File Handling

CS10001: Programming & Data Structures

Pallab Dasgupta

Professor, Dept. of Computer
Sc. & Engg.,

Indian Institute of
Technology Kharagpur

pt. of CSE, IIT KGP

What is a file?

* A named collection of data, stored in secondary
storage (typically).

* Typical operations on files:
— Open
— Read
— Write
— Close
* How is a file stored?

— Stored as sequence of bytes, logically contiguous (may not be
physically contiguous on disk).

pt. of CSE, IIT KGP

— The last byte of a file contains the end-of-file character (EOF),
with ASCII| code 1A (hex).

— While reading a text file, the EOF character can be checked to
know the end.

* Two kinds of files:

— Text :: contains ASCII codes only

— Binary :: can contain non-ASCIl characters
* Image, audio, video, executable, etc.

* To check the end of file here, the file size value (also stored on
disk) needs to be checked.

pt. of CSE, IIT KGP
[]

File handling in C

° InC we use FILE * to represent a pointer to a file.

* fopen is used to open a file. It returns the special value NULL to
indicate that it is unable to open the file.

FILE *fptr;
char filename[]= "file2.dat";
fptr = fopen (filename,"w")
if (fptr == NULL) {
printf (“ERROR IN FILE CREATION") ;
/* DO SOMETHING */

pt. of CSE, IIT KGP

Modes for opening files

* The second argument of fopen is the mode in which
we open the file. There are three modes.

“r" opens a file for reading.

"w" creates a file for writing, and writes over all previous
contents (deletes the file so be careful!).

"a" opens a file for appending — writing on the end of the file.

pt. of CSE, IIT KGP

* We can add a “b” character to indicate that the file is a
binary file.

— “rb”, “wb” or “ab“

fptr = fopen (“xyz.jpg”, “rb”);

pt. of CSE, IIT KGP

The exit() function

- Sometimes error checking means we want an
“"emergency exit" from a program.

° Inmain () we can use return to stop.
* In functions we can use exit () to do this.
* EXit is part of the stdlib.h library.

exit(-1);
in a function is exactly the same as

return -1;
in the main routine

pt. of CSE, IIT KGP l

Usage of exit()

FILE *fptr;

char filename[]= "file2.dat";

fptr = fopen (filename,"w");

if (fptr == NULL) {
printf (“ERROR IN FILE CREATION”) ;
/* Do something */
exit(-1);

sssssssss

pt. of CSE, IIT KGP 8

Writing to a file using fprintf()

* fprintf () works just like printf () and sprintf ()
except that its first argument is a file pointer.

FILE *fptr;
Fptr = fopen ("file.dat","w");
/* Check it's open */

fprintf (fptr, "Hello World!'\n");
fprintf (fptr, “%d %d4d”, a, b);

pt. of CSE, IIT KGP 9

Reading Data Using fscanff()

* We also read data from a file using £scanf () .

FILE *fptr;
Fptr = fopen (“input.dat”, “z”);
/* Check it's open */
if (fptr == NULL)
{
printf (“Error in opening file \n”);

}
fscanf (fptr, “%d %d”,&x, &y):.

pt. of CSE, IIT KGP

10

Reading lines from a file using fgets()

We can read a string using £gets () .

FILE *fptr;
char line [1000];

/* Open file and check it is open */
while (fgets(line,1000,fptr) != NULL)
{

printf ("Read line %s\n",line);

}

fgets () takes 3 arguments — a string, maximum
number of characters to read, and a file pointer.
It returns NULL if there is an error (such as EOF).

pt. of CSE, IIT KGP

11

Closing a file

* We can close a file simply using fclose () and the
file pointer.

FILE *fptr;

char filename[]= "myfile.dat";

fptr = fopen (filename,"w") ;

if (fptr == NULL) ({
printf ("Cannot open file to write!\n");
exit(-1);

}

fprintf (fptr,"Hello World of filing!'\n");

fclose (fptr);

pt. of CSE, IIT KGP 12

Three special streams

* Three special file streams are defined in the <stdio.h>
header

— stdin reads input from the keyboard
— stdout send output to the screen
— stderr prints errors to an error device (usually also the screen)

* What might this do?

fprintf (stdout,"Hello World!'\n");

pt. of CSE, IIT KGP 13

An example program

#include <stdio.h>
main ()

{

int 1i;

fprintf (stdout,"Give value of i \n");
fscanf (stdin, "%d", &1) ;

fprintf (stdout, "Value of i=%d \n",i);
fprintf (stderr, ' "No error: But an example to
show error message.\n");

}

Give value of i

15

Value of i=15

No error: But an example to show error message.

pt. of CSE, IIT KGP 14

Input File & Output File redirection

* One may redirect the standard input and standard
output to other files (other than stdin and stdout).

* Usage: Suppose the executable file is a.out:

$./a.out <in.dat >out.dat

scanf () will read data inputs from the file “in.dat”,
and print£ () will output results on the file
“out.dat”.

pt. of CSE, IIT KGP 15

A Variation

S ./a.out <in.dat >>out.dat

scanf () will read data inputs from the file “in.dat”,
and print£ () will append results at the end of the file
“out.dat”.

t. of CSE, IIT KGP 16

Reading and Writing a character

* A character reading/writing is equivalent to
reading/writing a byte.

int getchar(); } stdin, stdout

int putchar(int ¢);

int fgetc(FILE *f£fp); file
int fputc(int ¢, FILE *£fp);

* Example:

char c¢;
c = getchar();

putchar (c) ;

pt. of CSE, IIT KGP

17

Example: use of getchar () & putchar ()

#include <stdio.h>
main ()

{

int ¢;

printf ("Type text and press return to
see it again \n");

printf ("For exiting press <CTRL D> \n");

while ((c = getchar()) !'= EOF)
putchar (c) ;

pt. of CSE, IIT KGP 18

Command Line Arguments

t. of CSE, IIT KGP

19

What are they?

* A program can be executed by directly typing a command at
the operating system prompt.

$ cc -o test test.c
$./a.out in.dat out.dat
$ prog_name param 1 param 2 param 3 ..

— The individual items specified are separated from one
another by spaces.

* First item is the program name.

— Variables argc and argv keep track of the items specified
in the command line.

pt. of CSE, IIT KGP

20

How to access them?

- Command line arguments may be passed by
specifying them under main () .

int main (int arge, char *arxll);

Argument Array of strings
Count as command line
arguments including
the command itself.

pt. of CSE, IIT KGP 21

Example: Contd.

$./a.out s.dat d.dat

v J
“““““““
‘‘‘‘‘
¢¢¢¢
* . s
$$$$
‘‘‘‘‘‘‘
Y .
““““

.
.
""""""
¢¢¢¢¢

‘‘‘‘‘‘‘‘
“““““
»»»»»»
. s®

* .
““““““““
. .®

. .
.

arge=3 o——+| .Ja.out |
| s.dat |
| d.dat |
argv
argv[0] = “./a.out” argv[1] = “s.dat” argv[2] = “d.dat”

t. of CSE, IIT KGP 22

Example: reading command line arguments

{

#include <stdio.h>
#include <string.h>

int main(int argec,char *argv([])

FILE *ifp, *ofp;
int i, ¢;
char src file[100],dst file[100];

if (argec!'=3) {
printf ("Usage: ./a.out <src file> <dst file> \n");
exit(0) ;
}
else ({
strcpy (src_file, argv[l]);
strcpy (dst_file, argv([2]);
}

ept. of CSE, IIT KGP

23

Example: contd.

if ((ifp = fopen(src _file,"r")) == NULL) {
printf ("File does not exist.\n");
exit(0) ;

}

if ((ofp = fopen(dst file,"w")) == NULL) {
printf ("File not created.\n");
exit(0) .,

}

while ((c = fgetc(ifp)) != EOF) {
fputec (c,ofp);
}

fclose (ifp) ;
fclose (ofp) ;

pt. of CSE, IIT KGP 24

Example: with command-line arguments

* Write a program which will take the number of data
items, followed by the actual data items on the
command line, and print the average.

$./a.out_6 10 17 35 12 28 33

/ —

No. of data items

argv[2] = “17”, and so on

pt. of CSE, IIT KGP 25

Getting numbers from strings

* Once we have got a string with a number in it
(either from a file or from the user typing) we can
use atoi or atof to convert it to a number.

* The functions are part of stdlib.h

char numberstring[]= "3.14";
int 1i;

double pi;

pi = atof (numberstring) ;

i = atoi ("12");

Both of these functions return 0 if they have a problem.

pt. of CSE, IIT KGP 26

* Alternatively, we can use sscanf () .

* For example, if axrgv[1]="10” and argv[2]="17",
then we can read their values into integer variables as:

sscanf (argv[l], “%d”, &nl);
sscanf (argv[2], “%d”, &n2);

pt. of CSE, IIT KGP 27

Reading one line at a time

* [tis quite common to want to read every line in a
program. The best way to do this is a while loop using
fgets () .

FILE *fptr;
char tline[100];
fptr = fopen ("sillyfile.txt", "r");

/* check it's open */

while (fgets (tline, 100, fptr) !'= NULL) {
printf ("%s", tline); // Print it

}

fclose (fptr);

pt. of CSE, IIT KGP 28

	File Handling CS10001: Programming & Data Structures
	What is a file?
	Slide 3
	File handling in C
	Modes for opening files
	Slide 6
	The exit() function
	Usage of exit()
	Writing to a file using fprintf()
	Reading Data Using fscanf()
	Reading lines from a file using fgets()
	Closing a file
	Three special streams
	An example program
	Input File & Output File redirection
	A Variation
	Reading and Writing a character
	Example: use of getchar() & putchar()
	Command Line Arguments
	What are they?
	How to access them?
	Example: Contd.
	Example: reading command line arguments
	Example: contd.
	Example: with command-line arguments
	Getting numbers from strings
	Slide 27
	Reading one line at a time

