Problem Solving by Search

Course: CS40002 Instructor: Dr. Pallab Dasgupta

Department of Computer Science \& Engineering Indian Institute of Technology Kharagpur

Search Frameworks

- State space search
- Uninformed / Blind search
- Informed / Heuristic search
- Problem reduction search
- Game tree search
- Advances
- Memory bounded search
- Multi-objective search
- Learning how to search

State space search

- Basic Search Problem:
- Given: [S, s, O, G]where
- S is the (implicitly specified) set of states
- \mathbf{s} is the start state
- O is the set of state transition operators
- G is the set of goal states
- To find a sequence of state transitions leading from sto a goal state

8-puzzle problem

- State description (S)
- Location of each of the eight tiles (and the blank)
- Start state (s)
- The starting configuration (given)
- Operators (O)
- Four operators, for moving the blank left, right, up or down
- Goals (G)
- One or more goal configurations (given)

8-queens problem

Placing 8 queens on a chess board, so that none attacks the other

- Formulation - I
- A state is any arrangement of 0 to 8 queens on board
- Operators add a queen to any square

8-queens problem

- Formulation - II
- A state is any arrangement of 0-8 queens with none attacked
- Operators place a queen in the left-most empty column

8-queens problem

- Formulation - III
- A state is any arrangement of 8 queens, one in each column
- Operators move an attacked queen to another square in the same column

Missionaries and cannibals

- Three missionaries and three cannibals are on one side of a river, along with a boat that can hold one or two people. Find a way to get everyone to the other side, without ever leaving a group of missionaries outnumbered by cannibals

Missionaries and cannibals

- State: (\#m, \#c, 1/0)
- \#m: number of missionaries in the first bank
- \#c: number of cannibals in the first bank
- The last bit indicates whether the boat is in the first bank.
- Start state: $(3,3,1) \quad$ Goal state: $(0,0,0)$
- Operators:

Boat carries $(1,0)$ or $(0,1)$ or $(1,1)$ or $(2,0)$ or $(0,2)$

Outline of a search algorithm

1. Initialize: Set OPEN = \{s\}
2. Fail:

If OPEN = $\{$ \}, Terminate with failure
3. Select: Select a state, n , from OPEN
4. Terminate:

If $\mathbf{n} \in \mathbf{G}$, terminate with success
5. Expand:

Generate the successors of n using \mathbf{O} and insert them in OPEN
6. Loop:
Go To Step 2.

Basics of the search algorithm

- OPEN is a queue (FIFO) vs a stack (LIFO)
- Is this algorithm guaranteed to terminate?
- Under what circumstances will it terminate?

Complexity

- b: branching factor d: depth of the goal
- Breadth-first search:
- Time: $1+b+b^{2}+b^{3}+\ldots+b^{d}=O\left(b^{d}\right)$
- Space:
$O\left(b^{d}\right)$
- Depth-first search:
- Time:

O(bm),
where m: depth of state space tree

- Space:

O(bm)

Tradeoff between space and time

- Iterative deepening
- Perform DFS repeatedly using increasing depth bounds
- Works in O(bd) time and O(bd) space
- Bi-directional search
- Possible only if the operators are reversible
- Works in $\mathbf{O}\left(b^{d / 2}\right)$ time and $O\left(b^{d / 2}\right)$ space

Saving the explicit space

1. Initialize:
2. Fail:
3. Select:

Select a state, n, from OPEN and save n in CLOSED
4. Terminate:

If $\boldsymbol{n} \in \mathbf{G}$, terminate with success
5. Expand:

Generate the successors of \mathbf{n} using \mathbf{O}.
For each successor, m, insert m in OPEN only if $m \notin[O P E N \cup$ CLOSED $]$
6. Loop:

Go To Step 2.

Search and Optimization

- Given: [S, s, O, G]
- To find:
-A minimum cost sequence of transitions to a goal state
-A sequence of transitions to the minimum cost goal
-A minimum cost sequence of transitions to a min cost goal

Uniform Cost Search

This algorithm assumes that all operators have a cost:

1. Initialize: Set OPEN $=\{s\}$,

CLOSED = \{ \} Set C(s) = 0
2. Fail: If OPEN = \{ \}, Terminate \& fail
3. Select:

Select the minimum cost state, n , from OPEN and save n in CLOSED
4. Terminate:

If $\boldsymbol{n} \in \mathbf{G}$, terminate with success

Uniform Cost Search

5. Expand:

Generate the successors of \mathbf{n} using \mathbf{O}.
For each successor, m:
If $\boldsymbol{m} \notin[$ OPEN \cup CLOSED]
Set $\mathbf{C}(\mathrm{m})=\mathbf{C (n)}+\mathbf{C}(\mathrm{n}, \mathrm{m})$
and insert m in OPEN
If $\mathrm{m} \in$ [OPEN \cup CLOSED]
Set $C(m)=\min \{C(m), C(n)+C(n, m)\}$
If $C(m)$ has decreased and $\mathrm{m} \in$ CLOSED, move it to OPEN

Searching with costs

- If all operator costs are positive, then the algorithm finds the minimum cost sequence of transitions to a goal.
- No state comes back to OPEN from CLOSED
- If operators have unit cost, then this is same as BFS
- What happens if negative operator costs are allowed?

Branch-and-bound

1. Initialize:
2. Terminate:
3. Select:
4. Terminate:

Set OPEN = \{s $\}$, CLOSED = $\{$ \}.
Set C(s) $=0, C^{*}=\infty$
If OPEN = \{ \}, then return C* Select a state, n, from OPEN and save in CLOSED
If $\boldsymbol{n} \in \mathbf{G}$ and $\mathbf{C}(\mathbf{n})<\mathbf{C}^{*}$, then Set C* $=\mathbf{C}(\mathrm{n})$ and Go To Step 2.

Branch-and-bound

5. Expand:

If $\mathbf{C}(\mathrm{n})<\mathrm{C}^{*}$ generate the successors of \boldsymbol{n}
For each successor, m :
If $m \notin[O P E N \cup$ CLOSED]
Set $C(m)=C(n)+C(n, m)$ and insert m in OPEN
If $m \in[O P E N \cup C L O S E D]$
Set C(m) $=\min \{C(m), C(n)+C(n, m)\}$
If $C(m)$ has decreased and $m \in$ CLOSED, move it to OPEN
6. Loop: Go To Step 2.

