Introduction to Planning

Course: C540022
Instructor: Dr. Pallab Dasgupta

" Department of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Outline

m Planning versus Search

m Representation of planning problems
¢ Situation calculus

¢ STRIPS
o ADL

m Planning Algorithms
+ Partial order planning
¢ GraphPlan
¢ SATPIlan

CSE, IIT Kharagpur

The Planning Problem

Get tea, biscuits, and a book.

m Given:

¢ Initial state: The agent is at home without
tea, biscuits, book

¢ Goal state: The agent is at home with tea,
biscuits, book

CSE, IIT Kharagpur

The Planning Problem

m States can be represented by predicates
such as At(x), Have(y), Sells(x, y)

m Actions:
¢ Go(y) : Agent goes to y
— causes At(y) to be true
¢ Buy(z): Agent buys z
— causes Have(z) to be true
¢ Steal(z): Agent steals z

CSE, IIT Kharagpur

Planning as Search

m Actions are given as logical descriptions of
preconditions and effects.

+ This enables the planner to make direct
connections between states and actions.

m The planner is free to add actions to the plan
wherever they are required, rather than in an
incremental way starting from the initial state.

= Most parts of the world are independent of

most other parts — hence divide & conquer
works well.

CSE, IIT Kharagpur

Situation Calculus

Initial state:

At(Home, s0) A — Have(Tea, s0) A
— Have(Biscuits, s0) A —Have(Book, s0)

Goal state:

ds At(Home, s) A Have(Tea, s) A
Have(Biscuits, s) A Have(Book, s)

CSE, IIT Kharagpur

Situation Calculus

Operators:
Vv a,s Have(Tea, Result(a,s)) <
[(a = Buy(Tea) A At(Tea-shop,s))
v (Have(Tea, s) A a = Drop(Tea))]

Result(a,s) names the situation resulting from
executing the action a in the situation s

CSE, IIT Kharagpur 7

Practical Planners

m [o make planning practical we need to:

+ Restrict the language with which we define
problems. With a restrictive language,
there are fewer possible solutions to
search through

¢ Use a special-purpose algorithm called a
planner rather than a general purpose
theorem prover.

CSE, IIT Kharagpur 8

STRIPS

m STanford Research Institute Problem Solver

m Many planners today use specification
languages that are variants of the one used in
STRIPS.

CSE, IIT Kharagpur 9

Representing states

m States are represented by conjunctions of
function-free ground literals

At(Home) A —Have(Tea) A
—Have(Biscuits) A —Have(Book)

CSE, IIT Kharagpur

10

Representing goals

m Goals are also described by conjunctions of
literals

At(Home) A Have(Tea) A
Have(Biscuits) A Have(Book)

m Goals can also contain variables
At(x) A Sells(x, Tea)

+ The above goal is being at a shop that
sells tea

CSE, IIT Kharagpur 11

Representing Actions

m Action description — serves as a name

m Precondition — a conjunction of positive
literals (why positive?)

m Effect — a conjunction of literals (+ve or —ve)

+ The original version had an add list and a
delete list.

Op(ACTION: Go(there),
PRECOND: At(here) A Path(here, there),
EFFECT: At(there) A —At(here))

CSE, IIT Kharagpur 12

Representing Plans

m A set of plan steps. Each step is one of the
operators for the problem.

m A set of step ordering constraints. Each
ordering constraint is of the form S; < S;,
indicating S; must occur sometime before S;-

m A set of variable binding constraints of the
form v = x, where v is a variable in some step,
and x Is either a constant or another variable.

m A set of causal links writtenas S —c: S
iIndicating S satisfies the precondition c for S'.

CSE, IIT Kharagpur 13

Example

m Actions

Op(ACTION: RightShoe,
PRECOND: RightSockOn,
EFFECT: RightShoeOn)

Op(ACTION: RightSock,
EFFECT: RightSockOn)

Op(ACTION: LeftShoe,
PRECOND: LeftSockOn,
EFFECT: LeftShoeOn)

Op(ACTION: LeftSock,
EFFECT: LeftSockOn)

CSE, IIT Kharagpur

14

Example

m [nitial plan
Plan(
STEPS: {
S1: Op(ACTION: start),
S2: Op(ACTION: finish,

PRECOND: RightShoeOn A
LeftShoeOn) },

ORDERINGS: {5 < S,},
BINDINGS: { },
LINKS: { })

CSE, IIT Kharagpur 15

Action Description Language (ADL)

are false

Unmentioned literals

STRIPS ADL

Only +ve literals in Both +ve and —ve

states literals in states
Fat A Slow —Thin A —Fast

Closed World: Open World:

Unmentioned literals
are unknown

add P, delete Q

Effect PA—Q means

Effect PA—Q means
add P, —Q and delete
Q, —P

CSE, IIT Kharagpur

16

Action Description Language (ADL)

STRIPS ADL
Only ground literals in | Quantified variables in
goals goals
Fat A Slow dx At(Tea,x) A
At(Coffee,x)
Goals are conjunctions | Goals allow

conjunctions and
disjunctions

CSE, IIT Kharagpur

17

Partial Order Planning

Initial state:
Op(ACTION: Start,
EFFECT: At(Home) A Sells(BS, Book)
A Sells(TS, Tea)
A Sells(TS, Biscuits))
Goal state:
Op(ACTION: Finish,
PRECOND: At(Home) A Have(Tea)
A Have(Biscuits)
A Have(Book))

CSE, IIT Kharagpur

Partial Order Planning

Actions:

Op(ACTION: Go(there),
PRECOND: At(here),
EFFECT: At(there) A —At(here))

Op(ACTION: Buy(x),

PRECOND: At(store) A Sells(store, x),
EFFECT: Have(x))

CSE, IIT Kharagpur

19

Partial Order Planning Algorithm

Function POP(initial, goal, operators)
// Returns plan
plan < Make-Minimal-Plan(initial, goal)
Loop do
If Solution(plan) then return plan
S, ¢ « Select-Subgoal(plan)
Choose-Operator(plan, operators, S, c)
Resolve-Threats(p/an)
end

CSE, IIT Kharagpur 20

POP Algorithm (Contd.)

Function Select-Subgoal(plan)
// Returns S, c
pick a plan step S from STEPS(plan)
with a precondition C that
has not been achieved
Return S, c

CSE, IIT Kharagpur

21

Proc Choose-Operator(plan, operators, S, c)

choose a step S’ from operators or
STEPS(plan) that has ¢ as an effect

iIf there is no such step then fail
add the causal link S" — c¢: S to LINKS(plan)

add the ordering constraint S’ < S to
ORDERINGS(plan)

If S’ is a newly added step from operators
then add S’ to STEPS(plan) and add
Start < S’ < Finish to ORDERINGS(plan)

CSE, IIT Kharagpur 22

POP Algorithm (Contd.)

Procedure Resolve-Threats(plan)

for each S’ that threatens a link
S;— ¢: 5;in LINKS(plan') do
choose either

Promotion: Add S” < S; to
ORDERINGS(plan)

Demotion: Add S, < S” to
ORDERINGS(plan)

if not Consistent(p/an) then fail

CSE, IIT Kharagpur 23

Partially instantiated operators

m So far we have not mentioned anything about
binding constraints

m Should an operator that has the effect, say,

—Alt(x), be considered a threat to the
condition, At(Home) ?

¢ Indeed it is a possible threat because x
may be bound to Home

CSE, IIT Kharagpur 24

Dealing with possible threats

m Resolve now with an equality constraint
+ Bind x to something that resolves the
threat (say x = T5)
m Resolve now with an inequality constraint

+ Extend the language of variable binding to
allow x = Home

m Resolve later

¢ Ignore possible threats. If x = Home is
added later into the plan, then we will
attempt to resolve the threat (by promotion
or demotion)

CSE, IIT Kharagpur 25

Proc Choose-Operator(plan, operators, S, c)

choose a step S’ from operators or
STEPS(p/an) that has ¢’ as an effect

s.t. u = UNIFY(c, ¢, BINDINGS(plan))

If there is no such step then fall
add u to BINDINGS(plan)
add the causal link S" — c¢: S to LINKS(plan)

add the ordering constraint S’ < S to
ORDERINGS(plan)

If S’ is a newly added step from operators then

add S’ to STEPS(p/an) and add
Start < S’ < Finish to ORDERINGS(plan)

CSE, IIT Kharagpur 26

Procedure Resolve-Threats(plan)

for each S;— c: §; in LINKS(p/an) do
for each S” in STEPS(plan) do
foreach ¢’ in EFFECTS(S”) do

if SUBST(BINDINGS(plan), c)
= SUBST(BINDINGS(plan), —c’)

then choose either

Promotion: Add S™ < S; to
ORDERINGS(plan)

Demotion: Add SJ- < S” to
ORDERINGS(plan)

If not Consistent(p/an) then fail

CSE, IIT Kharagpur 27

	Introduction to Planning
	Outline
	The Planning Problem
	The Planning Problem
	Planning as Search
	Practical Planners
	STRIPS
	Representing states
	Representing goals
	Representing Actions
	Representing Plans
	Example
	Example
	Action Description Language (ADL)
	Action Description Language (ADL)
	Partial Order Planning
	Partial Order Planning
	Partial Order Planning Algorithm
	POP Algorithm (Contd.)
	POP Algorithm (Contd.)
	Partially instantiated operators
	Dealing with possible threats

