Problem Reduction Search: AND/OR Graphs \& Game Trees

Course: CS40002
Instructor: Dr. Pallab Dasgupta

Department of Computer Science \& Engineering Indian Institute of Technology Kharagpur

Problem Reduction Search

- Planning how best to solve a problem that can be recursively decomposed into subproblems in multiple ways
- Matrix multiplication problem
- Tower of Hanoi
- Blocks World problems
- Theorem proving

Formulations

- AND/OR Graphs
- An OR node represents a choice between possible decompositions
- An AND node represents a given decomposition
- Game Trees
- Max nodes represent the choice of my opponent
- Min nodes represent my choice

The AND/OR graph search problem

- Problem definition:
- Given: [G, s, T] where
- G: implicitly specified AND/OR graph
- S: start node of the AND/OR graph
- T: set of terminal nodes
- $\mathrm{h}(\mathrm{n})$ heuristic function estimating the cost of solving the sub-problem at n
- To find:
-A minimum cost solution tree

Algorithm AO*

1. Initialize: \quad Set $G^{*}=\{s\}, f(s)=h(s)$

If $s \in T$, label s as SOLVED
2. Terminate: If \mathbf{s} is SOLVED, then Terminate
3. Select: Select a non-terminal leaf node \mathbf{n} from the marked sub-tree
4. Expand: Make explicit the successors of \mathbf{n} For each new successor, m :

Set $f(m)=h(m)$
If m is terminal, label m SOLVED
5. Cost Revision:
6. Loop:

Call cost-revise(n)
Go To Step 2.

Cost Revision in AO*: cost-revise(n)

1. Create $Z=\{n\}$
2. If $Z=\{ \}$ return
3. Select a node m from Z such that m has no descendants in Z
4. If m is an AND node with successors $r_{1}, r_{2}, \ldots r_{k}$:

Set $f(m)=\sum \quad\left[f\left(r_{i}\right)+c\left(m, r_{i}\right)\right]$
Mark the edge to each successor of m If each successor is labeled SOLVED, then label m as SOLVED

Cost Revision in AO*: cost-revise(n)

5. If m is an OR node with successors
$r_{1}, r_{2}, \ldots r_{k}$:
Set $f(m)=\min \left\{f\left(r_{i}\right)+c\left(m, r_{i}\right)\right\}$
Mark the edge to the best successor of m
If the marked successor is labeled SOLVED, label m as SOLVED
6. If the cost or label of m has changed, then insert those parents of m into Z for which m is a marked successor
7. Go to Step 2.

Searching OR Graphs

- How does AO* fare when the graph has only OR nodes?

Searching Game Trees

- Consider an OR tree with two types of OR nodes, namely Min nodes and Max nodes
- In Min nodes, select the min cost successor
- In Max nodes, select the max cost successor
- Terminal nodes are winning or loosing states
- It is often infeasible to search up to the terminal nodes
- We use heuristic costs to compare nonterminal nodes

Shallow and Deep Pruning

Shallow Cut-off
Deep Cut-off

Alpha-Beta Pruning

- Alpha Bound of J:
- The max current val of all MAX ancestors of \mathbf{J}
- Exploration of a min node, J , is stopped when its value equals or falls below alpha.
- In a min node, we update beta
- Beta Bound of J:
- The min current val of all MIN ancestors of J
- Exploration of a max node, J , is stopped when its value equals or exceeds beta
- In a max node, we update alpha
- In both min and max nodes, we return when $\alpha \geq \beta$

Alpha-Beta Procedure: V(J; α, β)

1. If J is a terminal, return $\mathrm{V}(\mathrm{J})=\mathrm{h}(\mathrm{J})$.
2. If J is a max node:

For each successor J_{k} of J in succession:
Set $\alpha=\max \left\{\alpha, \mathrm{V}\left(\mathrm{J}_{\mathrm{k}} ; \alpha, \beta\right)\right\}$
If $\alpha \geq \beta$ then return β, else continue
Return α
3. If J is a min node:

For each successor J_{k} of J in succession:
Set $\beta=\min \left\{\beta, V\left(J_{k} ; \alpha, \beta\right)\right\}$
If $\alpha \geq \beta$ then return α, else continue
Return β

