Introduction to Planning

Course: CS40022 Instructor: Dr. Pallab Dasgupta

Department of Computer Science & Engineering Indian Institute of Technology Kharagpur

Outline

- Planning versus Search
- Representation of planning problems
 - Situation calculus
 - ♦ STRIPS
 - ADL
- Planning Algorithms
 - Partial order planning
 - GraphPlan
 - SATPlan

The Planning Problem

Get tea, biscuits, and a book.

Given:

 Initial state: The agent is at home without tea, biscuits, book

 Goal state: The agent is at home with tea, biscuits, book

The Planning Problem

- States can be represented by predicates such as At(x), Have(y), Sells(x, y)

Planning as Search

- Actions are given as logical descriptions of preconditions and effects.
 - This enables the planner to make direct connections between states and actions.
- The planner is free to add actions to the plan wherever they are required, rather than in an incremental way starting from the initial state.
- Most parts of the world are independent of most other parts – hence divide & conquer works well.

Situation Calculus

Initial state: At(Home, s0) ∧ ¬ Have(Tea, s0) ∧ ¬ Have(Biscuits, s0) ∧ ¬Have(Book, s0)

Goal state: ∃s At(Home, s) ∧ Have(Tea, s) ∧ Have(Biscuits, s) ∧ Have(Book, s)

Situation Calculus

Operators: \forall a,s Have(Tea, Result(a,s)) \Leftrightarrow [(a = Buy(Tea) \land At(Tea-shop,s)) \lor (Have(Tea, s) \land a \neq Drop(Tea))]

Result(a,s) names the situation resulting from executing the action a in the situation s

Practical Planners

To make planning practical we need to:

 Restrict the language with which we define problems. With a restrictive language, there are fewer possible solutions to search through

 Use a special-purpose algorithm called a planner rather than a general purpose theorem prover.

STRIPS

STanford Research Institute Problem Solver

Many planners today use specification languages that are variants of the one used in STRIPS.

Representing states

States are represented by conjunctions of function-free ground literals

At(Home) A --- Have(Tea) A --- Have(Biscuits) A --- Have(Book)

Representing goals

Goals are also described by conjunctions of literals

At(Home) ∧ Have(Tea) ∧ Have(Biscuits) ∧ Have(Book)

 Goals can also contain variables At(x) ^ Sells(x, Tea)

> The above goal is being at a shop that sells tea

Representing Actions

- Action description serves as a name
- Precondition a conjunction of positive literals (why positive?)
- Effect a conjunction of literals (+ve or –ve)
 - The original version had an add list and a delete list.

Op(ACTION: Go(there), PRECOND: At(here) ∧ Path(here, there), EFFECT: At(there) ∧ ¬At(here))

Representing Plans

- A set of plan steps. Each step is one of the operators for the problem.
- A set of step ordering constraints. Each ordering constraint is of the form S_i ≺ S_j, indicating S_i must occur sometime before S_j.
- A set of variable binding constraints of the form v = x, where v is a variable in some step, and x is either a constant or another variable.
- A set of causal links written as S→c: S' indicating S satisfies the precondition c for S'.

Example

Actions Op(ACTION: RightShoe, **PRECOND:** RightSockOn, **EFFECT:** RightShoeOn) **Op(ACTION:** RightSock, **EFFECT:** RightSockOn) Op(**ACTION**: LeftShoe, **PRECOND:** LeftSockOn, **EFFECT:** LeftShoeOn) Op(ACTION: LeftSock, **EFFECT:** LeftSockOn)

Example

Initial plan Plan(STEPS: { S1: Op(ACTION: start), S2: Op(ACTION: finish, PRECOND: RightShoeOn A LeftShoeOn) }, ORDERINGS: $\{S_1 \prec S_2\}$, BINDINGS: { }, LINKS: { }

Action Description Language (ADL)

STRIPS	ADL
Only +ve literals in states	Both +ve and –ve literals in states
Fat <a> Slow	<i>⊸Thin ∧ ⊸Fast</i>
Closed World: Unmentioned literals are false	Open World: Unmentioned literals are unknown
Effect P^¬Q means add P, delete Q	Effect $P \land \neg Q$ means add P, $\neg Q$ and delete Q, $\neg P$

Action Description Language (ADL)

STRIPS	ADL
Only ground literals in goals	Quantified variables in goals
Fat <a> Slow	∃x At(Tea,x) ∧
	At(Coffee,x)
Goals are conjunctions	Goals allow conjunctions and disjunctions

Partial Order Planning

Initial state: Op(ACTION: Start, EFFECT: At(Home) ^ Sells(BS, Book) ^ Sells(TS, Tea) ^ Sells(TS, Biscuits))

Goal state: Op(ACTION: Finish, PRECOND: At(Home) ^ Have(Tea) ^ Have(Biscuits) ^ Have(Book))

Partial Order Planning

Actions:

Op(ACTION: Go(there), PRECOND: At(here), EFFECT: At(there) ∧ ¬At(here))

Op(ACTION: Buy(x), PRECOND: At(store) ∧ Sells(store, x), EFFECT: Have(x))

Partial Order Planning Algorithm

Function POP(*initial*, goal, operators) // Returns plan *plan* ← Make-Minimal-Plan(*initial*, goal) Loop do If Solution(*plan*) then return *plan* S, $c \leftarrow \text{Select-Subgoal}(plan)$ Choose-Operator(*plan*, *operators*, S, c) Resolve-Threats(*plan*) end

POP Algorithm (Contd.)

Function Select-Subgoal(*plan*) // Returns S, c pick a plan step S from STEPS(*plan*) with a precondition C that has not been achieved Return S, c Proc Choose-Operator(*plan, operators*, S, c)

choose a step S' from *operators* or STEPS(*plan*) that has c as an effect

if there is no such step then fail add the causal link S' \rightarrow c: S to LINKS(*plan*) add the ordering constraint S' \prec S to ORDERINGS(*plan*)

if S' is a newly added step from *operators* then add S' to STEPS(*plan*) and add Start ≺ S' ≺ Finish to ORDERINGS(*plan*)

POP Algorithm (Contd.)

Procedure Resolve-Threats(*plan*) for each S" that threatens a link $S_i \rightarrow c: S_i \text{ in LINKS}(plan) do$ choose either **Promotion:** Add $S'' \prec S_i$ to **ORDERINGS**(*plan*) **Demotion:** Add $S_i \prec S''$ to **ORDERINGS**(*plan*) if not Consistent(plan) then fail

Partially instantiated operators

- So far we have not mentioned anything about binding constraints
- Should an operator that has the effect, say, —At(x), be considered a threat to the condition, At(Home)?

 Indeed it is a possible threat because x may be bound to Home

Dealing with possible threats

Resolve now with an equality constraint

 Bind x to something that resolves the threat (say x = TS)

Resolve now with an inequality constraint

- ◆ Extend the language of variable binding to allow x ≠ Home
- Resolve later

 Ignore possible threats. If x = Home is added later into the plan, then we will attempt to resolve the threat (by promotion or demotion) Proc Choose-Operator(plan, operators, S, c) choose a step S' from operators or STEPS(plan) that has c' as an effect s.t. u = UNIFY(c, c', BINDINGS(plan)) if there is no such step then fail add *u* to BINDINGS(*plan*) add the causal link $S' \rightarrow c$: S to LINKS(*plan*) add the ordering constraint $S' \prec S$ to

ORDERINGS(*plan*)

if S' is a newly added step from *operators* then add S' to STEPS(*plan*) and add Start ≺ S' ≺ Finish to ORDERINGS(*plan*)

Procedure Resolve-Threats(*plan*)

for each $S_i \rightarrow c$: S_i in LINKS(*plan*) do for each S" in STEPS(plan) do for each c' in EFFECTS(S") do if SUBST(BINDINGS(plan), c) = SUBST(BINDINGS(plan), ¬c') then choose either *Promotion:* Add S'' \prec S_i to **ORDERINGS**(*plan*) *Demotion:* Add $S_i \prec S''$ to **ORDERINGS**(*plan*) if not Consistent(plan) then fail

CSE, IIT Kharagpur