Introduction to Planning

Course: CS40022
Instructor: Dr. Pallab Dasgupta

Department of Computer Science \& Engineering Indian Institute of Technology Kharagpur

Outline

- Planning versus Search
- Representation of planning problems
- Situation calculus
- STRIPS
- ADL
- Planning Algorithms
- Partial order planning
- GraphPlan
- SATPlan

The Planning Problem

Get tea, biscuits, and a book.

- Given:
- Initial state: The agent is at home without tea, biscuits, book
- Goal state: The agent is at home with tea, biscuits, book

The Planning Problem

- States can be represented by predicates such as At(x), Have(y), Sells(x, y)
- Actions:
- Go(y) : Agent goes to y
- causes At(y) to be true
- Buy(z): Agent buys z
- causes Have(z) to be true
- Steal(z): Agent steals z

Planning as Search

- Actions are given as logical descriptions of preconditions and effects.
- This enables the planner to make direct connections between states and actions.
- The planner is free to add actions to the plan wherever they are required, rather than in an incremental way starting from the initial state.
- Most parts of the world are independent of most other parts - hence divide \& conquer works well.

Situation Calculus

Initial state:
At(Home, s0) $\wedge \neg$ Have(Tea, s0) \wedge
\neg Have(Biscuits, s0) ^ \neg Have(Book, s0)

Goal state:
$\exists \mathrm{s}$ At(Home, s) ^ Have(Tea, s) ^ Have(Biscuits, s) ^ Have(Book, s)

Situation Calculus

Operators:
\forall a,s Have(Tea, Result(a,s)) \Leftrightarrow

$$
\begin{aligned}
& {[(\mathrm{a}=\operatorname{Buy}(\text { Tea }) \wedge \operatorname{At}(\text { Tea-shop,s }))} \\
& \vee(\operatorname{Have}(\text { Tea, } s) \wedge a \neq \operatorname{Drop}(\text { Tea }))]
\end{aligned}
$$

Result(a,s) names the situation resulting from executing the action a in the situation s

Practical Planners

To make planning practical we need to:

- Restrict the language with which we define problems. With a restrictive language, there are fewer possible solutions to search through
- Use a special-purpose algorithm called a planner rather than a general purpose theorem prover.

STRIPS

- STanford Research Institute Problem Solver
- Many planners today use specification languages that are variants of the one used in STRIPS.

Representing states

- States are represented by conjunctions of function-free ground literals

At(Home) $\wedge \neg$ Have(Tea) \wedge \neg Have(Biscuits) $\wedge \neg$ Have(Book)

Representing goals

- Goals are also described by conjunctions of literals

At(Home) \wedge Have(Tea) ^ Have(Biscuits) ^ Have(Book)

- Goals can also contain variables

At $(x) \wedge$ Sells(x, Tea)

- The above goal is being at a shop that sells tea

Representing Actions

- Action description - serves as a name
- Precondition - a conjunction of positive literals (why positive?)
- Effect - a conjunction of literals (+ve or -ve)
- The original version had an add list and a delete list.

Op(ACTION: Go(there), PRECOND: At(here) ^ Path(here, there), EFFECT: At(there) $\wedge \neg A t$ (here))

Representing Plans

- A set of plan steps. Each step is one of the operators for the problem.
- A set of step ordering constraints. Each ordering constraint is of the form $S_{i} \prec S_{j}$, indicating S_{i} must occur sometime before S_{j}.
- A set of variable binding constraints of the form $v=x$, where v is a variable in some step, and x is either a constant or another variable.
- A set of causal links written as $S \rightarrow \mathrm{c}: \mathrm{S}^{\prime}$ indicating S satisfies the precondition c for S^{\prime}.

Example

- Actions

Op(ACTION: RightShoe,
PRECOND: RightSockOn,
EFFECT: RightShoeOn)
Op(ACTION: RightSock,
EFFECT: RightSockOn)
Op(ACTION: LeftShoe, PRECOND: LeftSockOn,
EFFECT: LeftShoeOn)
Op(ACTION: LeftSock,
EFFECT: LeftSockOn)

Example

- Initial plan

Plan(STEPS: \{ S1: Op(ACTION: start), S2: Op(ACTION: finish, PRECOND: RightShoeOn ^ LeftShoeOn) \},
ORDERINGS: $\left\{\mathrm{S}_{1} \prec \mathrm{~S}_{2}\right\}$, BINDINGS: \{ \},
LINKS: \{\})

Action Description Language (ADL)

STRIPS	ADL
Only + ve literals in states Fat \wedge Slow	Both +ve and -ve literals in states \neg Thin $\wedge \neg$ Fast
Closed World: Unmentioned literals are false	Open World: Unmentioned literals are unknown
Effect $P \wedge \neg Q$ means add P, delete Q	Effect $P \wedge \neg Q$ means add $P, \neg Q$ and delete $Q, \neg P$

Action Description Language (ADL)

STRIPS	ADL
Only ground literals in goals Fat \wedge Slow	Quantified variables in goals $\exists \mathrm{x} \mathrm{At(Tea} \mathrm{x},) \wedge$ At(Coffee, x$)$
Goals are conjunctions	Goals allow conjunctions and disjunctions

Partial Order Planning

Initial state:
Op(ACTION: Start,
EFFECT: At(Home) ^ Sells(BS, Book)
\wedge Sells(TS, Tea)
\wedge Sells(TS, Biscuits))
Goal state:
Op(ACTION: Finish, PRECOND: At(Home) ^Have(Tea) \wedge Have(Biscuits)
\wedge Have(Book))

Partial Order Planning

Actions:

> Op(ACTION: Go(there), PRECOND: At(here),
> EFFECT: At(there) $\wedge \neg$ At(here))

Op(ACTION: Buy(x), PRECOND: At(store) ^ Sells(store, x), EFFECT: Have(x))

Partial Order Planning Algorithm

Function POP(initial, goal, operators)
// Returns plan
plan \leftarrow Make-Minimal-Plan(initial, goal)
Loop do
If Solution (plan) then return plan
S, c \leftarrow Select-Subgoal(plan)
Choose-Operator(plan, operators, S, c)
Resolve-Threats(plan)
end

POP Algorithm (Contd.)

Function Select-Subgoal(plan)
// Returns S, c
pick a plan step S from STEPS(plan)
with a precondition C that has not been achieved
Return S, c

Proc Choose-Operator(plan, operators, S, c)

choose a step S' from operators or STEPS(plan) that has c as an effect
if there is no such step then fail add the causal link S' \rightarrow c: S to LINKS(plan) add the ordering constraint $S^{\prime} \prec S$ to ORDERINGS(plan)
if S^{\prime} is a newly added step from operators then add S' to STEPS(plan) and add Start \prec S’ \prec Finish to ORDERINGS(plan)

POP Algorithm (Contd.)

Procedure Resolve-Threats(plan)
for each S" that threatens a link $\mathrm{S}_{\mathrm{i}} \rightarrow \mathrm{c}$: S_{j} in LINKS(plan) do choose either

> Promotion: Add S" $\prec S_{i}$ to
> ORDERINGS(plan)

Demotion: Add $\mathrm{S}_{\mathrm{j}} \prec \mathrm{S}$ " to ORDERINGS(plan)
if not Consistent(plan) then fail

Partially instantiated operators

- So far we have not mentioned anything about binding constraints
- Should an operator that has the effect, say, $\neg A t(x)$, be considered a threat to the condition, At(Home) ?
- Indeed it is a possible threat because x may be bound to Home

Dealing with possible threats

- Resolve now with an equality constraint
- Bind x to something that resolves the threat (say $x=T S$)
- Resolve now with an inequality constraint
- Extend the language of variable binding to allow $x \neq$ Home
- Resolve later
- Ignore possible threats. If $x=$ Home is added later into the plan, then we will attempt to resolve the threat (by promotion or demotion)

Proc Choose-Operator(plan, operators, S, c)

choose a step S' from operators or STEPS(plan) that has c' as an effect s.t. $u=$ UNIFY(c, c', BINDINGS(plan))
if there is no such step then fail add u to BINDINGS(plan) add the causal link S' \rightarrow c: S to LINKS(plan) add the ordering constraint $S^{\prime} \prec S$ to ORDERINGS(plan)
if S^{\prime} is a newly added step from operators then add S' to STEPS(plan) and add Start $\prec \mathrm{S}^{\prime} \prec$ Finish to ORDERINGS(plan)

Procedure Resolve-Threats (plan)

for each $\mathrm{S}_{\mathrm{i}} \rightarrow \mathrm{c}$: S_{j} in LINKS(plan) do for each S" in STEPS(plan) do for each c' in EFFECTS(S") do if SUBST(BINDINGS(plan), c) = SUBST(BINDINGS(plan), $\neg c^{\prime}$)
then choose either

> Promotion: Add S" $\prec S_{i}$ to ORDERINGS (plan)

Demotion: Add $\mathrm{S}_{\mathrm{j}} \prec \mathrm{S}^{\prime \prime}$ to
ORDERINGS(plan)
if not Consistent (plan) then fail

