
Dept. of CSE, IIT KGP

Arrays

CS10001: Programming & Data Structures

Pallab Dasgupta
Dept. of Computer Sc. &
Engg.,
Indian Institute of
Technology Kharagpur

Dept. of CSE, IIT KGP

Array

• Many applications require multiple data items that have
common characteristics.
– In mathematics, we often express such groups of data items in

indexed form:
• x1, x2, x3, …, xn

• Array is a data structure which can represent a
collection of data items which have the same data type
(float/int/char)

Dept. of CSE, IIT KGP

if ((a <= b) && (a <= c))
 min = a;
else
 if (b <= c)
 min = b;
 else
 min = c;

if ((a <= b) && (a <= c) && (a <= d))
 min = a;
else
 if ((b <= c) && (b <= d))
 min = b;
 else
 if (c <= d)
 min = c;
 else
 min = d;

3 numbers 4 numbers

Example: Finding Minima of Numbers

Dept. of CSE, IIT KGP

The Problem

• Suppose we have 10 numbers to handle.
• Or 20.
• Or 100.

• Where do we store the numbers ? Use 100 variables ??

• How to tackle this problem?

• Solution:
– Use arrays.

Dept. of CSE, IIT KGP

Using Arrays

• All the data items constituting the group share
the same name.

int x[10];

• Individual elements are accessed by specifying
the index.

x[0] x[1] x[2] x[9]

X is a 10-element one
dimensional array

Dept. of CSE, IIT KGP

Declaring Arrays

• Like variables, the arrays that are used in a
program must be declared before they are used.

• General syntax:

 type array-name [size];

– type specifies the type of element that will be contained
in the array (int, float, char, etc.)

– size is an integer constant which indicates the maximum
number of elements that can be stored inside the array.

– marks is an array containing a maximum of 5 integers.

int marks[5];

Dept. of CSE, IIT KGP

• Examples:
 int x[10];

 char line[80];

 float points[150];

 char name[35];

• If we are not sure of the exact size of the array, we can
define an array of a large size.
 int marks[50];

 though in a particular run we may only be using, say,
10 elements.

Dept. of CSE, IIT KGP

How an array is stored in memory?

• Starting from a given memory location, the successive
array elements are allocated space in consecutive
memory locations.

• x: starting address of the array in memory
• k: number of bytes allocated per array element

– a[i] is allocated memory location at

 address x + i*k

Array a

Dept. of CSE, IIT KGP

Accessing Array Elements

• A particular element of the array can be accessed by
specifying two things:
– Name of the array.
– Index (relative position) of the element in the array.

• In C, the index of an array starts from zero.
• Example:

– An array is defined as int x[10];

– The first element of the array x can be accessed as x[0], fourth
element as x[3], tenth element as x[9], etc.

Dept. of CSE, IIT KGP

Contd.

• The array index must evaluate to an integer between 0
and n-1 where n is the number of elements in the array.
 a[x+2] = 25;

 b[3*x-y] = a[10-x] + 5;

Dept. of CSE, IIT KGP

A Warning

• In C, while accessing array elements, array bounds are
not checked.

• Example:
int marks[5];

:

:

marks[8] = 75;

– The above assignment would not necessarily cause an error.
– Rather, it may result in unpredictable program results.

Dept. of CSE, IIT KGP

Initialization of Arrays

• General form:
 type array_name[size] = { list of values };

• Examples:
 int marks[5] = {72, 83, 65, 80, 76};

 char name[4] = {‘A’, ‘m’, ‘i’, ‘t’};

• Some special cases:
– If the number of values in the list is less than the

number of elements, the remaining elements are
automatically set to zero.

float total[5] = {24.2, -12.5, 35.1};

 total[0]=24.2, total[1]=-12.5, total[2]=35.1, total[3]=0,

 total[4]=0

Dept. of CSE, IIT KGP

Contd.

– The size may be omitted. In such cases the compiler
automatically allocates enough space for all initialized
elements.

 int flag[] = {1, 1, 1, 0};

 char name[] = {‘A’, ‘m’, ‘i’, ‘t’};

Dept. of CSE, IIT KGP

Character Arrays and Strings

 char C[8] = { 'a', 'b', 'h', 'i', 'j', 'i', 't', '\0' };

• C[0] gets the value 'a', C[1] the value 'b', and so on. The last (7th)
location receives the null character ‘\0’.

• Null-terminated character arrays are also called strings.

• Strings can be initialized in an alternative way. The last declaration is
equivalent to:

 char C[8] = "abhijit";

• The trailing null character is missing here. C automatically puts it at
the end.

• Note also that for individual characters, C uses single quotes, whereas
for strings, it uses double quotes.

Dept. of CSE, IIT KGP

Example 1: Find the minimum of a set of 10 numbers

#include <stdio.h>
main()
{
 int a[10], i, min;

 for (i=0; i<10; i++)
 scanf (“%d”, &a[i]);

 min = 99999;
 for (i=0; i<10; i++)
 {
 if (a[i] < min)
 min = a[i];
 }
 printf (“\n Minimum is %d”, min);
}

Dept. of CSE, IIT KGP

#include <stdio.h>
#define size 10

main()
{
 int a[size], i, min;

 for (i=0; i<size; i++)
 scanf (“%d”, &a[i]);

 min = 99999;
 for (i=0; i<size; i++)
 {
 if (a[i] < min)
 min = a[i];
 }
 printf (“\n Minimum is %d”, min);
}

Alternate
Version 1

Change only one
 line to change the

problem size

Dept. of CSE, IIT KGP

#include <stdio.h>

main()
{
 int a[100], i, min, n;

 scanf (“%d”, &n); /* Number of elements */
 for (i=0; i<n; i++)
 scanf (“%d”, &a[i]);

 min = 99999;
 for (i=0; i<n; i++)
 {
 if (a[i] < min)
 min = a[i];
 }
 printf (“\n Minimum is %d”, min);
}

Alternate
Version 2

Define an array of
large size and use
only the required

number of elements

Dept. of CSE, IIT KGP

Example 2:
Computing gpa

#include <stdio.h>
#define nsub 6

main()
{
 int grade_pt[nsub], cred[nsub], i,
 gp_sum=0, cred_sum=0, gpa;

 for (i=0; i<nsub; i++)
 scanf (“%d %d”, &grade_pt[i], &cred[i]);

 for (i=0; i<nsub; i++)
 {
 gp_sum += grade_pt[i] * cred[i];
 cred_sum += cred[i];
 }
 gpa = gp_sum / cred_sum;
 printf (“\n Grade point average: is %d”, gpa);
}

Handling two arrays
at the same time

Dept. of CSE, IIT KGP

Things you cant do

• You cannot
– use = to assign one array variable to another

 a = b; /* a and b are arrays */
– use == to directly compare array variables

 if (a = = b) ………..
– directly scanf or printf arrays

 printf (“……”, a);

Dept. of CSE, IIT KGP

How to copy the elements of one array to another?

• By copying individual elements
 for (j=0; j<25; j++)

 a[j] = b[j];

Dept. of CSE, IIT KGP

How to read the elements of an array?

• By reading them one element at a time
 for (j=0; j<25; j++)

 scanf (“%f”, &a[j]);

• The ampersand (&) is necessary.
• The elements can be entered all in one line or in

different lines.

Dept. of CSE, IIT KGP

How to print the elements of an array?

• By printing them one element at a time.
 for (j=0; j<25; j++)

 printf (“\n %f”, a[j]);
– The elements are printed one per line.

 printf (“\n”);

 for (j=0; j<25; j++)

 printf (“ %f”, a[j]);
– The elements are printed all in one line (starting with a new

line).

Dept. of CSE, IIT KGP

Two Dimensional Arrays

• We have seen that an array variable can store a list of
values.

• Many applications require us to store a table of values.

75 82 90 65 76

68 75 80 70 72

88 74 85 76 80

50 65 68 40 70

Student 1

Student 2

Student 3

Student 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Dept. of CSE, IIT KGP

Contd.

• The table contains a total of 20 values, five in each line.
– The table can be regarded as a matrix consisting of four rows

and five columns.

• C allows us to define such tables of items by using
two-dimensional arrays.

Dept. of CSE, IIT KGP

Declaring 2-D Arrays

• General form:
 type array_name [row_size][column_size];

• Examples:
 int marks[4][5];

 float sales[12][25];

 double matrix[100][100];

Dept. of CSE, IIT KGP

Accessing Elements of a 2-D Array

• Similar to that for 1-D array, but use two indices.
– First indicates row, second indicates column.
– Both the indices should be expressions which evaluate to

integer values.

• Examples:
 x[m][n] = 0;

 c[i][k] += a[i][j] * b[j][k];

 a = sqrt (a[j*3][k]);

Dept. of CSE, IIT KGP

How is a 2-D array is stored in memory?

• Starting from a given memory location, the elements
are stored row-wise in consecutive memory locations.

• x: starting address of the array in memory
• c: number of columns
• k: number of bytes allocated per array element

– a[i][j] is allocated memory location at

 address x + (i * c + j) * k

a[0]0] a[0][1] a[0]2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3]

Row 0 Row 1 Row 2

Dept. of CSE, IIT KGP

How to read the elements of a 2-D array?

• By reading them one element at a time
 for (i=0; i<nrow; i++)

 for (j=0; j<ncol; j++)

 scanf (“%f”, &a[i][j]);

• The ampersand (&) is necessary.
• The elements can be entered all in one line or in

different lines.

Dept. of CSE, IIT KGP

How to print the elements of a 2-D array?

• By printing them one element at a time.
 for (i=0; i<nrow; i++)

 for (j=0; j<ncol; j++)

 printf (“\n %f”, a[i][j]);
– The elements are printed one per line.

 for (i=0; i<nrow; i++)

 for (j=0; j<ncol; j++)

 printf (“%f”, a[i][j]);
– The elements are all printed on the same line.

Dept. of CSE, IIT KGP

Contd.

 for (i=0; i<nrow; i++)

 {

 printf (“\n”);

 for (j=0; j<ncol; j++)

 printf (“%f ”, a[i][j]);

 }
– The elements are printed nicely in matrix form.

Dept. of CSE, IIT KGP

Example: Matrix Addition

#include <stdio.h>

main()
{
 int a[100][100], b[100][100],
 c[100][100], p, q, m, n;

 scanf (“%d %d”, &m, &n);

 for (p=0; p<m; p++)
 for (q=0; q<n; q++)
 scanf (“%d”, &a[p][q]);

 for (p=0; p<m; p++)
 for (q=0; q<n; q++)
 scanf (“%d”, &b[p][q]);

 for (p=0; p<m; p++)
 for (q=0; q<n; q++)
 c[p]q] = a[p][q] + b[p][q];

 for (p=0; p<m; p++)
 {
 printf (“\n”);

 for (q=0; q<n; q++)

 printf (“%f ”, a[p][q]);

 }

}

Dept. of CSE, IIT KGP

Some Exercise Problems to Try Out

• Find the mean and standard deviation of a set of n
numbers.

• A shop stores n different types of items. Given the
number of items of each type sold during a given
month, and the corresponding unit prices, compute the
total monthly sales.

• Multiple two matrices of orders mxn and nxp
respectively.

Dept. of CSE, IIT KGP

Passing Arrays to Function

• Array element can be passed to functions as ordinary
arguments.

• IsFactor (x[i], x[0])
• sin (x[5])

Dept. of CSE, IIT KGP

Passing Entire Array to a Function

• An array name can be used as an argument to a function.

– Permits the entire array to be passed to the function.

– The way it is passed differs from that for ordinary variables.

• Rules:

– The array name must appear by itself as argument, without
brackets or subscripts.

– The corresponding formal argument is written in the same
manner.

• Declared by writing the array name with a pair of empty
brackets.

Dept. of CSE, IIT KGP

Whole array as Parameters

#define ASIZE 5
float average (int a[]) {

int i, total=0;
for (i=0; i<ASIZE; i++)

total = total + a[i];
return ((float) total / (float) ASIZE);

}

main () {
int x[ASIZE] ; float x_avg;

 x = {10, 20, 30, 40, 50}
x_avg = average (x) ;

}

Dept. of CSE, IIT KGP

Contd.

main()
{
 int n;
 float list[100], avg;
 :
 avg = average (n, list);
 :
}

float average (a, x)
int a;
float x[];
{
 :
 sum = sum + x[i];
}

We don’t need to write
the array size. It works
with arrays of any size.

Dept. of CSE, IIT KGP

Arrays as Output Parameters

void VectorSum (int a[], int b[], int vsum[], int length) {

int i;

for (i=0; i<length; i=i+1)

vsum[i] = a[i] + b[i] ;

}

int main (void) {

int x[3] = {1,2,3}, y[3] = {4,5,6}, z[3];

VectorSum (x, y, z, 3) ;

PrintVector (z, 3) ;

}

void PrintVector (int a[], int length) {

int i;

for (i=0; i<length; i++) printf (“%d “, a[i]);

}

Dept. of CSE, IIT KGP

The Actual Mechanism

• When an array is passed to a function, the values of the
array elements are not passed to the function.
– The array name is interpreted as the address of the first

array element.
– The formal argument therefore becomes a pointer to the

first array element.
– When an array element is accessed inside the function,

the address is calculated using the formula stated
before.

– Changes made inside the function are thus
also reflected in the calling program.

Dept. of CSE, IIT KGP

Contd.

• Passing parameters in this way is called

 call-by-reference.
• Normally parameters are passed in C using

 call-by-value.

• Basically what it means?
– If a function changes the values of array elements, then these

changes will be made to the original array that is passed to the
function.

– This does not apply when an individual element is passed on
as argument.

Dept. of CSE, IIT KGP

Passing 2-D Arrays

• Similar to that for 1-D arrays.
– The array contents are not copied into the function.
– Rather, the address of the first element is passed.

• For calculating the address of an element in a 2-D
array, we need:
– The starting address of the array in memory.
– Number of bytes per element.
– Number of columns in the array.

• The above three pieces of information must be known
to the function.

Dept. of CSE, IIT KGP

Example Usage

#include <stdio.h>

main()
{
 int a[15][25], b[15]25];
 :
 :
 add (a, b, 15, 25);
 :
}

void add (x, y, rows, cols)
int x[][25], y[][25];
int rows, cols;
{
 :
}

We can also write

int x[15][25], y[15][25];

Dept. of CSE, IIT KGP

Pointers

Dept. of CSE, IIT KGP

Basic Concept

• Within the computer memory, every stored data
item occupies one or more contiguous memory
cells.
– The number of memory cells required to store a data item

depends on its type (char, int, double, etc.).

• Whenever we declare a variable, the system
allocates memory location(s) to hold the value of
the variable.
– Since every byte in memory has a unique address, this

location will also have its own (unique) address.

Dept. of CSE, IIT KGP

Contd.

• Consider the statement

 int xyz = 50;
– This statement instructs the compiler to allocate a location for

the integer variable xyz, and put the value 50 in that location.
– Suppose that the address location chosen is 1380.

xyz variable

 50 value

1380 address

Dept. of CSE, IIT KGP

Contd.

• During execution of the program, the system
always associates the name xyz with the address
1380.
– The value 50 can be accessed by using either the name

xyz or the address 1380.

• Since memory addresses are simply numbers,
they can be assigned to some variables which
can be stored in memory.
– Such variables that hold memory addresses are called

pointers.
– Since a pointer is a variable, its value is also stored in

some memory location.

Dept. of CSE, IIT KGP

Pointers

• A pointer is a variable that represents the location
(rather than the value) of a data item.

Dept. of CSE, IIT KGP

Contd.

• Suppose we assign the address of xyz to a variable p.
– p is said to point to the variable xyz.

Variable Value Address

 xyz 50 1380

 p 1380 2545

p = &xyz;

Dept. of CSE, IIT KGP

Accessing the Address of a Variable

• The address of a variable can be determined
using the ‘&’ operator.
– The operator ‘&’ immediately preceding a variable

returns the address of the variable.

• Example:
 p = &xyz;
– The address of xyz (1380) is assigned to p.

• The ‘&’ operator can be used only with a simple
variable or an array element.
 &distance
 &x[0]
 &x[i-2]

Dept. of CSE, IIT KGP

Contd.

• Following usages are illegal:
 &235

• Pointing at constant.

 int arr[20];

 :

 &arr;
• Pointing at array name.

 &(a+b)
• Pointing at expression.

Dept. of CSE, IIT KGP

Pointer Declarations

• Pointer variables must be declared before we
use them.

• General form:
 data_type *pointer_name;

 Three things are specified in the above
declaration:

1. The asterisk (*) tells that the variable pointer_name is a
pointer variable.

2. pointer_name needs a memory location.

3. pointer_name points to a variable of type data_type.

Dept. of CSE, IIT KGP

Contd.

• Example:
 int *count;

 float *speed;

• Once a pointer variable has been declared, it can be
made to point to a variable using an assignment
statement like:
 int *p, xyz;

 :

 p = &xyz;
– This is called pointer initialization.

Dept. of CSE, IIT KGP

Things to Remember

• Pointer variables must always point to a data item of
the same type.
 float x;
 int *p;
 : will result in erroneous output
 p = &x;

• Assigning an absolute address to a pointer variable is
prohibited.
 int *count;
 :
 count = 1268;

Dept. of CSE, IIT KGP

Accessing a Variable Through its Pointer

• Once a pointer has been assigned the address of a
variable, the value of the variable can be accessed
using the indirection operator (*).
 int a, b;

 int *p;

 :

 p = &a;

 b = *p;
Equivalent to b = a

Dept. of CSE, IIT KGP

Example 1

#include <stdio.h>
main()
{
 int a, b;
 int c = 5;
 int *p;

 a = 4 * (c + 5) ;

 p = &c;
 b = 4 * (*p + 5) ;
 printf (“a=%d b=%d \n”, a, b) ;
}

Equivalent

Dept. of CSE, IIT KGP

Pointer Expressions

• Like other variables, pointer variables can be used in
expressions.

• If p1 and p2 are two pointers, the following statements
are valid:
 sum = *p1 + *p2 ;

 prod = *p1 * *p2 ;

 prod = (*p1) * (*p2) ;

 *p1 = *p1 + 2;

 x = *p1 / *p2 + 5 ;

Dept. of CSE, IIT KGP

Pointer Arithmetic

• What are allowed in C?
– Add an integer to a pointer.
– Subtract an integer from a pointer.
– Subtract one pointer from another (related).

• If p1 and p2 are both pointers to the same array, them
p2–p1 gives the number of elements between p1 and p2.

• What are not allowed?
– Add two pointers.

 p1 = p1 + p2 ;

– Multiply / divide a pointer in an expression.
 p1 = p2 / 5 ;

 p1 = p1 – p2 * 10 ;

Dept. of CSE, IIT KGP

Scale Factor

• We have seen that an integer value can be added
to or subtracted from a pointer variable.

int *p1, *p2 ;

int i, j;

:

p1 = p1 + 1 ;

p2 = p1 + j ;

p2++ ;

p2 = p2 – (i + j) ;

• In reality, it is not the integer value which is
added/subtracted, but rather the scale factor
times the value.

Dept. of CSE, IIT KGP

Contd.

 Data Type Scale Factor
 char 1
 int 4
 float 4
 double 8

– If p1 is an integer pointer, then

 p1++

 will increment the value of p1 by 4.

Dept. of CSE, IIT KGP

Passing Pointers to a Function

• Pointers are often passed to a function as
arguments.
– Allows data items within the calling program to be

accessed by the function, altered, and then returned to
the calling program in altered form.

– Called call-by-reference (or by address or by location).

• Normally, arguments are passed to a function by
value.
– The data items are copied to the function.
– Changes are not reflected in the calling program.

Dept. of CSE, IIT KGP

Example: passing arguments by value

#include <stdio.h>
main()
{
 int a, b;
 a = 5 ; b = 20 ;
 swap (a, b) ;
 printf (“\n a = %d, b = %d”, a, b);
}

void swap (int x, int y)
{
 int t ;
 t = x ;
 x = y ;
 y = t ;
}

Output

a = 5, b = 20

Dept. of CSE, IIT KGP

Example: passing arguments by reference

#include <stdio.h>
main()
{
 int a, b;
 a = 5 ; b = 20 ;
 swap (&a, &b) ;
 printf (“\n a = %d, b = %d”, a, b);
}

void swap (int *x, int *y)
{
 int t ;
 t = *x ;
 *x = *y ;
 *y = t ;
}

Output

a = 20, b = 5

Dept. of CSE, IIT KGP

scanf Revisited

 int x, y ;

 printf (“%d %d %d”, x, y, x+y) ;

• What about scanf ?

 scanf (“%d %d %d”, x, y, x+y) ;

 scanf (“%d %d”, &x, &y) ;
NO

YES

Dept. of CSE, IIT KGP

Example: Sort 3 integers

• Three-step algorithm:
1. Read in three integers x, y and z

2. Put smallest in x
• Swap x, y if necessary; then swap x, z if necessary.

1. Put second smallest in y
• Swap y, z if necessary.

Dept. of CSE, IIT KGP

Contd.

#include <stdio.h>
main()
{
 int x, y, z ;
 ………..
 scanf (“%d %d %d”, &x, &y, &z) ;
 if (x > y) swap (&x, &y);
 if (x > z) swap (&x, &z);
 if (y > z) swap (&y, &z) ;
 ………..
}

Dept. of CSE, IIT KGP

sort3 as a function

#include <stdio.h>
main()
{
 int x, y, z ;
 ………..
 scanf (“%d %d %d”, &x, &y, &z) ;
 sort3 (&x, &y, &z) ;
 ………..
}

void sort3 (int *xp, int *yp, int *zp)
{
 if (*xp > *yp) swap (xp, yp);
 if (*xp > *zp) swap (xp, zp);
 if (*yp > *zp) swap (yp, zp);
}

Dept. of CSE, IIT KGP

Contd.

• Why no ‘&’ in swap call?
– Because xp, yp and zp are already pointers that point to the

variables that we want to swap.

Dept. of CSE, IIT KGP

Pointers and Arrays

• When an array is declared,
– The compiler allocates a base address and sufficient amount of

storage to contain all the elements of the array in contiguous
memory locations.

– The base address is the location of the first element (index 0)
of the array.

– The compiler also defines the array name as a constant pointer
to the first element.

Dept. of CSE, IIT KGP

Example

• Consider the declaration:
 int x[5] = {1, 2, 3, 4, 5} ;
– Suppose that the base address of x is 2500, and each

integer requires 4 bytes.
 Element Value Address
 x[0] 1 2500
 x[1] 2 2504
 x[2] 3 2508
 x[3] 4 2512
 x[4] 5 2516

Dept. of CSE, IIT KGP

Contd.

 x = &x[0] = 2500 ;

– p = x; and p = &x[0]; are equivalent.
– We can access successive values of x by using p++ or p- - to

move from one element to another.

• Relationship between p and x:
p = &x[0] = 2500

p+1 = &x[1] = 2504

p+2 = &x[2] = 2508

p+3 = &x[3] = 2512

p+4 = &x[4] = 2516
*(p+i) gives the

 value of x[i]

Dept. of CSE, IIT KGP

Example: function to find average

#include <stdio.h>
main()
{
 int x[100], k, n ;

 scanf (“%d”, &n) ;

 for (k=0; k<n; k++)
 scanf (“%d”, &x[k]) ;

 printf (“\nAverage is %f”,
 avg (x, n));
}

float avg (array, size)
int array[], size ;
{
 int *p, i , sum = 0;

 p = array ;

 for (i=0; i<size; i++)
 sum = sum + *(p+i);

 return ((float) sum / size);
}

	Arrays CS10001: Programming & Data Structures
	Array
	Example: Finding Minima of Numbers
	The Problem
	Using Arrays
	Declaring Arrays
	Slide 7
	How an array is stored in memory?
	Accessing Array Elements
	Contd.
	A Warning
	Initialization of Arrays
	Slide 13
	Character Arrays and Strings
	Example 1: Find the minimum of a set of 10 numbers
	Slide 16
	Slide 17
	Example 2: Computing gpa
	Things you cannot do
	How to copy the elements of one array to another?
	How to read the elements of an array?
	How to print the elements of an array?
	Two Dimensional Arrays
	Slide 24
	Declaring 2-D Arrays
	Accessing Elements of a 2-D Array
	How is a 2-D array is stored in memory?
	How to read the elements of a 2-D array?
	How to print the elements of a 2-D array?
	Slide 30
	Example: Matrix Addition
	Some Exercise Problems to Try Out
	Passing Arrays to Function
	Passing Entire Array to a Function
	Whole array as Parameters
	Slide 36
	Arrays as Output Parameters
	The Actual Mechanism
	Slide 39
	Passing 2-D Arrays
	Example Usage
	Pointers
	Basic Concept
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Accessing the Address of a Variable
	Slide 49
	Pointer Declarations
	Slide 51
	Things to Remember
	Accessing a Variable Through its Pointer
	Example 1
	Pointer Expressions
	Pointer Arithmetic
	Scale Factor
	Slide 58
	Passing Pointers to a Function
	Example: passing arguments by value
	Example: passing arguments by reference
	scanf Revisited
	Example: Sort 3 integers
	Slide 64
	sort3 as a function
	Slide 66
	Pointers and Arrays
	Example
	Slide 69
	Example: function to find average

