
1
Dept. of CSE, IIT KGP

PointersPointers

CS10001:CS10001: Programming & Data StructuresProgramming & Data Structures

Prof. Pallab DasguptaProf. Pallab Dasgupta
Professor, Dept. of Computer Professor, Dept. of Computer
Sc. & Engg.,Sc. & Engg.,
Indian Institute of Indian Institute of
Technology, KharagpurTechnology, Kharagpur

2
Dept. of CSE, IIT KGP

IntroductionIntroduction

• A pointer is a variable that represents the location (rather than A pointer is a variable that represents the location (rather than
the value) of a data item.the value) of a data item.

• They have a number of useful applications.They have a number of useful applications.
– Enables us to access a variable that is defined outside the Enables us to access a variable that is defined outside the

function.function.
– Can be used to pass information back and forth between a Can be used to pass information back and forth between a

function and its reference point.function and its reference point.
– More efficient in handling data tables.More efficient in handling data tables.
– Reduces the length and complexity of a program.Reduces the length and complexity of a program.
– Sometimes also increases the execution speed.Sometimes also increases the execution speed.

3
Dept. of CSE, IIT KGP

Basic ConceptBasic Concept

• In memory, every stored data item occupies one or more In memory, every stored data item occupies one or more
contiguous memory cells.contiguous memory cells.
– The number of memory cells required to store a data item The number of memory cells required to store a data item

depends on its type (char, int, double, etc.).depends on its type (char, int, double, etc.).

• Whenever we declare a variable, the system allocates Whenever we declare a variable, the system allocates
memory location(s) to hold the value of the variable.memory location(s) to hold the value of the variable.
– Since every byte in memory has a unique address, this Since every byte in memory has a unique address, this

location will also have its own (unique) address.location will also have its own (unique) address.

4
Dept. of CSE, IIT KGP

Contd.Contd.

• Consider the statementConsider the statement

 int xyz = 50;int xyz = 50;

– This statement instructs the compiler to allocate a location for This statement instructs the compiler to allocate a location for
the integer variable the integer variable xyzxyz, and put the value , and put the value 5050 in that location. in that location.

– Suppose that the address location chosen is Suppose that the address location chosen is 13801380..

xyz  variable

50  value

1380  address

5
Dept. of CSE, IIT KGP

Contd.Contd.

• During execution of the program, the system always During execution of the program, the system always

associates the name associates the name xyzxyz with the address with the address 13801380..

– The value The value 5050 can be accessed by using either the name can be accessed by using either the name

xyzxyz or the address or the address 13801380..

• Since memory addresses are simply numbers, they can be Since memory addresses are simply numbers, they can be

assigned to some variables which can be stored in assigned to some variables which can be stored in

memory.memory.

– Such variables that hold memory addresses are called Such variables that hold memory addresses are called

pointerspointers..

– Since a pointer is a variable, its value is also stored in Since a pointer is a variable, its value is also stored in

some memory location.some memory location.

6
Dept. of CSE, IIT KGP

Contd.Contd.

• Suppose we assign the address of Suppose we assign the address of xyzxyz to a variable to a variable pp..
– pp is said to point to the variable is said to point to the variable xyzxyz..

Variable Value Address

 xyz 50 1380

 p 1380 2545

p = &xyz;

7
Dept. of CSE, IIT KGP

Address vs. ValueAddress vs. Value

• Each memory cell has an Each memory cell has an addressaddress associated with it. associated with it.
• Each cell also stores some Each cell also stores some valuevalue..

• Don’t confuse the Don’t confuse the addressaddress referring to a memory location with referring to a memory location with
the the valuevalue stored in that location. stored in that location.

23 42
101 102 103 104 105 ...

8
Dept. of CSE, IIT KGP

Values vs LocationsValues vs Locations

• Variables name memory Variables name memory locationslocations, which hold , which hold valuesvalues..

32
x

1024:

address name

value

New Type : Pointer

9
Dept. of CSE, IIT KGP

PointersPointers

• A pointer is just a C variable whose A pointer is just a C variable whose valuevalue is the is the addressaddress of of

another variable!another variable!

• After declaring a pointer:After declaring a pointer:

int *ptr;int *ptr;

ptrptr doesn’t actually point to anything yet. We can either: doesn’t actually point to anything yet. We can either:

– make it point to something that already exists, ormake it point to something that already exists, or

– allocate room in memory for something new that it will allocate room in memory for something new that it will

point to… (next time)point to… (next time)

10
Dept. of CSE, IIT KGP

PointerPointer

32
x

1024:

int x;

int ∗ xp ;

1024
xp

xp = &x ;

address of x

pointer to int

∗xp = 0; /* Assign 0 to x */
∗xp = ∗xp + 1; /* Add 1 to x */

Pointers Abstractly

int x;
int * p;
p=&x;
...
(x == *p) True
(p == &x) True

11
Dept. of CSE, IIT KGP

PointersPointers

• Declaring a pointer just allocates space to hold the pointer – Declaring a pointer just allocates space to hold the pointer –

it does not allocate something to be pointed to!it does not allocate something to be pointed to!

• Local variables in C are not initializedLocal variables in C are not initialized, they may contain , they may contain

anything.anything.

12
Dept. of CSE, IIT KGP

Pointer Usage ExamplePointer Usage Example

Memory and Pointers:Memory and Pointers:0xffff ffff

0x0000 0000

0xcafe 0000

0xbeef 0000

0x0000 0004

13
Dept. of CSE, IIT KGP

Pointer Usage ExamplePointer Usage Example

Memory and Pointers:Memory and Pointers:

int *p, v;int *p, v;

0xXXXXXXXX

0xffff ffff

0x0000 0000

0xcafe 0000

0xXXXXXXXX 0xbeef 0000

0x0000 0004

p:

v:

14
Dept. of CSE, IIT KGP

Pointer Usage ExamplePointer Usage Example

Memory and Pointers:Memory and Pointers:

int *p, v;int *p, v;

p = &v;p = &v;
0xXXXXXXXX

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:

15
Dept. of CSE, IIT KGP

Pointer Usage ExamplePointer Usage Example

Memory and Pointers:Memory and Pointers:

int *p, v;int *p, v;

p = &v;p = &v;

v = 0x17;v = 0x17;0x0000 0017

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:

16
Dept. of CSE, IIT KGP

Pointer Usage ExamplePointer Usage Example

Memory and Pointers:Memory and Pointers:

int *p, v;int *p, v;

p = &v;p = &v;

v = 0x17;v = 0x17;

*p = *p + 4;*p = *p + 4;

V = *p + 4V = *p + 4

0x0000 001b

0xffff ffff

0x0000 0000

0xcafe 0000

0xcafe 0000 0xbeef 0000

0x0000 0004

p:

v:

17
Dept. of CSE, IIT KGP

Accessing the Address of a VariableAccessing the Address of a Variable

• The address of a variable can be determined using the ‘The address of a variable can be determined using the ‘&&’ ’
operator.operator.
– The operator ‘The operator ‘&&’ immediately preceding a variable returns ’ immediately preceding a variable returns

the the addressaddress of the variable. of the variable.

• Example:Example:

 p = &xyz;p = &xyz;
– The The addressaddress of xyz (1380) is assigned to p. of xyz (1380) is assigned to p.

• The ‘&’ operator can be used only with a The ‘&’ operator can be used only with a simple variablesimple variable or an or an
array elementarray element..
 &distance&distance
 &x[0]&x[0]
 &x[i-2]&x[i-2]

18
Dept. of CSE, IIT KGP

Contd.Contd.

• Following usages are Following usages are illegalillegal::
 &235&235

• Pointing at constant.Pointing at constant.

 int arr[20];int arr[20];
 ::
 &arr;&arr;

• Pointing at array name.Pointing at array name.

 &(a+b)&(a+b)
• Pointing at expression.Pointing at expression.

19
Dept. of CSE, IIT KGP

ExampleExample

#include <stdio.h>
main()
{
 int a;
 float b, c;
 double d;
 char ch;

 a = 10; b = 2.5; c = 12.36; d = 12345.66; ch = ‘A’;
 printf (“%d is stored in location %u \n”, a, &a) ;
 printf (“%f is stored in location %u \n”, b, &b) ;
 printf (“%f is stored in location %u \n”, c, &c) ;
 printf (“%ld is stored in location %u \n”, d, &d) ;
 printf (“%c is stored in location %u \n”, ch, &ch) ;
}

20
Dept. of CSE, IIT KGP

Output:

10 is stored in location 3221224908

2.500000 is stored in location 3221224904

12.360000 is stored in location 3221224900

12345.660000 is stored in location 3221224892

A is stored in location 3221224891

21
Dept. of CSE, IIT KGP

Pointer DeclarationsPointer Declarations

• Pointer variables must be declared before we use them.Pointer variables must be declared before we use them.

• General form:General form:

 data_type *pointer_name;data_type *pointer_name;

• Three things are specified in the above declaration:Three things are specified in the above declaration:
• The asterisk (*) tells that the variable The asterisk (*) tells that the variable pointer_namepointer_name

is a pointer variable.is a pointer variable.
• pointer_namepointer_name needs a memory location. needs a memory location.
• pointer_name points to a variable of type pointer_name points to a variable of type data_typedata_type..

22
Dept. of CSE, IIT KGP

Contd.Contd.

• Example:Example:

 int int *count;*count;

 float *speed;float *speed;

• Once a pointer variable has been declared, it can be made to point Once a pointer variable has been declared, it can be made to point
to a variable using an assignment statement like:to a variable using an assignment statement like:

 int *p, xyz;int *p, xyz;

 ::

 p = &xyz;p = &xyz;
– This is called This is called pointer initializationpointer initialization..

23
Dept. of CSE, IIT KGP

Things to RememberThings to Remember

• Pointer variables must always point to a data item of the Pointer variables must always point to a data item of the same same
typetype..

float x;float x;

 int *p;int *p;
 ::  will result in erroneous output will result in erroneous output
 p = &x;p = &x;

• Assigning an absolute address to a pointer variable is Assigning an absolute address to a pointer variable is
prohibited.prohibited.

int *count;int *count;

 ::
 count = 1268;count = 1268;

24
Dept. of CSE, IIT KGP

Accessing a Variable Through its PointerAccessing a Variable Through its Pointer

• Once a pointer has been assigned the Once a pointer has been assigned the addressaddress of a variable, the of a variable, the
valuevalue of the variable can be accessed using the of the variable can be accessed using the indirection indirection
operatoroperator (*). (*).

 int a, b;int a, b;

 int *p;int *p;

 ::

 p = &a;p = &a;

 b = *p;b = *p;

Equivalent to b = a;

25
Dept. of CSE, IIT KGP

Example 1Example 1

#include <stdio.h>
main()
{
 int a, b;
 int c = 5;
 int *p;

 a = 4 * (c + 5) ;

 p = &c;
 b = 4 * (*p + 5) ;
 printf (“a=%d b=%d \n”, a, b);
}

Equivalent

a=40 b=40

26
Dept. of CSE, IIT KGP

Example 2Example 2

#include <stdio.h>
main()
{
 int x, y;
 int *ptr;

 x = 10 ;
 ptr = &x ;
 y = *ptr ;
 printf (“%d is stored in location %u \n”, x, &x) ;
 printf (“%d is stored in location %u \n”, *&x, &x) ;
 printf (“%d is stored in location %u \n”, *ptr, ptr) ;
 printf (“%d is stored in location %u \n”, y, &*ptr) ;
 printf (“%u is stored in location %u \n”, ptr, &ptr) ;
 printf (“%d is stored in location %u \n”, y, &y) ;

 *ptr = 25;
 printf (“\nNow x = %d \n”, x);
}

27
Dept. of CSE, IIT KGP

Output:

10 is stored in location 3221224908

10 is stored in location 3221224908

10 is stored in location 3221224908

10 is stored in location 3221224908

3221224908 is stored in location 3221224900

10 is stored in location 3221224904

Now x = 25

Address of x: 3221224908

Address of y: 3221224904

Address of ptr: 3221224900

28
Dept. of CSE, IIT KGP

Pointer ExpressionsPointer Expressions

• Like other variables, pointer variables can be used in expressions.Like other variables, pointer variables can be used in expressions.

• If p1 and p2 are two pointers, the following statements are valid:If p1 and p2 are two pointers, the following statements are valid:

 sum = *p1 + *p2;sum = *p1 + *p2;

 prod = *p1 * *p2;prod = *p1 * *p2;

 prod = (*p1) * (*p2);prod = (*p1) * (*p2);

 *p1 = *p1 + 2;*p1 = *p1 + 2;

 x = *p1 / *p2 + 5;x = *p1 / *p2 + 5;

*p1 can appear on
the left hand side

29
Dept. of CSE, IIT KGP

Contd.Contd.

• What are allowed in C?What are allowed in C?
– Add an integer to a pointer.Add an integer to a pointer.
– Subtract an integer from a pointer.Subtract an integer from a pointer.
– Subtract one pointer from another (related).Subtract one pointer from another (related).

• If If p1p1 and and p2p2 are both pointers to the same array, then are both pointers to the same array, then p2–p2–
p1p1 gives the number of elements between gives the number of elements between p1p1 and and p2p2..

30
Dept. of CSE, IIT KGP

Contd.Contd.

• What are not allowed?What are not allowed?
– Add two pointers.Add two pointers.

 p1 = p1 + p2;p1 = p1 + p2;

– Multiply / divide a pointer in an expression.Multiply / divide a pointer in an expression.
 p1 = p2 / 5;p1 = p2 / 5;

 p1 = p1 – p2 * 10;p1 = p1 – p2 * 10;

31
Dept. of CSE, IIT KGP

Scale FactorScale Factor

• We have seen that an integer value can be added to or We have seen that an integer value can be added to or
subtracted from a pointer variable.subtracted from a pointer variable.

int *p1, *p2;int *p1, *p2;

int i, j;int i, j;

::

p1 = p1 + 1;p1 = p1 + 1;

p2 = p1 + j;p2 = p1 + j;

p2++;p2++;

p2 = p2 p2 = p2 –– (i + j); (i + j);

– In reality, it is not the integer value which is added/subtracted, In reality, it is not the integer value which is added/subtracted,
but rather the but rather the scale factorscale factor timestimes the valuethe value..

32
Dept. of CSE, IIT KGP

Contd.Contd.

 Data TypeData Type Scale FactorScale Factor
 char 1char 1
 int 4int 4
 float 4float 4
 double 8double 8

– If p1 is an integer pointer, thenIf p1 is an integer pointer, then

 p1++p1++

 will increment the value of will increment the value of p1p1 byby 44..

33
Dept. of CSE, IIT KGP

• Note: Note:
– The exact scale factor may vary from one machine to another.The exact scale factor may vary from one machine to another.
– Can be found out using the Can be found out using the sizeofsizeof function. function.
– Syntax:Syntax:

 sizeof (data_type)sizeof (data_type)

34
Dept. of CSE, IIT KGP

Example: to find the scale factorsExample: to find the scale factors

#include <stdio.h>
main()
{
 printf (“No. of bytes occupied by int is %d \n”, sizeof(int));
 printf (“No. of bytes occupied by float is %d \n”, sizeof(float));
 printf (“No. of bytes occupied by double is %d \n”, sizeof(double));
 printf (“No. of bytes occupied by char is %d \n”, sizeof(char));
}

Output:

Number of bytes occupied by int is 4
Number of bytes occupied by float is 4
Number of bytes occupied by double is 8
Number of bytes occupied by char is 1

35
Dept. of CSE, IIT KGP

Passing Pointers to a FunctionPassing Pointers to a Function

• Pointers are often passed to a function as arguments.Pointers are often passed to a function as arguments.

– Allows data items within the calling program to be Allows data items within the calling program to be

accessed by the function, altered, and then returned to the accessed by the function, altered, and then returned to the

calling program in altered form.calling program in altered form.

– Called Called call-by-referencecall-by-reference (or by (or by addressaddress or by or by locationlocation).).

• Normally, arguments are passed to a function Normally, arguments are passed to a function by valueby value..

– The data items are copied to the function.The data items are copied to the function.

– Changes are not reflected in the calling program.Changes are not reflected in the calling program.

36
Dept. of CSE, IIT KGP

Example: passing arguments by valueExample: passing arguments by value

#include <stdio.h>
main()
{
 int a, b;
 a = 5; b = 20;
 swap (a, b);
 printf (“\n a=%d, b=%d”, a, b);
}

void swap (int x, int y)
{
 int t;
 t = x;
 x = y;
 y = t;
}

Output

a=5, b=20

37
Dept. of CSE, IIT KGP

Example: passing arguments by referenceExample: passing arguments by reference

#include <stdio.h>
main()
{
 int a, b;
 a = 5; b = 20;
 swap (&a, &b);
 printf (“\n a=%d, b=%d”, a, b);
}

void swap (int *x, int *y)
{
 int t;
 t = *x;
 *x = *y;
 *y = t;
}

Output

a=20, b=5

38
Dept. of CSE, IIT KGP

Pointers and ArraysPointers and Arrays

• When an array is declared,When an array is declared,

– The compiler allocates a The compiler allocates a base addressbase address and sufficient amount of and sufficient amount of

storage to contain all the elements of the array in contiguous storage to contain all the elements of the array in contiguous

memory locations.memory locations.

– The The base addressbase address is the location of the first element (is the location of the first element (index 0index 0))

of the array.of the array.

– The compiler also defines the array name as a The compiler also defines the array name as a constant pointerconstant pointer

to the first element.to the first element.

39
Dept. of CSE, IIT KGP

ExampleExample

• Consider the declaration:Consider the declaration:

 int x[5] = {1, 2, 3, 4, 5};int x[5] = {1, 2, 3, 4, 5};
– Suppose that the base address of x is 2500, and each Suppose that the base address of x is 2500, and each

integer requires 4 bytes.integer requires 4 bytes.

 ElementElement ValueValue AddressAddress
 x[0] 1 2500x[0] 1 2500
 x[1] 2 2504x[1] 2 2504
 x[2] 3 2508x[2] 3 2508
 x[3] 4 2512x[3] 4 2512
 x[4] 5 2516x[4] 5 2516

40
Dept. of CSE, IIT KGP

Contd.Contd.

 Both Both xx and and &x[0] &x[0] have the valuehave the value 2500. 2500.

 p = x;p = x; and and p = &x[0];p = &x[0]; are equivalent. are equivalent.
– We can access successive values of We can access successive values of xx by using by using p++p++ or or p--p-- to to

move from one element to another.move from one element to another.

• Relationship between p and x:Relationship between p and x:
p = &x[0] = 2500p = &x[0] = 2500

p+1 = &x[1] = 2504p+1 = &x[1] = 2504

p+2 = &x[2] = 2508p+2 = &x[2] = 2508

p+3 = &x[3] = 2512p+3 = &x[3] = 2512

p+4 = &x[4] = 2516p+4 = &x[4] = 2516
*(p+i) gives the
 value of x[i]

41
Dept. of CSE, IIT KGP

Example: function to find averageExample: function to find average

#include <stdio.h>
main()
{
 int x[100], k, n;

 scanf (“%d”, &n);

 for (k=0; k<n; k++)
 scanf (“%d”, &x[k]);

 printf (“\nAverage is %f”,
 avg (x, n));
}

float avg (array, size)
int array[], size;
{
 int *p, i , sum = 0;

 p = array;

 for (i=0; i<size; i++)
 sum = sum + *(p+i);

 return ((float) sum / size);
}

42
Dept. of CSE, IIT KGP

Arrays and pointersArrays and pointers

• An array name is an address, or a pointer value.An array name is an address, or a pointer value.

• Pointers as well as arrays can be subscripted.Pointers as well as arrays can be subscripted.

• A pointer variable can take different addresses as values.A pointer variable can take different addresses as values.

• An array name is an address, or pointer, that is fixed.An array name is an address, or pointer, that is fixed.

It is a It is a CONSTANTCONSTANT pointer to the first element. pointer to the first element.

43
Dept. of CSE, IIT KGP

ArraysArrays

• Consequences:Consequences:

– arar is a pointer is a pointer

– ar[0]ar[0] is the same as is the same as *ar*ar

– ar[2]ar[2] is the same as is the same as *(ar+2)*(ar+2)

– We can use pointer arithmetic to access arrays more We can use pointer arithmetic to access arrays more

conveniently.conveniently.

• Declared arrays are only allocated while the scope is validDeclared arrays are only allocated while the scope is valid

char *foo() {char *foo() {

 char string[32]; ...; char string[32]; ...;

 return string; return string;

}} is incorrectis incorrect

44
Dept. of CSE, IIT KGP

ArraysArrays

• Array size Array size nn; want to access from ; want to access from 00 to to n-1n-1, so you should , so you should

use counter AND utilize a constant for declaration & incruse counter AND utilize a constant for declaration & incr

– WrongWrong
int i, ar[10];int i, ar[10];

for(i = 0; i < 10; i++){ ... }for(i = 0; i < 10; i++){ ... }

– RightRight
#define ARRAY_SIZE 10#define ARRAY_SIZE 10

int i, a[ARRAY_SIZE];int i, a[ARRAY_SIZE];

for(i = 0; i < ARRAY_SIZE; i++){ ... }for(i = 0; i < ARRAY_SIZE; i++){ ... }

• Why? Why? SINGLE SOURCE OF TRUTHSINGLE SOURCE OF TRUTH

– You’re utilizing You’re utilizing indirectionindirection and and avoiding maintaining two avoiding maintaining two

copiescopies of the number 10 of the number 10

45
Dept. of CSE, IIT KGP

ArraysArrays

• Pitfall: An array in C does Pitfall: An array in C does notnot know its own length, & bounds know its own length, & bounds

not checked!not checked!

– Consequence: We can accidentally access off the end of Consequence: We can accidentally access off the end of

an array.an array.

– Consequence: We must pass the array Consequence: We must pass the array and its sizeand its size to a to a

procedure which is going to traverse it.procedure which is going to traverse it.

• Segmentation faultsSegmentation faults and and bus errorsbus errors::

– These are VERY difficult to find; These are VERY difficult to find;

be careful!be careful!

– You’ll learn how to debug these in lab…You’ll learn how to debug these in lab…

46
Dept. of CSE, IIT KGP

Arrays In FunctionsArrays In Functions

• An array parameter can be declared as an array An array parameter can be declared as an array oror a pointer; an a pointer; an

array argument can be passed as a pointer.array argument can be passed as a pointer.

– Can be incrementedCan be incremented

int strlen(char s[])
{

}

int strlen(char *s)
{

}

47
Dept. of CSE, IIT KGP

Arrays and pointersArrays and pointers

int a[20], i, *p;int a[20], i, *p;

• The expression The expression a[i]a[i] is equivalent to is equivalent to *(a+i)*(a+i)

• p[i] p[i] is equivalent tois equivalent to *(p+i) *(p+i)

• When an array is declared the compiler allocates a sufficient When an array is declared the compiler allocates a sufficient

amount of contiguous space in memory. The base address of amount of contiguous space in memory. The base address of

the array is the address of a[0].the array is the address of a[0].

• Suppose the system assigns 300 as the base address of a. Suppose the system assigns 300 as the base address of a.

a[0], a[1], ...,a[19]a[0], a[1], ...,a[19] are allocated are allocated 300, 304, ..., 376300, 304, ..., 376..

48
Dept. of CSE, IIT KGP

Arrays and pointersArrays and pointers

#define N 20#define N 20

int a[2N], i, *p, sum;int a[2N], i, *p, sum;

• p = a; p = a; is equivalent tois equivalent to p = *a[0]; p = *a[0];

• p p is assignedis assigned 300. 300.

• Pointer arithmetic provides an alternative to array indexing.Pointer arithmetic provides an alternative to array indexing.

• p=a+1;p=a+1; is equivalent to is equivalent to p=&a[1];p=&a[1]; (p is assigned 304) (p is assigned 304)

for (p=a; p<&a[N]; ++p)
sum += *p ;

p=a;
for (i=0; i<N; ++i)

sum += p[i] ;
for (i=0; i<N; ++i)

sum += *(a+i) ;

49
Dept. of CSE, IIT KGP

Arrays and pointersArrays and pointers

int a[N];int a[N];

• a is a a is a constant pointerconstant pointer..

• a=p; ++a; a+=2; a=p; ++a; a+=2; illegalillegal

50
Dept. of CSE, IIT KGP

Pointer arithmetic and element sizePointer arithmetic and element size

double * p, *q ;double * p, *q ;

• The expression The expression p+1p+1 yields the correct machine address for the yields the correct machine address for the

next variable of that type.next variable of that type.

• Other valid pointer expressions:Other valid pointer expressions:

– p+ip+i

– ++p++p

– p+=ip+=i

– p-q p-q /* No of array elements between p and q *//* No of array elements between p and q */

51
Dept. of CSE, IIT KGP

Pointer Arithmetic Pointer Arithmetic

• Since a pointer is just a mem address, we can add to it to traverse Since a pointer is just a mem address, we can add to it to traverse

an array.an array.

• p+1p+1 returns a ptr to the next array element. returns a ptr to the next array element.

•(*p)+1(*p)+1 vs vs *p++*p++ vs vs *(p+1)*(p+1) vs vs *(p)++*(p)++ ? ?

– x = *p++x = *p++ ⇒⇒ x = *px = *p ; ; p = p + 1;p = p + 1;

– x = (*p)++x = (*p)++ ⇒⇒ x = *px = *p ; ; *p = *p + 1;*p = *p + 1;

• What if we have an array of large structs (objects)?What if we have an array of large structs (objects)?

– C takes care of it: In reality, C takes care of it: In reality, p+1p+1 doesn’t add doesn’t add 11 to the memory to the memory

address, it adds the address, it adds the size of the array elementsize of the array element..

52
Dept. of CSE, IIT KGP

 Pointer Arithmetic Pointer Arithmetic

• We can use pointer arithmetic to “walk” through memory:We can use pointer arithmetic to “walk” through memory:

° C automatically adjusts the pointer by the right amount each

time (i.e., 1 byte for a char, 4 bytes for an int, etc.)

void copy(int *from, int *to, int n) {
 int i;
 for (i=0; i<n; i++) {
 *to++ = *from++;
 }
}

53
Dept. of CSE, IIT KGP

int get(int array[], int n)
{
 return (array[n]);

/* OR */
 return *(array + n);
}

Pointer Arithmetic Pointer Arithmetic

• C knows the size of the thing a pointer points to – every addition or C knows the size of the thing a pointer points to – every addition or

subtraction moves that many bytes.subtraction moves that many bytes.

• So the following are equivalent:So the following are equivalent:

54
Dept. of CSE, IIT KGP

Pointer Arithmetic Pointer Arithmetic

• Array size Array size nn; want to access from ; want to access from 00 to to n-1n-1

– test for exit by comparing to address one element past the test for exit by comparing to address one element past the
arrayarray

 int ar[10], *p, *q, sum = 0;int ar[10], *p, *q, sum = 0;
......
p = ar; q = &(ar[10]);p = ar; q = &(ar[10]);
while (p != q)while (p != q)
 /* sum = sum + *p; p = p + 1; *//* sum = sum + *p; p = p + 1; */

sum += *p++;sum += *p++;

– Is this legal?Is this legal?

• C defines that one element past end of array C defines that one element past end of array must be a valid must be a valid
addressaddress, i.e., not cause an bus error or address error, i.e., not cause an bus error or address error

55
Dept. of CSE, IIT KGP

Example with 2-D arrayExample with 2-D array

TO BE DISCUSSED LATER

56
Dept. of CSE, IIT KGP

Structures RevisitedStructures Revisited

• Recall that a structure can be declared as:Recall that a structure can be declared as:

struct stud {struct stud {

 int roll;int roll;

 char dept_code[25];char dept_code[25];

 float cgpa;float cgpa;

 };};

struct stud a, b, c;struct stud a, b, c;

• And the individual structure elements can be accessed And the individual structure elements can be accessed
as:as:

a.roll , b.roll , c.cgpa a.roll , b.roll , c.cgpa

57
Dept. of CSE, IIT KGP

Arrays of StructuresArrays of Structures

• We can define an array of structure records asWe can define an array of structure records as
struct stud class[100];struct stud class[100];

• The structure elements of the individual records can be The structure elements of the individual records can be
accessed as:accessed as:

class[i].rollclass[i].roll

 class[20].dept_codeclass[20].dept_code

class[k++].cgpaclass[k++].cgpa

58
Dept. of CSE, IIT KGP

Example :: sort by roll number (bubble sort)Example :: sort by roll number (bubble sort)

#include <stdio.h>

struct stud

{

 int roll;

 char dept_code[25];

 float cgpa;

};

main()

{

 struc stud class[100], t;

 int j, k, n;

 scanf (“%d”, &n);

 /* no. of students */

for (k=0; k<n; k++)

 scanf (“%d %s %f”, &class[k].roll,

 class[k].dept_code,

 &class[k].cgpa);

for (j=0; j<n-1; j++)

 for (k=j+1; k<n; k++)

 {

 if (class[j].roll > class[k].roll)

 {

 t = class[j];

 class[j] = class[k];

 class[k] = t;

 }

 }

 <<<< PRINT THE RECORDS >>>>

}

59
Dept. of CSE, IIT KGP

Example :: selection sortExample :: selection sort

int min_loc (struct stud x[],

 int k, int size)

int j, pos;

{

 pos = k;

 for (j=k+1; j<size; j++)

 if (x[j] < x[pos])

 pos = j;

 return pos;

}

int selsort (struct stud x[],int n)

{

 int k, m;

 for (k=0; k<n-1; k++)

 {

 m = min_loc(x, k, n);

 temp = a[k];

 a[k] = a[m];

 a[m] = temp;

 }

}
main()
{
 struc stud class[100];
 int n;
 …
 selsort (class, n);
 …

60
Dept. of CSE, IIT KGP

Arrays within StructuresArrays within Structures

• C allows the use of arrays as structure members.C allows the use of arrays as structure members.

• Example:Example:
struct stud {struct stud {

 int roll;int roll;

 char dept_code[25]; char dept_code[25];

 int marks[6];int marks[6];

 float cgpa;float cgpa;

 };};

struct stud class[100];struct stud class[100];

• To access individual marks of students:To access individual marks of students:
class[35].marks[4]class[35].marks[4]

class[i].marks[j]class[i].marks[j]

61
Dept. of CSE, IIT KGP

Pointers and StructuresPointers and Structures

• You may recall that the name of an array stands for the You may recall that the name of an array stands for the
address of its address of its zero-th elementzero-th element..
– Also true for the names of arrays of structure variables.Also true for the names of arrays of structure variables.

• Consider the declaration:Consider the declaration:
struct stud {struct stud {

 int roll;int roll;

 char dept_code[25];char dept_code[25];

 float cgpa;float cgpa;

 } } class[100], *ptrclass[100], *ptr ; ;

62
Dept. of CSE, IIT KGP

– The name The name classclass represents the address of the zero-th represents the address of the zero-th
element of the structure array.element of the structure array.

– ptrptr is a pointer to data objects of the type is a pointer to data objects of the type struct studstruct stud..

• The assignmentThe assignment
ptr = class;ptr = class;

 will assign the address of will assign the address of class[0]class[0] to to ptrptr..

• When the pointer When the pointer ptr ptr is incremented by one (ptr+is incremented by one (ptr+
+) :+) :
– The value of The value of ptrptr is actually increased by is actually increased by sizeof(studsizeof(stud).).
– It is made to point to the next record.It is made to point to the next record.

63
Dept. of CSE, IIT KGP

• Once Once ptrptr points to a structure variable, the members points to a structure variable, the members
can be accessed as:can be accessed as:
 ptr ptr –> roll;–> roll;
 ptr ptr –> dept_code;–> dept_code;
 ptr ptr –> cgpa;–> cgpa;

– The symbol “The symbol “–>–>” is called the ” is called the arrowarrow operator. operator.

64
Dept. of CSE, IIT KGP

A WarningA Warning

• When using structure pointers, we should take care When using structure pointers, we should take care
of operator precedence.of operator precedence.
– Member operator “.” has higher precedence than “*”.Member operator “.” has higher precedence than “*”.

 ptr ptr –> roll–> roll and and (*ptr).roll(*ptr).roll mean the same thing. mean the same thing.

 *ptr.roll*ptr.roll will lead to error. will lead to error.

– The operator “The operator “–>–>” enjoys the highest priority among ” enjoys the highest priority among
operators.operators.

 ++ptr –> roll++ptr –> roll will increment roll, not will increment roll, not ptrptr..

 (++ptr) –> roll(++ptr) –> roll will do the intended thing. will do the intended thing.

65
Dept. of CSE, IIT KGP

Structures and FunctionsStructures and Functions

• A structure can be passed as argument to a function.A structure can be passed as argument to a function.
• A function can also return a structure.A function can also return a structure.
• The process shall be illustrated with the help of an The process shall be illustrated with the help of an

example.example.
– A function to add two complex numbers.A function to add two complex numbers.

66
Dept. of CSE, IIT KGP

Example: complex number additionExample: complex number addition

#include <stdio.h>

struct complex {

 float re;

 float im;

 };

main()

{

 struct complex a, b, c;

 scanf (“%f %f”, &a.re, &a.im);

 scanf (“%f %f”, &b.re, &b.im);

 c = add (a, b) ;

 printf (“\n %f %f”, c,re, c.im);

}

struct complex add (x, y)

struct complex x, y;

{

 struct complex t;

 t.re = x.re + y.re ;

 t.im = x.im + y.im ;

 return (t) ;

}

67
Dept. of CSE, IIT KGP

Example: Alternative way using pointersExample: Alternative way using pointers

#include <stdio.h>

struct complex {

 float re;

 float im;

 };

main()

{

 struct complex a, b, c;

 scanf (“%f %f”, &a.re, &a.im);

 scanf (“%f %f”, &b.re, &b.im);

 add (&a, &b, &c) ;

 printf (“\n %f %f”, c,re, c.im);

}

void add (x, y, t)

struct complex *x, *y, *t;

{

 t->re = x->re + y->re;

 t->im = x->im + y->im;

}

68
Dept. of CSE, IIT KGP

Dynamic Memory AllocationDynamic Memory Allocation

69
Dept. of CSE, IIT KGP

Basic IdeaBasic Idea

• Many a time we face situations where data is dynamic Many a time we face situations where data is dynamic
in nature.in nature.
– Amount of data cannot be predicted beforehand.Amount of data cannot be predicted beforehand.
– Number of data items keeps changing during program Number of data items keeps changing during program

execution.execution.

• Such situations can be handled more easily and Such situations can be handled more easily and
effectively using dynamic memory management effectively using dynamic memory management
techniques.techniques.

70
Dept. of CSE, IIT KGP

Contd.Contd.

• C language requires the number of elements in an array C language requires the number of elements in an array
to be specified at compile time.to be specified at compile time.
– Often leads to wastage or memory space or program failure.Often leads to wastage or memory space or program failure.

• Dynamic Memory AllocationDynamic Memory Allocation
– Memory space required can be specified at the time of Memory space required can be specified at the time of

execution.execution.
– C supports allocating and freeing memory dynamically using C supports allocating and freeing memory dynamically using

library routines.library routines.

71
Dept. of CSE, IIT KGP

Memory Allocation Process in CMemory Allocation Process in C

Local variables

Free memory

Global variables

Instructions

Permanent
storage area

Stack

Heap

72
Dept. of CSE, IIT KGP

Contd.Contd.

• The program instructions and the global variables are The program instructions and the global variables are
stored in a region known as stored in a region known as permanent storage areapermanent storage area..

• The local variables are stored in another area called The local variables are stored in another area called
stackstack..

• The memory space between these two areas is The memory space between these two areas is
available for dynamic allocation during execution of the available for dynamic allocation during execution of the
program.program.
– This free region is called the This free region is called the heapheap..
– The size of the heap keeps changing.The size of the heap keeps changing.

73
Dept. of CSE, IIT KGP

Memory Allocation FunctionsMemory Allocation Functions

• mallocmalloc
– Allocates requested number of bytes and returns a pointer Allocates requested number of bytes and returns a pointer

to the first byte of the allocated space.to the first byte of the allocated space.

• calloccalloc
– Allocates space for an array of elements, initializes them to Allocates space for an array of elements, initializes them to

zero and then returns a pointer to the memory.zero and then returns a pointer to the memory.

• freefree
Frees previously allocated space.Frees previously allocated space.

• reallocrealloc
– Modifies the size of previously allocated space.Modifies the size of previously allocated space.

74
Dept. of CSE, IIT KGP

Allocating a Block of MemoryAllocating a Block of Memory

• A block of memory can be allocated using the function A block of memory can be allocated using the function
mallocmalloc..
– Reserves a block of memory of specified size and returns a Reserves a block of memory of specified size and returns a

pointer of type pointer of type voidvoid..
– The return pointer can be type-casted to any pointer type.The return pointer can be type-casted to any pointer type.

• General format:General format:
 ptr = (type *) malloc (byte_size);ptr = (type *) malloc (byte_size);

75
Dept. of CSE, IIT KGP

Contd.Contd.

• ExamplesExamples
 p = (int *) malloc(100 * sizeof(int));p = (int *) malloc(100 * sizeof(int));

– A memory space equivalent to A memory space equivalent to 100 times the size of an int100 times the size of an int
bytes is reserved.bytes is reserved.

– The address of the first byte of the allocated memory is The address of the first byte of the allocated memory is
assigned to the pointer assigned to the pointer pp of type of type intint..

p

400 bytes of space

76
Dept. of CSE, IIT KGP

Contd.Contd.

 cptr = (char *) malloc (20);cptr = (char *) malloc (20);

– Allocates 20 bytes of space for the pointer Allocates 20 bytes of space for the pointer cptrcptr of type of type charchar..

 sptr = (struct stud *) malloc sptr = (struct stud *) malloc

 (10 * sizeof (struct stud));(10 * sizeof (struct stud));

– Allocates space for a structure array of 10 elements. Allocates space for a structure array of 10 elements. sptrsptr
points to a structure element of type “points to a structure element of type “struct studstruct stud”.”.

77
Dept. of CSE, IIT KGP

Points to NotePoints to Note

• mallocmalloc always allocates a block of contiguous always allocates a block of contiguous
bytes.bytes.
– The allocation can fail if sufficient contiguous memory The allocation can fail if sufficient contiguous memory

space is not available.space is not available.
– If it fails, If it fails, mallocmalloc returns returns NULLNULL..

if ((p = (int *) malloc(100 * sizeof(int))) == NULL)if ((p = (int *) malloc(100 * sizeof(int))) == NULL)

 {{

 printf (“\n Memory cannot be allocated”);printf (“\n Memory cannot be allocated”);

 exit();exit();

}}

78
Dept. of CSE, IIT KGP

ExampleExample

printf("Input heights for %d

students \n",N);

 for (i=0; i<N; i++)

 scanf ("%f", &height[i]);

 for(i=0;i<N;i++)

 sum += height[i];

 avg = sum / (float) N;

 printf("Average height = %f \n",

 avg);

 free (height);

}

#include <stdio.h>

main()

{

 int i,N;

 float *height;

 float sum=0,avg;

 printf("Input no. of students\n");

 scanf("%d", &N);

 height = (float *)

 malloc(N * sizeof(float));

79
Dept. of CSE, IIT KGP

Releasing the Used SpaceReleasing the Used Space

• When we no longer need the data stored in a block of When we no longer need the data stored in a block of
memory, we may release the block for future use.memory, we may release the block for future use.

• How?How?
– By using the By using the freefree function. function.

• General syntax:General syntax:

 free (ptr);free (ptr);

 where where ptrptr is a pointer to a memory block which has is a pointer to a memory block which has
been previously created using been previously created using mallocmalloc..

80
Dept. of CSE, IIT KGP

Altering the Size of a BlockAltering the Size of a Block

• Sometimes we need to alter the size of some Sometimes we need to alter the size of some
previously allocated memory block.previously allocated memory block.
– More memory needed.More memory needed.
– Memory allocated is larger than necessary.Memory allocated is larger than necessary.

• How?How?
– By using the By using the reallocrealloc function. function.

• If the original allocation is done as:If the original allocation is done as:
 ptr = malloc (size);ptr = malloc (size);

 then reallocation of space may be done as:then reallocation of space may be done as:
 ptr = realloc (ptr, newsize);ptr = realloc (ptr, newsize);

81
Dept. of CSE, IIT KGP

Contd.Contd.

– The new memory block may or may not begin at the same The new memory block may or may not begin at the same
place as the old one.place as the old one.

• If it does not find space, it will create it in an entirely If it does not find space, it will create it in an entirely
different region and move the contents of the old block different region and move the contents of the old block
into the new block.into the new block.

– The function guarantees that the old data remains intact.The function guarantees that the old data remains intact.
– If it is unable to allocate, it returns If it is unable to allocate, it returns NULLNULL and frees the and frees the

original block.original block.

82
Dept. of CSE, IIT KGP

Pointer to PointerPointer to Pointer

• Example:Example:

 int **p;int **p;

 p = (int **) malloc(3 * sizeof(int *));p = (int **) malloc(3 * sizeof(int *));

p

p[2]

p[1]

p[0]

int *

int
**

int *

int *

83
Dept. of CSE, IIT KGP

2-D Array Allocation2-D Array Allocation

#include <stdio.h>

#include <stdlib.h>

int **allocate (int h, int w)

 {

 int **p;

 int i, j;

 p = (int **) calloc(h, sizeof (int *));

 for (i=0;i<h;i++)

 p[i] = (int *) calloc(w,sizeof (int));

 return(p);

 }

Allocate array

of pointers

Allocate array of

integers for each

row

void read_data (int **p, int h, int w)

 {

 int i, j;

 for (i=0;i<h;i++)

 for (j=0;j<w;j++)

 scanf ("%d", &p[i][j]);

 }

Elements accessed

like 2-D array elements.

84
Dept. of CSE, IIT KGP

void print_data (int **p, int h, int w)

 {

 int i, j;

 for (i=0;i<h;i++)

 {

 for (j=0;j<w;j++)

 printf ("%5d ", p[i][j]);

 printf ("\n");

 }

}

2-D Array: Contd.2-D Array: Contd.

main()

{

 int **p;

 int M, N;

 printf ("Give M and N \n");

 scanf ("%d%d", &M, &N);

 p = allocate (M, N);

 read_data (p, M, N);

 printf ("\nThe array read as \n");

 print_data (p, M, N);

}

Give M and N

3 3

1 2 3

4 5 6

7 8 9

 The array read as

 1 2 3

 4 5 6

 7 8 9

85
Dept. of CSE, IIT KGP

Linked List :: Basic ConceptsLinked List :: Basic Concepts

• A list refers to a set of items organized sequentially.A list refers to a set of items organized sequentially.
– An array is an example of a list.An array is an example of a list.

• The array index is used for accessing and manipulation of array The array index is used for accessing and manipulation of array
elements.elements.

– Problems with array:Problems with array:
• The array size has to be specified at the beginning.The array size has to be specified at the beginning.
• Deleting an element or inserting an element may require shifting of Deleting an element or inserting an element may require shifting of

elements.elements.

86
Dept. of CSE, IIT KGP

Contd.Contd.

• A completely different way to represent a list:A completely different way to represent a list:
– Make each item in the list part of a structure.Make each item in the list part of a structure.
– The structure also contains a pointer or link to the structure The structure also contains a pointer or link to the structure

containing the next item.containing the next item.
– This type of list is called a linked list.This type of list is called a linked list.

Structure 1 Structure 2 Structure 3

item item item

87
Dept. of CSE, IIT KGP

Contd.Contd.

• Each structure of the list is called a Each structure of the list is called a nodenode, and , and
consists of two fields:consists of two fields:
– One containing the item.One containing the item.

– The other containing the address of the next item in the The other containing the address of the next item in the
list.list.

• The data items comprising a linked list need not The data items comprising a linked list need not
be contiguous in memory.be contiguous in memory.
– They are ordered by logical links that are stored as part They are ordered by logical links that are stored as part

of the data in the structure itself.of the data in the structure itself.
– The link is a pointer to another structure of the same The link is a pointer to another structure of the same

type.type.

88
Dept. of CSE, IIT KGP

Contd.Contd.

• Such a structure can be represented as:Such a structure can be represented as:
 struct struct nodenode
 {{
 int item;int item;
 struct struct nodenode *next; *next;
 } }

• Such structures which contain a member field Such structures which contain a member field
pointing to the same structure type are called pointing to the same structure type are called
self-referential structuresself-referential structures..

item

node

next

89
Dept. of CSE, IIT KGP

Contd.Contd.

• In general, a node may be represented as follows:In general, a node may be represented as follows:

 struct struct node_namenode_name
 {{
 type member1;type member1;
 type member2;type member2;
 ……… ………
 struct struct node_namenode_name *next; *next;
 }}

90
Dept. of CSE, IIT KGP

IllustrationIllustration

• Consider the structure:Consider the structure:
 struct studstruct stud
 {{
 int roll;int roll;
 char name[30];char name[30];
 int age;int age;
 struct stud *next;struct stud *next;
 }}

• Also assume that the list consists of three nodes n1, n2 Also assume that the list consists of three nodes n1, n2
and n3.and n3.
 struct stud n1, n2, n3;struct stud n1, n2, n3;

91
Dept. of CSE, IIT KGP

Contd.Contd.

• To create the links between nodes, we can write:To create the links between nodes, we can write:
 n1.next = &n2 ;n1.next = &n2 ;

 n2.next = &n3 ;n2.next = &n3 ;

 n3.next = NULL ;n3.next = NULL ; /* No more nodes follow *//* No more nodes follow */

• Now the list looks like:Now the list looks like:

n1 n2 n3

roll
name

age
next

92
Dept. of CSE, IIT KGP

ExampleExample

#include <stdio.h>
struct stud
 {
 int roll;
 char name[30];
 int age;
 struct stud *next;
 }

main()
{
 struct stud n1, n2, n3;
 struct stud *p;

 scanf (“%d %s %d”, &n1.roll, n1.name, &n1.age);
 scanf (“%d %s %d”, &n2.roll, n2.name, &n2.age);
 scanf (“%d %s %d”, &n3.roll, n3.name, &n3.age);

93
Dept. of CSE, IIT KGP

 n1.next = &n2 ;
 n2.next = &n3 ;
 n3.next = NULL ;

 /* Now traverse the list and print the elements */

 p = n1 ; /* point to 1st element */
 while (p != NULL)
 {
 printf (“\n %d %s %d”,
 p->roll, p->name, p->age);
 p = p->next;
 }
}

94
Dept. of CSE, IIT KGP

Alternative WayAlternative Way

• Dynamically allocate space for the nodes.Dynamically allocate space for the nodes.
– Use malloc or calloc individually for every node allocated.Use malloc or calloc individually for every node allocated.

	Pointers CS10001: Programming & Data Structures
	Introduction
	Basic Concept
	Contd.
	Slide 5
	Slide 6
	Address vs. Value
	Values vs Locations
	Pointers
	Pointer
	Slide 11
	Pointer Usage Example
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Accessing the Address of a Variable
	Slide 18
	Example
	Slide 20
	Pointer Declarations
	Slide 22
	Things to Remember
	Accessing a Variable Through its Pointer
	Example 1
	Example 2
	Slide 27
	Pointer Expressions
	Slide 29
	Slide 30
	Scale Factor
	Slide 32
	Slide 33
	Example: to find the scale factors
	Passing Pointers to a Function
	Example: passing arguments by value
	Example: passing arguments by reference
	Pointers and Arrays
	Slide 39
	Slide 40
	Example: function to find average
	Arrays and pointers
	Arrays
	Slide 44
	Slide 45
	Arrays In Functions
	Slide 47
	Slide 48
	Slide 49
	Pointer arithmetic and element size
	Pointer Arithmetic
	 Pointer Arithmetic
	Slide 53
	Slide 54
	Example with 2-D array
	Structures Revisited
	Arrays of Structures
	Example :: sort by roll number (bubble sort)
	Example :: selection sort
	Arrays within Structures
	Pointers and Structures
	Slide 62
	Slide 63
	A Warning
	Structures and Functions
	Example: complex number addition
	Example: Alternative way using pointers
	Dynamic Memory Allocation
	Basic Idea
	Slide 70
	Memory Allocation Process in C
	Slide 72
	Memory Allocation Functions
	Allocating a Block of Memory
	Slide 75
	Slide 76
	Points to Note
	Slide 78
	Releasing the Used Space
	Altering the Size of a Block
	Slide 81
	Pointer to Pointer
	2-D Array Allocation
	2-D Array: Contd.
	Linked List :: Basic Concepts
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Illustration
	Slide 91
	Slide 92
	Slide 93
	Alternative Way

