
Control Flow: LoopingControl Flow: Looping

CS10001:CS10001: Programming & Data StructuresProgramming & Data Structures

Dept. of CSE, IIT KGP

PallabPallab DasguptaDasgupta

Professor, Dept. of Computer Sc. & Professor, Dept. of Computer Sc. & EnggEngg.,.,

Indian Institute of Technology Indian Institute of Technology KharagpurKharagpur

Types of Repeated Execution Types of Repeated Execution

• Loop : Group of instructions that are executed
repeatedly while some condition remains true.

How loops are controlled

Dept. of CSE, IIT KGP

Sentinel Sentinel
ControlledControlled

Counter ControlledCounter Controlled
••1, 2, 3, 4, …1, 2, 3, 4, …
••…, 4, 3, 2, 1…, 4, 3, 2, 1

Condition Condition
ControlledControlled

Counter Controlled LoopCounter Controlled Loop

Read 5 integers Read 5 integers
and display the and display the
value of their value of their
summation.summation.

counter ← 1, sum ← 0

counter < 6
false

true

Dept. of CSE, IIT KGP

sum ← sum + n

true

counter++

output sum

input n

Given an exam marks as input, display the appropria te
message based on the rules below:

� If marks is greater than 49, display “PASS”, otherw ise
display “FAIL”

Condition -controlled Loop

Dept. of CSE, IIT KGP

� However, for input outside the 0-100 range, display
“WRONG INPUT” and prompt the user to input again
until a valid input is entered

Condition-Controlled Loop

false

true

input m

m<0 || m>100

“WRONG INPUT”

Dept. of CSE, IIT KGP

false

m>49 “PASS”

“FAIL”

true

false

Condition-controlled
loop with its condition
being tested at the end

false

true

input m

m<0 || m>100

“WRONG INPUT”

input m

Dept. of CSE, IIT KGP

m>49 “PASS”

“FAIL”

true

false

input m

ConditionCondition--controlled controlled
loop with its loop with its
condition being condition being
tested firsttested first

Sentinel-Controlled Loop

•• Receive a number of positive Receive a number of positive
integers and display the integers and display the
summation and average of summation and average of
these integers.these integers.

•• A negative or zero input A negative or zero input
indicates the end of input indicates the end of input
process process

Input: A set of integers
ending with a

negative integer or a zero

Dept. of CSE, IIT KGP

process process

Output: Summation and
Average of these integers

• Input Example:
30 16 42 -9

• Output Example:
Sum = 88

Sentinel Sentinel
ValueValue

Dept. of CSE, IIT KGP

Sum = 88
Average = 29.33

while loop

while (expression)
statement

expression
F

T

Dept. of CSE, IIT KGP

while (i < n) {
printf (“Line no : %d.\n”,i);
i++;

}

statement
(loop body)

while Statement

• The “while” statement is used to carry out looping
operations, in which a group of statements is execu ted
repeatedly, as long as some condition remains
satisfied.

while (condition)
while (condition) {

statement_1;

Dept. of CSE, IIT KGP

while (condition)
statement_to_repeat;

statement_1;
...

statement_N;
}

Note:
The while-loop will not be entered if the loop-control
expression evaluates to false (zero) even before the first
iteration.
break can be used to come out of the while loop.

while :: Examples

int weight ;

while (weight > 65) {
printf ("Go, exercise, ");
printf ("then come back. \n");

Dept. of CSE, IIT KGP

printf ("then come back. \n");
printf ("Enter your weight: ");
scanf ("%d", &weight);

}

Sum of first N natural numbers

START

READ N

SUM = 0
COUNT = 1

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N) {

sum = sum + count;
count = count + 1;

}
printf (“Sum = %d \n”, sum) ;

Dept. of CSE, IIT KGP

SUM = SUM + COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

printf (“Sum = %d \n”, sum) ;
return 0;

}

Double your money

• Suppose your Rs 10000 is earning interest at 1% per
month. How many months until you double your money ?

my_money=10000.0;
n=0;
while (my_money < 20000.0) {

Dept. of CSE, IIT KGP

while (my_money < 20000.0) {
my_money = my_money*1.01;
n++;

}
printf (“My money will double in %d months.\n”,n);

Maximum of inputs

printf (“Enter positive numbers to max, end with -
1.0\n”);

max = 0.0;
count = 0;
scanf(“%f”, &next);
while (next != 1.0) {

Dept. of CSE, IIT KGP

while (next != 1.0) {
if (next > max)

max = next;
count++;
scanf(“%f”, &next);

}
printf (“The maximum number is %f\n”, max) ;

Printing a 2 -D Figure

• How would you print the following diagram?

* * * * *
* * * * *
* * * * *

repeat 3 times
print a row of 5

stars

repeat 5 times
print *

Dept. of CSE, IIT KGP

stars
print *

Nested Loops

#define ROWS 3
#define COLS 5
...
row=1;
while (row <= ROWS) {

row=1;
while (row <= ROWS) {

/* print a row of 5 *’s */
col=1;
while (col <= COLS) {

printf (“* “);

outer
loop

Dept. of CSE, IIT KGP

while (row <= ROWS) {
/* print a row of 5 *’s */
...

row++;
}

col++;
}
printf(“\n”);
row++;

}

inner
loop

do-while statement

do statement while (expression)

main () {
int digit=0; statement

Dept. of CSE, IIT KGP

int digit=0;
do

printf(“%d\n”,digit++);
while (digit <= 9) ;

}

statement

expression
F

T

Example for do -while

Usage: Prompt user to input “month” value, keep pro mpting until a
correct value of moth is input.

do {
printf (“Please input month {1-12}”);
scanf (“%d”, &month);

Dept. of CSE, IIT KGP

} while ((month < 1) || (month > 12));

int main () {
char echo ;
do {

scanf (“%c”, &echo);
printf (“%c”,echo);

Dept. of CSE, IIT KGP

} while (echo != ‘\n’) ;
}

• The “for” statement is the most commonly
used looping structure in C.

• General syntax:
for (expr1; expr2; expr3) statement

for Statement

Dept. of CSE, IIT KGP

expr1 (init) : initialize parameters
expr2 (test): test condition, loop continues if satisfied
expr3 (update): used to alter the value of the parameters

after each iteration
statement (body): body of the loop

for (expression1; expression2; expression3)
statement

expr1;
while (expr2) {

statement
expr3;

expr1
(init)

expr2
(test)

F

Dept. of CSE, IIT KGP

expr3;
}

(test)

statement
(body)

expr3
(update)

T

Sum of first N natural numbers

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N) {

sum = sum + count;

Dept. of CSE, IIT KGP

sum = sum + count;
count = count + 1;

}
printf (“Sum = %d\n”, sum) ;
return 0;

}

Sum of first N natural numbers

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N) {

sum = sum + count;
count = count + 1;

}

int main () {
int N, count, sum;
scanf (“%d”, &N) ;

Dept. of CSE, IIT KGP

}
printf (“Sum = %d\n”, sum) ;
return 0;

}

scanf (“%d”, &N) ;
sum = 0;
for (count=1; count <= N; count++)

sum = sum + count;

printf (“Sum = %d\n”, sum) ;
return 0;

}

2-D Figure

Print
* * * * *
* * * * *
* * * * *

#define ROWS 3
#define COLS 5
....
for (row=1; row<=ROWS; row++) {

for (col=1; col<=COLS; col++) {
printf(“*”);

Dept. of CSE, IIT KGP

printf(“*”);
}
printf(“\n”);

}

Another 2 -D Figure

Print
*
* *
* * *
* * * *
* * * * *

#define ROWS 5
....
int row, col;
for (row=1; row<=ROWS; row++) {

for (col=1; col<=row; col++) {
printf(“* ”);

Dept. of CSE, IIT KGP

* * * * * printf(“* ”);
}
printf(“\n”);

}

For - Examples

• Problem 1: Write a For statement that computes the sum of al l odd
numbers between 1000 and 2000.

• Problem 2: Write a For statement that computes the sum of all
numbers between 1000 and 10000 that are divisible b y 17.

• Problem 3: Printing square problem but this time make the sq uare
hollow.

• Problem 4: Print

Dept. of CSE, IIT KGP

• Problem 4: Print
* * * * *
* * * *
* * *

* *
*

Problem 4 : solution

Print
* * * * *
* * * *
* * *
* *
*

#define ROWS 5
....
int row, col;
for (row=0; row<ROWS; row++) {

for (col=1; col<=row; col++)
printf(" ");

for (col=1; col<=ROWS -row; col++)

Dept. of CSE, IIT KGP

*
for (col=1; col<=ROWS -row; col++)

printf("* ");
printf ("\n");

}

The comma operator

• We can give several statements separated by commas
in place of “expression1”, “expression2”, and
“expression3”.

for (fact=1, i=1; i<=10; i++)
fact = fact * i;

Dept. of CSE, IIT KGP

fact = fact * i;

for (sum=0, i=1; i<=N, i++)
sum = sum + i * i;

for :: Some Observations

• Arithmetic expressions
– Initialization, loop-continuation, and increment

can contain arithmetic expressions.
for (k = x; k <= 4 * x * y; k += y / x)

• "Increment" may be negative (decrement)

Dept. of CSE, IIT KGP

• "Increment" may be negative (decrement)
for (digit=9; digit>=0; digit--)

• If loop continuation condition initially false:
– Body of for structure not performed.
– Control proceeds with statement after for structure.

Specifying “Infinite Loop”

while (1) {
statements

}

for (; ;)
{

statements
}

Dept. of CSE, IIT KGP

do {
statements

} while (1);

The break Statement

• Break out of the loop { }
– can use with

• while
• do while
• for
• switch

– does not work with

Dept. of CSE, IIT KGP

– does not work with
• if
• else

• Causes immediate exit from a while, do/while, for or switch
structure.

• Program execution continues with the first statemen t after the
structure.

An Example

#include <stdio.h>
int main() {

int fact, i;

fact = 1; i = 1;

while (i<10) { /* run loop –break when fact >100*/
fact = fact * i;

Dept. of CSE, IIT KGP

fact = fact * i;
if (fact > 100) {

printf ("Factorial of %d above 100", i);
break ; /* break out of the while loop */

}
i ++ ;

}
}

The continue Statement

• Skips the remaining statements in the body of a
while, for or do/while structure.
– Proceeds with the next iteration of the loop.

• while and do/while
– Loop-continuation test is evaluated immediately aft er the

continue statement is executed.

Dept. of CSE, IIT KGP

continue statement is executed.

• for structure
– expression3 is evaluated, then expression2 is evaluated.

An Example with “break” & “continue”

fact = 1; i = 1; /* a program segment to calculate 10 !
while (1) {

fact = fact * i;
i ++ ;
if (i<10)

continue ; /* not done yet ! Go to loop and
perform next iteration*/

Dept. of CSE, IIT KGP

perform next iteration*/
break ;

}

Some Examples

Dept. of CSE, IIT KGP

Sum of first N natural numbers

START

READ N

SUM = 0
COUNT = 1

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N) {

sum = sum + count;
count = count + 1;

}
printf (“Sum = %d \n”, sum) ;

Dept. of CSE, IIT KGP

SUM = SUM + COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

printf (“Sum = %d \n”, sum) ;
return 0;

}

Sum of first N natural numbers

START

READ N

SUM = 0
COUNT = 1

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
for (count=1;count <= N;count++) {

sum = sum + count;
printf (“Sum = %d\n”, sum) ;
return 0;

Dept. of CSE, IIT KGP

SUM = SUM + COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

return 0;
}

Example 5: SUM = 12 + 22 + 32 + N2

START

READ N

SUM = 0
COUNT = 1

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N) {

sum = sum + count ∗∗∗∗count;
count = count + 1;

}

Dept. of CSE, IIT KGP

SUM = SUM + COUNT ∗∗∗∗ COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

}
printf (“Sum = %d\n”, sum) ;
return 0;

}

Example: Computing Factorial

STARTSTART

READ NREAD N

PROD = 1
COUNT = 1COUNT = 1

int main () {
int N, count, prod;
scanf (“%d”, &N) ;
prod = 1;
for (count=0;count < N; count++) {

prod =prod*count;
printf (“Factorial = %d\n”, prod) ;

Dept. of CSE, IIT KGP

PROD = PROD * COUNT

COUNT = COUNT + 1COUNT = COUNT + 1

ISIS
COUNT > N?COUNT > N? OUTPUT PROD

STOPSTOP

YESYESNONO

return 0;
}

Example: Computing ex series up to N terms

START

READ X, N

TERM = 1
SUM = 0

COUNT = 1

Dept. of CSE, IIT KGP

SUM = SUM + TERM
TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT SUM

STOP

YESNO

int main () {
float x, term, sum;
int n, count;
scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0;

Dept. of CSE, IIT KGP

term = 1.0; sum = 0;
for (count = 0; count < n; count++) {

sum += term;
term ∗∗∗∗= x/count;

}
printf (“%f\n”, sum) ;

}

Example 8: Computing ex series up to 4 decimal places

START

READ X, N

TERM = 1
SUM = 0

COUNT = 1

Dept. of CSE, IIT KGP

SUM = SUM + TERM
TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
TERM < 0.0001? OUTPUT SUM

STOP

YESNO

int main () {
float x, term, sum;
int n, count;
scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0;

Dept. of CSE, IIT KGP

term = 1.0; sum = 0;
for (count = 0; term<0.0001; count++) {

sum += term;
term *= x/count;

}
printf (“%f\n”, sum) ;

}

Example 1: Test if a number is prime or not

#include <stdio.h>
int main() {

int n, i=2;
scanf (“%d”, &n);
while (i < n) {

if (n % i == 0) {

Dept. of CSE, IIT KGP

if (n % i == 0) {
printf (“%d is not a prime \n”, n);
exit;

}
i++;

}
printf (“%d is a prime \n”, n);

}

More efficient??

#include <stdio.h>
main()
{

int n, i=3;
scanf (“%d”, &n);
while (i < sqrt(n)) {

if (n % i == 0) {

Dept. of CSE, IIT KGP

if (n % i == 0) {
printf (“%d is not a prime \n”, n);
exit;

}
i = i + 2 ;

}
printf (“%d is a prime \n”, n);

}

Example 2: Find the sum of digits of a number

#include <stdio.h>
main()
{

int n, sum=0;
scanf (“%d”, &n);
while (n != 0) {

sum = sum + (n % 10);

Dept. of CSE, IIT KGP

sum = sum + (n % 10);
n = n / 10;

}
printf (“The sum of digits of the number is %d \n”, sum);

}

Example 3: Decimal to binary conversion

#include <stdio.h>
main()
{

int dec;
scanf (“%d”, &dec);
do
{

Dept. of CSE, IIT KGP

{
printf (“%2d”, (dec % 2));
dec = dec / 2;

} while (dec != 0);
printf (“\n”);

}

Example 4: Compute GCD of two numbers

#include <stdio.h>
main()
{

int A, B, temp;
scanf (%d %d”, &A, &B);
if (A > B) { temp = A; A = B; B = temp; }
while ((B % A) != 0) {

12) 45 (3

36

9) 12 (1

9

3) 9 (3

Dept. of CSE, IIT KGP

temp = B % A;
B = A;
A = temp;

}
printf (“The GCD is %d”, A);

}

3) 9 (3

9

0

Initial: A=12, B=45
Iteration 1: temp=9, B=12,A=9
Iteration 2: temp=3, B=9, A=3

B % A = 0 � GCD is 3

More about scanf and printf

Dept. of CSE, IIT KGP

Entering input data :: scanf function

• General syntax:
scanf (control string, arg1, arg2, …, argn);

– “control string refers to a string typically contai ning data
types of the arguments to be read in;

– the arguments arg1, arg2, … represent pointers to da ta
items in memory.

Example: scanf (%d %f %c”, &a, &average, &type);

Dept. of CSE, IIT KGP

Example: scanf (%d %f %c”, &a, &average, &type);
• The control string consists of individual groups of characters,

with one character group for each input data item.
– ‘%’ sign, followed by a conversion character.

– Commonly used conversion characters:
c single character
d decimal integer
f floating-point number
s string terminated by null character
X hexadecimal integer

– We can also specify the maximum field -width of a data item, by

Dept. of CSE, IIT KGP

– We can also specify the maximum field -width of a data item, by
specifying a number indicating the field width befo re the
conversion character.

Example: scanf (“%3d %5d”, &a, &b);

Writing output data :: printf function

• General syntax:
printf (control string, arg1, arg2, …, argn);

– “control string refers to a string containing forma tting
information and data types of the arguments to be o utput;

– the arguments arg1, arg2, … represent the individual output
data items.

Dept. of CSE, IIT KGP

• The conversion characters are the same as in scanf.

• Examples:
printf (“The average of %d and %d is %f”, a, b, av g);
printf (“Hello \nGood \nMorning \n”);
printf (“%3d %3d %5d”, a, b, a*b+2);
printf (“%7.2f %5.1f”, x, y);

Dept. of CSE, IIT KGP

• Many more options are available:
– Read from the book.
– Practice them in the lab.

• String I/O:
– Will be covered later in the class.

