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Array

• Many applications require multiple data items that have 
common characteristics.
– In mathematics, we often express such groups of data items in 

indexed form:
• x1, x2, x3, …, xn

• Array is a data structure which can represent a 
collection of data items which have the same data type 
(float/int/char) 
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if   ((a <= b) && (a <= c))
    min = a;
else
    if   (b <= c)
          min = b;
    else
          min = c;

if   ((a <= b) && (a <= c) && (a <= d))
    min = a;
else
    if   ((b <= c) && (b <= d))
          min = b;
    else
         if  (c <= d)
              min = c;
        else
             min = d;

3 numbers 4 numbers

Example: Finding Minima of Numbers



Dept. of CSE, IIT KGP

The Problem

• Suppose we have 10 numbers to handle.
• Or 20.
• Or 100.

• Where do we store the numbers ?  Use 100 variables ?? 

• How to tackle this problem?

• Solution:
– Use arrays.
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Using Arrays

• All the data items constituting the group share 
the same name.

int  x[10];

• Individual elements are accessed by specifying 
the index.

x[0] x[1] x[2] x[9]

X is a 10-element one 
dimensional array



Dept. of CSE, IIT KGP

Declaring Arrays

• Like variables, the arrays that are used in a 
program must be declared before they are used.

• General syntax:

    type   array-name [size];

– type specifies the type of element that will be contained 
in the array (int, float, char, etc.)

– size is an integer constant which indicates the maximum 
number of elements that can be stored inside the array.

– marks is an array containing a maximum of 5 integers.

int   marks[5];
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• Examples:
    int  x[10];

    char  line[80];

    float  points[150];

    char  name[35];

• If we are not sure of the exact size of the array, we can 
define an array of a large size.
    int   marks[50];

    though in a particular run we may only be using, say, 
10 elements.
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How an array is stored in memory?

• Starting from a given memory location, the successive 
array elements are allocated space in consecutive 
memory locations.

• x: starting address of the array in memory
• k: number of bytes allocated per array element

– a[i]   is allocated memory location at  

               address  x + i*k

Array a
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Accessing Array Elements

• A particular element of the array can be accessed by 
specifying two things:
– Name of the array.
– Index (relative position) of the element in the array.

• In C, the index of an array starts from zero.
• Example:

– An array is defined as    int  x[10];

– The first element of the array x can be accessed as x[0], fourth 
element as x[3], tenth element as x[9], etc.
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• The array index must evaluate to an integer between 0 
and n-1 where n is the number of elements in the array.
    a[x+2] = 25;

    b[3*x-y] = a[10-x] + 5;
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A Warning

• In C, while accessing array elements, array bounds are 
not checked.

• Example:
int   marks[5];

:

:

marks[8] = 75;

– The above assignment would not necessarily cause an error.
– Rather, it may result in unpredictable program results.
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Initialization of Arrays

• General form:
   type   array_name[size]  =  { list of values };

• Examples:
   int  marks[5] = {72, 83, 65, 80, 76};

   char  name[4] = {‘A’, ‘m’, ‘i’, ‘t’};

• Some special cases:
– If the number of values in the list is less than the 

number of elements, the remaining elements are 
automatically set to zero.

float  total[5] = {24.2, -12.5, 35.1};

          total[0]=24.2, total[1]=-12.5, total[2]=35.1, total[3]=0, 

              total[4]=0
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– The size may be omitted. In such cases the compiler 
automatically allocates enough space for all initialized 
elements.

         int   flag[] = {1, 1, 1, 0};

         char  name[] = {‘A’, ‘m’, ‘i’, ‘t’};
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Character Arrays and Strings

    char C[8] = { 'a', 'b', 'h', 'i', 'j', 'i', 't', '\0' }; 

• C[0] gets the value 'a', C[1] the value 'b', and so on. The last (7th) 
location receives the null character ‘\0’. 

• Null-terminated character arrays are also called strings.

• Strings can be initialized in an alternative way. The last declaration is 
equivalent to:

   char C[8] = "abhijit";

• The trailing null character is missing here. C automatically puts it at 
the end. 

• Note also that for individual characters, C uses single quotes, whereas 
for strings, it uses double quotes.  



Dept. of CSE, IIT KGP

Example 1:  Find the minimum of a set of 10 numbers

#include  <stdio.h>
main()
{
    int  a[10], i, min;

    for  (i=0; i<10; i++)
        scanf (“%d”, &a[i]);

    min = 99999;
    for  (i=0; i<10; i++)
    {
        if  (a[i] < min)
            min = a[i];
    }
    printf (“\n Minimum is %d”, min);
}
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#include  <stdio.h>
#define   size   10

main()
{
    int  a[size], i, min;

    for  (i=0; i<size; i++)
        scanf (“%d”, &a[i]);

    min = 99999;
    for  (i=0; i<size; i++)
    {
        if  (a[i] < min)
            min = a[i];
    }
    printf (“\n Minimum is %d”, min);
}

Alternate
Version 1

Change only one
 line to change the

problem size
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#include  <stdio.h>

main()
{
    int  a[100], i, min, n;

    scanf (“%d”, &n);  /* Number of elements */
    for  (i=0; i<n; i++)
        scanf (“%d”, &a[i]);

    min = 99999;
    for  (i=0; i<n; i++)
    {
        if  (a[i] < min)
            min = a[i];
    }
    printf (“\n Minimum is %d”, min);
}

Alternate
Version 2

Define an array of
large size and use
only the required

number of elements
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Example 2:
Computing gpa 

#include  <stdio.h>
#define  nsub  6

main()
{
    int  grade_pt[nsub], cred[nsub], i, 
           gp_sum=0, cred_sum=0, gpa;

    for  (i=0; i<nsub; i++)
        scanf (“%d %d”, &grade_pt[i], &cred[i]);

    for  (i=0; i<nsub; i++)
    {
        gp_sum += grade_pt[i] * cred[i];
        cred_sum += cred[i];
    }
    gpa = gp_sum / cred_sum;
    printf (“\n Grade point average:  is %d”, gpa);
}

Handling two arrays
at the same time



Dept. of CSE, IIT KGP

Things you cant do

• You cannot
– use = to assign one array variable to another

    a = b;   /* a and b are arrays */
– use == to directly compare array variables

   if  (a = = b)  ………..
– directly scanf or printf arrays

   printf (“……”, a);



Dept. of CSE, IIT KGP

How to copy the elements of one array to another?

• By copying individual elements
    for  (j=0; j<25; j++)

        a[j] = b[j];
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How to read the elements of an array?

• By reading them one element at a time
    for  (j=0; j<25; j++)

        scanf  (“%f”, &a[j]);

• The ampersand (&) is necessary.
• The elements can be entered all in one line or in 

different lines.
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How to print the elements of an array?

• By printing them one element at a time.
           for  (j=0; j<25; j++)

               printf  (“\n %f”, a[j]);
– The elements are printed one per line.

           printf  (“\n”);

           for  (j=0; j<25; j++)

               printf (“ %f”, a[j]);
– The elements are printed all in one line (starting with a new 

line).
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Two Dimensional Arrays

• We have seen that an array variable can store a list of 
values.

• Many applications require us to store a table of values.

75 82 90 65 76

68 75 80 70 72

88 74 85 76 80

50 65 68 40 70

Student 1

Student 2

Student 3

Student 4

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
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• The table contains a total of 20 values, five in each line.
– The table can be regarded as a matrix consisting of four rows 

and five columns.

• C allows us to define such tables of items by using 
two-dimensional arrays.
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Declaring 2-D Arrays

• General form:
   type   array_name [row_size][column_size];

• Examples:
   int  marks[4][5];

   float  sales[12][25];

   double  matrix[100][100];
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Accessing Elements of a 2-D Array

• Similar to that for 1-D array, but use two indices.
– First indicates row, second indicates column.
– Both the indices should be expressions which evaluate to 

integer values.

• Examples:
   x[m][n] = 0;

   c[i][k] += a[i][j] * b[j][k];

   a = sqrt (a[j*3][k]); 
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How is a 2-D array is stored in memory?

• Starting from a given memory location, the elements 
are stored row-wise in consecutive memory locations.

• x: starting address of the array in memory
• c: number of columns
• k: number of bytes allocated per array element

– a[i][j]   is allocated memory location at  

                   address  x + (i * c + j) * k

a[0]0] a[0][1] a[0]2] a[0][3] a[1][0] a[1][1] a[1][2] a[1][3] a[2][0] a[2][1] a[2][2] a[2][3] 

Row 0 Row 1 Row 2
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How to read the elements of a 2-D array?

• By reading them one element at a time
    for  (i=0; i<nrow; i++)

        for  (j=0; j<ncol; j++)

            scanf  (“%f”, &a[i][j]);

• The ampersand (&) is necessary.
• The elements can be entered all in one line or in 

different lines.
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How to print the elements of a 2-D array?

• By printing them one element at a time.
            for  (i=0; i<nrow; i++) 

                for  (j=0; j<ncol; j++)

                    printf  (“\n %f”, a[i][j]);
– The elements are printed one per line.

 for  (i=0; i<nrow; i++) 

                for  (j=0; j<ncol; j++)

                    printf  (“%f”, a[i][j]);
– The elements are all printed on the same line.
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           for  (i=0; i<nrow; i++)

           {

               printf  (“\n”);

               for  (j=0; j<ncol; j++)

                   printf (“%f   ”, a[i][j]);

            }
– The elements are printed nicely in matrix form.
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Example: Matrix Addition

#include  <stdio.h>

main()
{
    int  a[100][100], b[100][100],
               c[100][100], p, q, m, n;

    scanf (“%d %d”, &m, &n); 

    for  (p=0; p<m; p++)
        for  (q=0; q<n; q++)
           scanf (“%d”, &a[p][q]);

    for  (p=0; p<m; p++)
        for  (q=0; q<n; q++)
           scanf (“%d”, &b[p][q]);

    for  (p=0; p<m; p++)
        for  (q=0; q<n; q++)
            c[p]q] = a[p][q] + b[p][q];

    for  (p=0; p<m; p++)
    {
         printf  (“\n”);

  for  (q=0; q<n; q++)

       printf (“%f   ”, a[p][q]);

     }

}
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Some Exercise Problems to Try Out

• Find the mean and standard deviation of a set of n 
numbers.

• A shop stores n different types of items. Given the 
number of items of each type sold during a given 
month, and the corresponding unit prices, compute the 
total monthly sales.

• Multiple two matrices of orders mxn and nxp 
respectively.
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Passing Arrays to Function

• Array element can be passed to functions as ordinary 
arguments.

• IsFactor (x[i], x[0]) 
• sin (x[5])
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Passing Entire Array to a Function

• An array name can be used as an argument to a function.

– Permits the entire array to be passed to the function.

– The way it is passed differs from that for ordinary variables.

• Rules:

– The array name must appear by itself as argument, without 
brackets or subscripts.

– The corresponding formal argument is written in the same 
manner.

• Declared by writing the array name with a pair of empty 
brackets.
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Whole array as Parameters

#define ASIZE 5
float average (int a[]) {

int i, total=0;
for (i=0; i<ASIZE; i++)

total = total + a[i];
return ((float) total / (float) ASIZE);

}

main ( )  {
int x[ASIZE] ; float x_avg; 

      x = {10, 20, 30, 40, 50}
x_avg = average (x) ;

}
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main()
{
    int  n;
    float   list[100], avg;
    :
    avg  =  average (n, list);
    :
}

float  average  (a, x)
int  a;
float  x[];
{
    :
    sum = sum + x[i];
}

We don’t need to write 
the array size. It works 
with arrays of any size.
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Arrays as Output Parameters

void VectorSum (int a[], int b[], int vsum[], int length) {

int i;

for (i=0; i<length; i=i+1)

vsum[i] = a[i] + b[i] ;

}

int main (void) {

int x[3] = {1,2,3}, y[3] = {4,5,6}, z[3];

VectorSum (x, y, z, 3) ;

PrintVector (z, 3) ;

}

void PrintVector (int a[], int length) {

int i;

for (i=0; i<length; i++) printf (“%d “, a[i]);

}
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The Actual Mechanism

• When an array is passed to a function, the values of the 
array elements are not passed to the function.
– The array name is interpreted as the address of the first 

array element.
– The formal argument therefore becomes a pointer to the 

first array element.
– When an array element is accessed inside the function, 

the address is calculated using the formula stated 
before.

– Changes made inside the function are thus 
also reflected in the calling program.
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• Passing parameters in this way is called 

        call-by-reference.
• Normally parameters are passed in C using

        call-by-value.

• Basically what it means?
– If a function changes the values of array elements, then these 

changes will be made to the original array that is passed to the 
function.

– This does not apply when an individual element is passed on 
as argument.
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Passing 2-D Arrays

• Similar to that for 1-D arrays.
– The array contents are not copied into the function.
– Rather, the address of the first element is passed.

• For calculating the address of an element in a 2-D 
array, we need:
– The starting address of the array in memory.
– Number of bytes per element.
– Number of columns in the array.

• The above three pieces of information must be known 
to the function.
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Example Usage

#include  <stdio.h>

main()
{
    int  a[15][25],  b[15]25];
    :
    :
    add (a, b, 15, 25);
    :
}

void  add (x, y, rows, cols)
int  x[][25], y[][25];
int  rows, cols;
{
    :
}

We can also write

int  x[15][25], y[15][25];
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Pointers
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Basic Concept

• Within the computer memory, every stored data 
item occupies one or more contiguous memory 
cells.
– The number of memory cells required to store a data item 

depends on its type (char, int, double, etc.).

• Whenever we declare a variable, the system 
allocates memory location(s) to hold the value of 
the variable.
– Since every byte in memory has a unique address, this 

location will also have its own (unique) address.
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• Consider the statement

        int   xyz = 50;
– This statement instructs the compiler to allocate a location for 

the integer variable xyz, and put the value 50 in that location.
– Suppose that the address location chosen is 1380.

xyz                  variable

 50                   value

1380                address
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• During execution of the program, the system 
always associates the name xyz with the address 
1380.
– The value 50 can be accessed by using either the name 

xyz or the address 1380.

• Since memory addresses are simply numbers, 
they can be assigned to some variables which 
can be stored in memory.
– Such variables that hold memory addresses are called 

pointers.
– Since a pointer is a variable, its value is also stored in 

some memory location.
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Pointers

• A pointer is a variable that represents the location 
(rather than the value) of a data item.
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• Suppose we assign the address of xyz to a variable p.
– p is said to point to the variable xyz.

Variable       Value       Address

    xyz                50             1380

      p                1380           2545

p = &xyz;



Dept. of CSE, IIT KGP

Accessing the Address of a Variable

• The address of a variable can be determined 
using the ‘&’ operator.
– The operator ‘&’ immediately preceding a variable 

returns the address of the variable.

• Example:
      p = &xyz;
– The address of xyz (1380) is assigned to p.

• The ‘&’ operator can be used only with a simple 
variable or an array element.
       &distance
       &x[0]
       &x[i-2]
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• Following usages are illegal:
 &235

• Pointing at constant.

    

  int   arr[20];

     :

  &arr;
• Pointing at array name.

  &(a+b)
• Pointing at expression.
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Pointer Declarations

• Pointer variables must be declared before we 
use them.

• General form:
           data_type   *pointer_name;

      Three things are specified in the above 
declaration:

1. The asterisk (*) tells that the variable pointer_name is a 
pointer variable.

2.  pointer_name needs a memory location.

3.  pointer_name points to a variable of type data_type.



Dept. of CSE, IIT KGP

Contd.

• Example:
      int     *count;

      float  *speed;

• Once a pointer variable has been declared, it can be 
made to point to a variable using an assignment 
statement like:
      int      *p,  xyz;

      :

      p = &xyz;
– This is called pointer initialization.
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Things to Remember

• Pointer variables  must always point to a data item of 
the same type.
    float   x;
    int    *p;
    :                               will result in erroneous output
    p = &x;

• Assigning an absolute address to a pointer variable is 
prohibited.
    int   *count;
    :
    count = 1268;
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Accessing a Variable Through its Pointer

• Once a pointer has been assigned the address of a 
variable, the value of the variable can be accessed 
using the indirection operator (*).
    int   a, b;

    int   *p;

    :

    p = &a;

    b = *p;
Equivalent to b = a
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Example 1

#include  <stdio.h>
main()
{
    int   a, b;
    int   c = 5;
    int   *p;

    a  =  4  *  (c  +  5) ;

    p  =  &c;
    b  =  4  *  (*p  +  5) ; 
    printf  (“a=%d  b=%d \n”,  a, b) ;
}

Equivalent
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Pointer Expressions

• Like other variables, pointer variables can be used in 
expressions.

• If p1 and p2 are two pointers, the following statements 
are valid:
    sum   =  *p1  +  *p2 ;

    prod  =  *p1  *  *p2 ;

    prod  =   (*p1)  *  (*p2) ;

    *p1  =  *p1  +  2;

    x  =  *p1  /  *p2  +  5 ;



Dept. of CSE, IIT KGP

Pointer Arithmetic

• What are allowed in C?
– Add an integer to a pointer.
– Subtract an integer from a pointer.
– Subtract one pointer from another (related).

• If p1 and p2 are both pointers to the same array, them    
p2–p1 gives the number of elements between p1 and p2.

• What are not allowed?
– Add two pointers.

   p1  =  p1 + p2 ;

– Multiply / divide a pointer in an expression.
  p1  =  p2 / 5 ;

  p1  =  p1 – p2 * 10 ;
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Scale Factor

• We have seen that an integer value can be added 
to or subtracted from a pointer variable.

int    *p1,  *p2 ;

int    i,  j;

:

p1  =  p1  +  1 ;

p2  =  p1  +  j ;

p2++ ;

p2  =  p2  –  (i + j) ;

• In reality, it is not the integer value which is 
added/subtracted, but rather the scale factor 
times the value.
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     Data Type        Scale Factor
          char                     1
          int                        4
          float                     4
          double                 8

– If p1 is an integer pointer, then

                  p1++

    will increment the value of p1 by 4.
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Passing Pointers to a Function

• Pointers are often passed to a function as 
arguments.
– Allows data items within the calling program to be 

accessed by the function, altered, and then returned to 
the calling program in altered form.

– Called call-by-reference (or by address or by location).

• Normally, arguments are passed to a function by 
value.
– The data items are copied to the function.
– Changes are not reflected in the calling program.
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Example: passing arguments by value

#include  <stdio.h>
main()
{
      int  a, b;
      a = 5 ;   b = 20 ;
      swap (a, b) ;
      printf  (“\n a = %d,  b = %d”, a, b);
}

void   swap  (int  x, int  y)
{
      int  t ;
      t = x ;
      x = y ;
      y = t ;
}

Output

a = 5, b = 20
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Example: passing arguments by reference

#include  <stdio.h>
main()
{
      int  a, b;
      a = 5 ;   b = 20 ;
      swap (&a, &b) ;
      printf  (“\n a = %d,  b = %d”, a, b);
}

void   swap  (int  *x, int  *y)
{
      int  t ;
      t = *x ;
      *x = *y ;
      *y = t ;
}

Output

a = 20, b = 5
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scanf Revisited

   int   x,  y ;

   printf  (“%d %d %d”,  x, y, x+y) ;

• What about scanf ?
   

   scanf   (“%d %d %d”, x, y, x+y) ;

   scanf   (“%d %d”, &x, &y) ;
NO

YES
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Example: Sort 3 integers

• Three-step algorithm:
1. Read in three integers x, y and z

2. Put smallest in x
• Swap x, y if necessary; then swap x, z if necessary.

1. Put second smallest in y
• Swap y, z if necessary.
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#include  <stdio.h>
main()
{
      int  x, y, z ;
      ………..
      scanf  (“%d %d %d”, &x, &y, &z) ;
      if  (x > y)   swap (&x, &y);
      if  (x > z)   swap (&x, &z);
      if  (y > z)   swap (&y, &z) ;
      ………..
}
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sort3 as a function

#include  <stdio.h>
main()
{
      int  x, y, z ;
      ………..
      scanf  (“%d %d %d”, &x, &y, &z) ;
      sort3  (&x, &y, &z) ;
      ………..
}

void   sort3  (int *xp,  int *yp,  int *zp)
{
      if  (*xp > *yp)   swap (xp, yp);
      if  (*xp > *zp)   swap (xp, zp);
      if  (*yp > *zp)   swap (yp, zp);
}
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• Why no ‘&’ in swap call?
– Because xp, yp and zp are already pointers that point to the 

variables that we want to swap.
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Pointers and Arrays

• When an array is declared,
– The compiler allocates a base address and sufficient amount of 

storage to contain all the elements of the array in contiguous 
memory locations.

– The base address is the location of the first element (index 0) 
of the array.

– The compiler also defines the array name as a constant pointer 
to the first element.
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Example

• Consider the declaration:
    int  x[5]  =  {1, 2, 3, 4, 5} ;
– Suppose that the base address of x is 2500, and each 

integer requires 4 bytes.
         Element    Value    Address
             x[0]             1           2500
             x[1]             2           2504
             x[2]             3           2508
             x[3]             4           2512
             x[4]             5           2516
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Contd.

    x   =   &x[0]   =   2500 ;

– p = x;    and    p = &x[0];  are equivalent.
– We can access successive values of x by using p++ or p- - to 

move from one element to another.

• Relationship between p and x:
p      =   &x[0]   =   2500

p+1  =   &x[1]   =   2504

p+2  =   &x[2]   =   2508

p+3  =   &x[3]   =   2512

p+4  =   &x[4]   =   2516
*(p+i) gives the

     value of x[i]
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Example: function to find average

#include  <stdio.h>
main()
{
      int  x[100], k, n ;

      scanf  (“%d”, &n) ;

      for  (k=0; k<n; k++)
          scanf  (“%d”, &x[k]) ;

      printf  (“\nAverage is %f”, 
                                      avg (x, n));
}

float  avg  (array, size)
int  array[], size ;
{
      int  *p, i , sum = 0;

      p = array ;

      for  (i=0; i<size; i++)
           sum = sum + *(p+i);
   
      return  ((float) sum / size);
}
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