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Outline

m Planning versus Search

m Representation of planning problems
¢ Situation calculus

¢ STRIPS
o ADL

m Planning Algorithms
+ Partial order planning
¢ GraphPlan
¢ SATPIlan
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The Planning Problem

Get tea, biscuits, and a book.

m Given:

¢ Initial state: The agent is at home without
tea, biscuits, book

¢ Goal state: The agent is at home with tea,
biscuits, book

CSE, IIT Kharagpur



The Planning Problem

m States can be represented by predicates
such as At(x), Have(y), Sells(x, y)

m Actions:
¢ Go(y) : Agent goes to y
— causes At(y) to be true
¢ Buy(z): Agent buys z
— causes Have(z) to be true
¢ Steal(z): Agent steals z
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Planning as Search

m Actions are given as logical descriptions of
preconditions and effects.

+ This enables the planner to make direct
connections between states and actions.

m The planner is free to add actions to the plan
wherever they are required, rather than in an
incremental way starting from the initial state.

= Most parts of the world are independent of

most other parts — hence divide & conquer
works well.
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Situation Calculus

Initial state:

At(Home, s0) A — Have(Tea, s0) A
— Have(Biscuits, s0) A —Have(Book, s0)

Goal state:

ds At(Home, s) A Have(Tea, s) A
Have(Biscuits, s) A Have(Book, s)
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Situation Calculus

Operators:
Vv a,s Have(Tea, Result(a,s)) <
[(a = Buy(Tea) A At(Tea-shop,s))
v (Have(Tea, s) A a = Drop(Tea))]

Result(a,s) names the situation resulting from
executing the action a in the situation s
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Practical Planners

m [o make planning practical we need to:

+ Restrict the language with which we define
problems. With a restrictive language,
there are fewer possible solutions to
search through

¢ Use a special-purpose algorithm called a
planner rather than a general purpose
theorem prover.
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STRIPS

m STanford Research Institute Problem Solver

m Many planners today use specification
languages that are variants of the one used in
STRIPS.

CSE, IIT Kharagpur 9



Representing states

m States are represented by conjunctions of
function-free ground literals

At(Home) A —Have(Tea) A
—Have(Biscuits) A —Have(Book)
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Representing goals

m Goals are also described by conjunctions of
literals

At(Home) A Have(Tea) A
Have(Biscuits) A Have(Book)

m Goals can also contain variables
At(x) A Sells(x, Tea)

+ The above goal is being at a shop that
sells tea
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Representing Actions

m Action description — serves as a name

m Precondition — a conjunction of positive
literals (why positive?)

m Effect — a conjunction of literals (+ve or —ve)

+ The original version had an add list and a
delete list.

Op( ACTION: Go(there),
PRECOND: At(here) A Path(here, there),
EFFECT: At(there) A —At(here))
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Representing Plans

m A set of plan steps. Each step is one of the
operators for the problem.

m A set of step ordering constraints. Each
ordering constraint is of the form S; < S;,
indicating S; must occur sometime before S;-

m A set of variable binding constraints of the
form v = x, where v is a variable in some step,
and x Is either a constant or another variable.

m A set of causal links writtenas S —c: S
iIndicating S satisfies the precondition c for S'.
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Example

m Actions

Op( ACTION: RightShoe,
PRECOND: RightSockOn,
EFFECT: RightShoeOn)

Op( ACTION: RightSock,
EFFECT: RightSockOn)

Op( ACTION: LeftShoe,
PRECOND: LeftSockOn,
EFFECT: LeftShoeOn)

Op( ACTION: LeftSock,
EFFECT: LeftSockOn)
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Example

m [nitial plan
Plan(
STEPS: {
S1: Op( ACTION: start ),
S2: Op( ACTION: finish,

PRECOND: RightShoeOn A
LeftShoeOn ) },

ORDERINGS: {5 < S,},
BINDINGS: { },
LINKS: { } )
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Action Description Language (ADL)

are false

Unmentioned literals

STRIPS ADL

Only +ve literals in Both +ve and —ve

states literals in states
Fat A Slow —Thin A —Fast

Closed World: Open World:

Unmentioned literals
are unknown

add P, delete Q

Effect PA—Q means

Effect PA—Q means
add P, —Q and delete
Q, —P
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Action Description Language (ADL)

STRIPS ADL
Only ground literals in | Quantified variables in
goals goals
Fat A Slow dx At(Tea,x) A
At(Coffee,x)
Goals are conjunctions | Goals allow

conjunctions and
disjunctions
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Partial Order Planning

Initial state:
Op( ACTION: Start,
EFFECT: At(Home) A Sells(BS, Book)
A Sells(TS, Tea)
A Sells(TS, Biscuits) )
Goal state:
Op( ACTION: Finish,
PRECOND: At(Home) A Have(Tea)
A Have(Biscuits)
A Have(Book) )
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Partial Order Planning

Actions:

Op( ACTION: Go(there),
PRECOND: At(here),
EFFECT: At(there) A —At(here))

Op( ACTION: Buy(x),

PRECOND: At(store) A Sells(store, x),
EFFECT: Have(x))
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Partial Order Planning Algorithm

Function POP( initial, goal, operators )
// Returns plan
plan < Make-Minimal-Plan( initial, goal )
Loop do
If Solution( plan ) then return plan
S, ¢ « Select-Subgoal( plan )
Choose-Operator( plan, operators, S, c )
Resolve-Threats( p/an )
end

CSE, IIT Kharagpur 20



POP Algorithm (Contd.)

Function Select-Subgoal( plan )
// Returns S, c
pick a plan step S from STEPS( plan )
with a precondition C that
has not been achieved
Return S, c
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Proc Choose-Operator( plan, operators, S, c )

choose a step S’ from operators or
STEPS( plan ) that has ¢ as an effect

iIf there is no such step then fail
add the causal link S" — c¢: S to LINKS( plan )

add the ordering constraint S’ < S to
ORDERINGS( plan )

If S’ is a newly added step from operators
then add S’ to STEPS( plan ) and add
Start < S’ < Finish to ORDERINGS( plan )
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POP Algorithm (Contd.)

Procedure Resolve-Threats( plan )

for each S’ that threatens a link
S;— ¢: 5;in LINKS( plan') do
choose either

Promotion: Add S” < S; to
ORDERINGS( plan)

Demotion: Add S, < S” to
ORDERINGS( plan )

if not Consistent( p/an ) then fail
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Partially instantiated operators

m So far we have not mentioned anything about
binding constraints

m Should an operator that has the effect, say,

—Alt(x), be considered a threat to the
condition, At(Home) ?

¢ Indeed it is a possible threat because x
may be bound to Home
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Dealing with possible threats

m Resolve now with an equality constraint
+ Bind x to something that resolves the
threat (say x = T5)
m Resolve now with an inequality constraint

+ Extend the language of variable binding to
allow x = Home

m Resolve later

¢ Ignore possible threats. If x = Home is
added later into the plan, then we will
attempt to resolve the threat (by promotion
or demotion)
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Proc Choose-Operator( plan, operators, S, c )

choose a step S’ from operators or
STEPS( p/an ) that has ¢’ as an effect

s.t. u = UNIFY( c, ¢, BINDINGS( plan ))

If there is no such step then fall
add u to BINDINGS( plan )
add the causal link S" — c¢: S to LINKS( plan )

add the ordering constraint S’ < S to
ORDERINGS( plan )

If S’ is a newly added step from operators then

add S’ to STEPS( p/an ) and add
Start < S’ < Finish to ORDERINGS( plan )
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Procedure Resolve-Threats( plan )

for each S;— c: §; in LINKS( p/an ) do
for each S” in STEPS( plan ) do
foreach ¢’ in EFFECTS( S”) do

if SUBST( BINDINGS(plan), c)
= SUBST( BINDINGS(plan), —c’ )

then choose either

Promotion: Add S™ < S; to
ORDERINGS( plan )

Demotion: Add SJ- < S” to
ORDERINGS( plan )

If not Consistent( p/an ) then fail
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