A set of variable binding constraints of the A set of variable binding constraints of the
form form v = xv = x, where v is a variable in some step, , where v is a variable in some step,
and x is either a constant or another variable.and x is either a constant or another variable.

A set of causal links written as A set of causal links written as S S →→c: Sc: S’’
indicatingindicating S satisfies the precondition c for S’S satisfies the precondition c for S’..

14CSE, IIT CSE, IIT KharagpurKharagpur

ExampleExample
ActionsActions
Op(Op(ACTION:ACTION: RightShoeRightShoe, ,

PRECOND:PRECOND: RightSockOnRightSockOn, ,
EFFECT:EFFECT: RightShoeOnRightShoeOn))

Op(Op(ACTION:ACTION: RightSockRightSock, ,
EFFECT:EFFECT: RightSockOnRightSockOn))

Op(Op(ACTION:ACTION: LeftShoeLeftShoe, ,
PRECOND:PRECOND: LeftSockOnLeftSockOn, ,
EFFECT:EFFECT: LeftShoeOnLeftShoeOn))

Op(Op(ACTION:ACTION: LeftSockLeftSock, ,
EFFECT:EFFECT: LeftSockOnLeftSockOn))

15CSE, IIT CSE, IIT KharagpurKharagpur

ExampleExample
Initial planInitial plan

Plan(Plan(
STEPS:STEPS: { {

S1: Op(ACTION: start),S1: Op(ACTION: start),
S2: Op(ACTION: finish, S2: Op(ACTION: finish,

PRECOND: PRECOND: RightShoeOnRightShoeOn ∧∧
LeftShoeOnLeftShoeOn) },) },

ORDERINGS:ORDERINGS: {{SS11 pp SS22},},
BINDINGS:BINDINGS: { },{ },
LINKS:LINKS: { }{ }))

16CSE, IIT CSE, IIT KharagpurKharagpur

Action Description Language (ADL)Action Description Language (ADL)

Effect PEffect P∧¬∧¬Q means Q means
add P, add P, ¬¬Q and delete Q and delete
Q, Q, ¬¬PP

Effect PEffect P∧¬∧¬Q means Q means
add P, delete Qadd P, delete Q

Open World:Open World:
Unmentioned literals Unmentioned literals
are unknownare unknown

Closed World: Closed World:
Unmentioned literals Unmentioned literals
are falseare false

Both +Both +ve ve and and ––ve ve
literals in statesliterals in states

¬¬Thin Thin ∧∧ ¬¬FastFast

Only +Only +ve ve literals in literals in
statesstates

Fat Fat ∧∧ SlowSlow

ADLADLSTRIPSSTRIPS

17CSE, IIT CSE, IIT KharagpurKharagpur

Action Description Language (ADL)Action Description Language (ADL)

Goals allow Goals allow
conjunctions and conjunctions and
disjunctionsdisjunctions

Goals are conjunctionsGoals are conjunctions

Quantified variables in Quantified variables in
goalsgoals
∃∃x At(Tea,x) x At(Tea,x) ∧∧

At(Coffee,x)At(Coffee,x)

Only ground literals in Only ground literals in
goalsgoals

Fat Fat ∧∧ SlowSlow

ADLADLSTRIPSSTRIPS

18CSE, IIT CSE, IIT KharagpurKharagpur

Partial Order PlanningPartial Order Planning
Initial state:Initial state:

Op(Op(ACTION:ACTION: Start, Start,
EFFECT:EFFECT: At(Home) At(Home) ∧∧ Sells(BS, Book) Sells(BS, Book)

∧∧ Sells(TS, Tea) Sells(TS, Tea)
∧∧ Sells(TS, Biscuits))Sells(TS, Biscuits))

Goal state:Goal state:
Op(Op(ACTION:ACTION: Finish, Finish,

PRECOND:PRECOND: At(Home) At(Home) ∧∧ Have(Tea) Have(Tea)
∧∧ Have(Biscuits) Have(Biscuits)
∧∧ Have(Book))Have(Book))

19CSE, IIT CSE, IIT KharagpurKharagpur

Partial Order PlanningPartial Order Planning
Actions:Actions:

Op(Op(ACTION:ACTION: Go(there), Go(there),
PRECOND:PRECOND: At(here), At(here),
EFFECT:EFFECT: At(there) At(there) ∧∧ ¬¬At(here))At(here))

Op(Op(ACTION:ACTION: Buy(x), Buy(x),
PRECOND:PRECOND: At(store) At(store) ∧∧ Sells(store, x),Sells(store, x),
EFFECT:EFFECT: Have(x))Have(x))

20CSE, IIT CSE, IIT KharagpurKharagpur

Partial Order Planning AlgorithmPartial Order Planning Algorithm

Function POP(Function POP(initial, goal, operatorsinitial, goal, operators))
// Returns // Returns planplan

planplan ←← MakeMake--MinimalMinimal--Plan(Plan(initial, goalinitial, goal))
Loop doLoop do

If Solution(If Solution(planplan) then return) then return planplan
S, cS, c ←← SelectSelect--SubgoalSubgoal((planplan))
ChooseChoose--Operator(Operator(plan, operatorsplan, operators, S, c, S, c))
ResolveResolve--Threats(Threats(planplan))

endend

21CSE, IIT CSE, IIT KharagpurKharagpur

POP Algorithm (Contd.)POP Algorithm (Contd.)

Function SelectFunction Select--SubgoalSubgoal((planplan))
// Returns // Returns S, cS, c

pick a plan step pick a plan step SS from STEPS(from STEPS(planplan))
with a precondition with a precondition CC that that
has not been achievedhas not been achieved

Return Return S, cS, c

22CSE, IIT CSE, IIT KharagpurKharagpur

Proc ChooseProc Choose--OperatorOperator((plan, operatorsplan, operators, S, c, S, c))

choose a step choose a step S’S’ from from operatorsoperators or or
STEPS(STEPS(planplan)) that has that has cc as an effectas an effect

if there is no such step then if there is no such step then failfail
add the causal link add the causal link S’ S’ →→ c: Sc: S to to LINKS(LINKS(planplan))
add the ordering constraint add the ordering constraint SS’’ pp SS to to

ORDERINGS(ORDERINGS(planplan))

if if SS’’ is a newly added step from is a newly added step from operatorsoperators
then add then add SS’’ to to STEPS(STEPS(planplan)) and add and add
Start Start pp SS’’ pp FinishFinish to to ORDERINGS(ORDERINGS(planplan))

23CSE, IIT CSE, IIT KharagpurKharagpur

POP Algorithm (Contd.)POP Algorithm (Contd.)

Procedure ResolveProcedure Resolve--ThreatsThreats((planplan))

for each for each S’’S’’ that threatens a link that threatens a link
SSii →→ c: c: SSjj in in LINKS(LINKS(planplan)) dodo

choose eitherchoose either
Promotion:Promotion: Add Add SS’’’’ pp SSii to to

ORDERINGS(ORDERINGS(planplan))
Demotion:Demotion: Add Add SSjj pp SS’’’’ to to

ORDERINGS(ORDERINGS(planplan))
if not if not Consistent(Consistent(planplan)) then then failfail

24CSE, IIT CSE, IIT KharagpurKharagpur

Partially instantiated operatorsPartially instantiated operators

So far we have not mentioned anything about So far we have not mentioned anything about
binding constraintsbinding constraints

Should an operator that has the effect, say, Should an operator that has the effect, say,
¬¬At(x)At(x),, be considered a threat to the be considered a threat to the
condition, condition, At(Home)At(Home) ??

Indeed it is a Indeed it is a possible threatpossible threat because because x x
may be bound to may be bound to HomeHome

25CSE, IIT CSE, IIT KharagpurKharagpur

Dealing with possible threatsDealing with possible threats

Resolve now with an equality constraintResolve now with an equality constraint
Bind Bind x x to something that resolves the to something that resolves the
threat (say threat (say x = TSx = TS))

Resolve now with an inequality constraintResolve now with an inequality constraint
Extend the language of variable binding to Extend the language of variable binding to
allow allow x x ≠≠ HomeHome

Resolve laterResolve later
Ignore possible threats. If Ignore possible threats. If x = Homex = Home is is
added later into the plan, then we will added later into the plan, then we will
attempt to resolve the threat (by promotion attempt to resolve the threat (by promotion
or demotion)or demotion)

26CSE, IIT CSE, IIT KharagpurKharagpur

Proc ChooseProc Choose--OperatorOperator((plan, operatorsplan, operators, S, c, S, c))

choose a step choose a step S’ S’ from from operatorsoperators or or
STEPS(STEPS(planplan)) that has that has c’c’ as an effectas an effect
s.t. s.t. u = u = UNIFY(c, c’, BINDINGS(plan))UNIFY(c, c’, BINDINGS(plan))

if there is no such step then if there is no such step then failfail
add add u u to to BINDINGS(BINDINGS(plan plan))
add the causal link add the causal link S’ S’ →→ c: Sc: S to to LINKS(LINKS(planplan))
add the ordering constraint add the ordering constraint SS’’ pp SS to to

ORDERINGS(ORDERINGS(planplan))

if if SS’’ is a newly added step from is a newly added step from operatorsoperators thenthen
add add SS’’ to to STEPS(STEPS(planplan)) and addand add
Start Start pp SS’’ pp FinishFinish to to ORDERINGS(ORDERINGS(planplan))

27CSE, IIT CSE, IIT KharagpurKharagpur

Procedure ResolveProcedure Resolve--ThreatsThreats((planplan))

for each for each SSii →→ c: c: SSjj in in LINKS(LINKS(planplan)) dodo
for each for each SS’’’’ in in STEPS(STEPS(planplan)) dodo

for each for each cc’’ in in EFFECTS(SEFFECTS(S’’’’)) dodo
if if SUBST(BINDINGS(SUBST(BINDINGS(planplan), c)), c)

= SUBST(BINDINGS(= SUBST(BINDINGS(planplan),), ¬¬cc’’))
then choose eitherthen choose either

Promotion:Promotion: Add Add SS’’’’ pp SSii to to
ORDERINGS(ORDERINGS(planplan))

Demotion:Demotion: Add Add SSjj pp SS’’’’ to to
ORDERINGS(ORDERINGS(planplan))

if not if not Consistent(Consistent(planplan)) then then failfail

	Introduction to Planning
	Outline
	The Planning Problem
	The Planning Problem
	Planning as Search
	Practical Planners
	STRIPS
	Representing states
	Representing goals
	Representing Actions
	Representing Plans
	Example
	Example
	Action Description Language (ADL)
	Action Description Language (ADL)
	Partial Order Planning
	Partial Order Planning
	Partial Order Planning Algorithm
	POP Algorithm (Contd.)
	POP Algorithm (Contd.)
	Partially instantiated operators
	Dealing with possible threats

