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Types of Repeated Execution Types of Repeated Execution 

• Loop : Group of instructions that are executed 
repeatedly while some condition remains true.

How loops are controlled
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Sentinel Sentinel 
ControlledControlled

Counter ControlledCounter Controlled
••1, 2, 3, 4, …1, 2, 3, 4, …
••…, 4, 3, 2, 1…, 4, 3, 2, 1

Condition Condition 
ControlledControlled



Counter Controlled LoopCounter Controlled Loop

Read 5 integers Read 5 integers 
and display the and display the 
value of their value of their 
summation.summation.

counter ← 1, sum ← 0

counter < 6
false

true
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sum ← sum + n

true

counter++

output sum

input n



Given an exam marks as input, display the appropria te 
message based on the rules below:

� If marks is greater than 49, display “PASS”, otherw ise 
display “FAIL”

Condition -controlled Loop
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� However, for input outside the 0-100 range, display  
“WRONG INPUT” and prompt the user to input again 
until a valid input is entered



Condition-Controlled Loop

false

true

input m

m<0 || m>100

“WRONG INPUT”
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false

m>49 “PASS”

“FAIL”

true

false

Condition-controlled 
loop with its condition 
being tested at the end



false

true

input m

m<0 || m>100

“WRONG INPUT”

input m
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m>49 “PASS”

“FAIL”

true

false

input m

ConditionCondition--controlled controlled 
loop with its loop with its 
condition being condition being 
tested firsttested first



Sentinel-Controlled Loop

•• Receive a number of positive Receive a number of positive 
integers and display the integers and display the 
summation and average of summation and average of 
these integers.these integers.

•• A negative or zero input A negative or zero input 
indicates the end of input indicates the end of input 
process process 

Input: A set of integers 
ending with a 

negative integer or a zero
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process process 

Output: Summation and 
Average of these integers



• Input Example:
30 16 42 -9

• Output Example:
Sum = 88

Sentinel Sentinel 
ValueValue
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Sum = 88
Average = 29.33



while loop

while (expression)
statement

expression
F

T

Dept. of CSE, IIT KGP

while (i < n)  {
printf (“Line no : %d.\n”,i);
i++;

}

statement
(loop body)



while Statement

• The “while” statement is used to carry out looping 
operations, in which a group of statements is execu ted 
repeatedly, as long as some condition remains 
satisfied. 

while (condition)
while (condition) {

statement_1;
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while (condition)
statement_to_repeat;

statement_1;
...

statement_N;
}

Note: 
The while-loop will not be entered if the loop-control 
expression evaluates to false (zero) even before the first 
iteration.
break can be used to come out of the while loop.



while :: Examples

int  weight ;

while ( weight > 65 ) {
printf ("Go, exercise, ");
printf ("then come back. \n");
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printf ("then come back. \n");
printf ("Enter your weight: ");
scanf ("%d", &weight);

}



Sum of first N natural numbers

START

READ  N

SUM = 0
COUNT = 1

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N)  {

sum = sum + count;
count = count + 1;

}
printf (“Sum = %d \n”, sum) ;
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SUM = SUM + COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT  SUM

STOP

YESNO

printf (“Sum = %d \n”, sum) ;
return 0;

}



Double your money

• Suppose your Rs 10000 is earning interest at 1% per 
month. How many months until you double your money ?

my_money=10000.0;
n=0;
while (my_money < 20000.0) {
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while (my_money < 20000.0) {
my_money = my_money*1.01;
n++;

}
printf (“My money will double in %d months.\n”,n);



Maximum of inputs

printf (“Enter positive numbers to max, end with -
1.0\n”);

max = 0.0;
count = 0;
scanf(“%f”, &next);
while (next != 1.0)  {
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while (next != 1.0)  {
if (next > max)

max = next;
count++;
scanf(“%f”, &next);

} 
printf (“The maximum number is %f\n”, max) ;



Printing a 2 -D Figure

• How would you print the following diagram?

* * * * * 
* * * * * 
* * * * *

repeat 3 times
print a row of 5 

stars

repeat 5 times
print *
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stars
print *



Nested Loops

#define ROWS 3
#define COLS 5
...
row=1;
while (row <= ROWS) {

row=1;
while (row <= ROWS) {

/* print a row of 5 *’s */
col=1;
while (col <= COLS) {

printf (“* “);

outer
loop
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while (row <= ROWS) {
/* print a row of 5 *’s */
...

row++;
}

col++;
}
printf(“\n”);
row++;

}

inner
loop



do-while statement

do statement while ( expression)

main () {
int digit=0; statement
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int digit=0;
do

printf(“%d\n”,digit++);
while (digit <= 9) ;

}

statement

expression
F

T



Example for do -while

Usage: Prompt user to input “month” value, keep pro mpting until a 
correct value of moth is input.

do {
printf (“Please input month {1-12}”);
scanf (“%d”, &month);
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} while ((month < 1) || (month > 12));



int main () {
char echo ;
do {

scanf (“%c”, &echo);
printf (“%c”,echo);
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}  while (echo != ‘\n’) ;
}



• The “for” statement is the most commonly 
used looping structure in C.

• General syntax:
for ( expr1; expr2; expr3) statement

for Statement
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expr1 (init) : initialize parameters
expr2 (test): test condition, loop continues if satisfied
expr3 (update): used to alter the value of the parameters 

after each iteration
statement (body): body of the loop



for ( expression1; expression2; expression3)
statement

expr1;
while (expr2)  {

statement
expr3;

expr1
(init)

expr2
(test)

F
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expr3;
}

(test)

statement
(body)

expr3
(update)

T



Sum of first N natural numbers

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N)  {

sum = sum + count;
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sum = sum + count;
count = count + 1;

}
printf (“Sum = %d\n”, sum) ;
return 0;

}



Sum of first N natural numbers

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N)  {

sum = sum + count;
count = count + 1;

}

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
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}
printf (“Sum = %d\n”, sum) ;
return 0;

}

scanf (“%d”, &N) ;
sum = 0;
for (count=1; count <= N; count++)  

sum = sum + count;

printf (“Sum = %d\n”, sum) ;
return 0;

}



2-D Figure

Print
* * * * * 
* * * * * 
* * * * *

#define ROWS 3
#define COLS 5
....
for (row=1; row<=ROWS; row++) {

for (col=1; col<=COLS; col++) {
printf(“*”);
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printf(“*”);
}
printf(“\n”);

}



Another 2 -D Figure

Print
* 
* *  
* * * 
* * * *
* * * * * 

#define ROWS 5
....
int row, col;
for (row=1; row<=ROWS; row++) {

for (col=1; col<=row; col++) {
printf(“* ”);
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* * * * * printf(“* ”);
}
printf(“\n”);

}



For - Examples

• Problem 1: Write a For statement that computes the sum of al l odd 
numbers between 1000 and 2000.

• Problem 2: Write a For statement that computes the sum of all 
numbers between 1000 and 10000 that are divisible b y 17.

• Problem 3: Printing square problem but this time make the sq uare 
hollow.

• Problem 4: Print
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• Problem 4: Print
* * * * * 
* * * *  
* * * 

* *
* 



Problem 4 : solution

Print
* * * * * 
* * * *  
* * * 
* *
* 

#define ROWS 5
....
int row, col;
for (row=0; row<ROWS; row++)  {

for (col=1; col<=row; col++)
printf("  ");

for (col=1; col<=ROWS -row; col++)
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* 
for (col=1; col<=ROWS -row; col++)

printf("* ");
printf ("\n");

}



The comma operator

• We can give several statements separated by commas 
in place of “expression1”, “expression2”, and 
“expression3”.

for  (fact=1, i=1; i<=10; i++)
fact = fact * i;
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fact = fact * i;

for (sum=0, i=1; i<=N, i++)
sum = sum + i * i;



for :: Some Observations

• Arithmetic expressions
– Initialization, loop-continuation, and increment 

can contain arithmetic expressions.
for ( k = x;   k <= 4 * x * y;   k += y / x )

• "Increment" may be negative (decrement)

Dept. of CSE, IIT KGP

• "Increment" may be negative (decrement)
for  (digit=9; digit>=0; digit--)

• If loop continuation condition initially false:
– Body of for structure not performed.
– Control proceeds with statement after for structure.



Specifying “Infinite Loop”

while  (1)  {
statements

}

for  (; ;)
{

statements
}
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do  {
statements

}  while (1);



The break Statement

• Break out of the loop { }
– can use with

• while
• do while
• for
• switch

– does not work with 
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– does not work with 
• if 
• else 

• Causes immediate exit from a while, do/while, for or switch
structure.

• Program execution continues with the first statemen t after the 
structure.



An Example

#include  <stdio.h>
int main() {

int fact, i;

fact = 1;  i = 1;

while ( i<10 )    { /* run loop –break when fact >100*/
fact = fact * i;
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fact = fact * i;
if ( fact > 100 )  {

printf ("Factorial of %d  above 100", i);
break ; /* break out of the while loop */

}
i ++ ;

}
}



The continue Statement

• Skips the remaining statements in the body of a 
while, for or do/while structure. 
– Proceeds with the next iteration of the loop.

• while and do/while
– Loop-continuation test is evaluated immediately aft er the 

continue statement is executed.
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continue statement is executed.

• for structure
– expression3 is evaluated, then expression2 is evaluated.



An Example with “break” & “continue”

fact = 1; i = 1; /* a program segment  to calculate 10 !
while (1)  {

fact = fact * i;
i ++ ;
if  ( i<10 )

continue ; /* not done yet ! Go to loop and 
perform next iteration*/
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perform next iteration*/
break ;

}



Some Examples
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Sum of first N natural numbers

START

READ  N

SUM = 0
COUNT = 1

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N)  {

sum = sum + count;
count = count + 1;

}
printf (“Sum = %d \n”, sum) ;
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SUM = SUM + COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT  SUM

STOP

YESNO

printf (“Sum = %d \n”, sum) ;
return 0;

}



Sum of first N natural numbers

START

READ  N

SUM = 0
COUNT = 1

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
for (count=1;count <= N;count++)  {

sum = sum + count;
printf (“Sum = %d\n”, sum) ;
return 0;
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SUM = SUM + COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT  SUM

STOP

YESNO

return 0;
}



Example 5: SUM = 12 + 22 + 32 + N2

START

READ  N

SUM = 0
COUNT = 1

int main () {
int N, count, sum;
scanf (“%d”, &N) ;
sum = 0;
count = 1;
while (count <= N)  {

sum = sum + count ∗∗∗∗count;
count = count + 1;

}
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SUM = SUM + COUNT ∗∗∗∗ COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT  SUM

STOP

YESNO

}
printf (“Sum = %d\n”, sum) ;
return 0;

}



Example: Computing Factorial

STARTSTART

READ  NREAD  N

PROD = 1
COUNT = 1COUNT = 1

int main () {
int N, count, prod;
scanf (“%d”, &N) ;
prod = 1;
for (count=0;count < N; count++)  {

prod =prod*count;
printf (“Factorial = %d\n”, prod) ;
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PROD = PROD * COUNT

COUNT = COUNT + 1COUNT = COUNT + 1

ISIS
COUNT > N?COUNT > N? OUTPUT  PROD

STOPSTOP

YESYESNONO

return 0;
}



Example: Computing ex series up to N terms

START

READ  X, N

TERM = 1
SUM = 0

COUNT = 1
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SUM = SUM + TERM
TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
COUNT > N? OUTPUT  SUM

STOP

YESNO



int main () {
float x, term, sum;
int n, count;
scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0; 
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term = 1.0; sum = 0; 
for (count = 0; count < n; count++)  {

sum += term;
term ∗∗∗∗= x/count;

}
printf (“%f\n”, sum) ;

}



Example 8: Computing ex series up to 4 decimal places

START

READ  X, N

TERM = 1
SUM = 0

COUNT = 1
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SUM = SUM + TERM
TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
TERM <  0.0001? OUTPUT  SUM

STOP

YESNO



int main () {
float x, term, sum;
int n, count;
scanf (“%d”, &x) ;
scanf (“%d”, &n) ;
term = 1.0; sum = 0; 
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term = 1.0; sum = 0; 
for (count = 0; term<0.0001; count++)  {

sum += term;
term *= x/count;

}
printf (“%f\n”, sum) ;

}



Example 1: Test if a number is prime or not

#include <stdio.h>
int main() {

int  n, i=2;
scanf (“%d”, &n);
while (i < n)  {

if (n % i == 0)  {
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if (n % i == 0)  {
printf (“%d is not a prime \n”, n);
exit;

}
i++;

}
printf (“%d is a prime \n”, n);

}



More efficient??

#include <stdio.h>
main()
{

int  n, i=3;
scanf (“%d”, &n);
while (i < sqrt(n) )  {

if (n % i == 0)  {
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if (n % i == 0)  {
printf (“%d is not a prime \n”, n);
exit;

}
i = i + 2 ;

}
printf (“%d is a prime \n”, n);

}



Example 2: Find the sum of digits of a number

#include  <stdio.h>
main()
{

int n, sum=0;
scanf (“%d”, &n);
while (n != 0)  {

sum = sum + (n % 10);
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sum = sum + (n % 10);
n = n / 10;

}
printf (“The sum of digits of the number is %d \n”,  sum);

}



Example 3: Decimal to binary conversion

#include  <stdio.h>
main()
{

int  dec;
scanf (“%d”, &dec);
do
{
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{
printf (“%2d”,  (dec % 2));
dec = dec / 2;

}  while (dec != 0);
printf (“\n”);

}



Example 4: Compute GCD of two numbers

#include  <stdio.h>
main()
{

int  A, B, temp;
scanf (%d %d”, &A, &B);
if  (A > B)  { temp = A;  A = B;  B = temp; }
while ((B % A) != 0)  {

12 )  45  (  3

36

9  )  12  (  1

9

3  )  9  (  3
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temp = B % A;
B = A;
A = temp;

}
printf (“The GCD is %d”, A);

}

3  )  9  (  3

9

0 

Initial:         A=12, B=45
Iteration 1: temp=9, B=12,A=9
Iteration 2: temp=3, B=9, A=3

B % A = 0   � GCD is 3



More about scanf and printf
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Entering input data :: scanf function

• General syntax:
scanf (control string, arg1, arg2, …, argn);

– “control string refers to a string typically contai ning data 
types of the arguments to be read in; 

– the arguments arg1, arg2, … represent pointers to da ta 
items in memory.

Example:  scanf (%d %f %c”, &a, &average, &type);
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Example:  scanf (%d %f %c”, &a, &average, &type);
• The control string consists of individual groups of  characters, 

with one character group for each input data item.
– ‘%’ sign, followed by a conversion character.



– Commonly used conversion characters:
c single character
d decimal integer
f floating-point number
s string terminated by null character
X hexadecimal integer

– We can also specify the maximum field -width of a data item, by 
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– We can also specify the maximum field -width of a data item, by 
specifying a number indicating the field width befo re the 
conversion character.

Example:    scanf (“%3d %5d”, &a, &b);



Writing output data :: printf function

• General syntax:
printf (control string, arg1, arg2, …, argn);

– “control string refers to a string containing forma tting 
information and data types of the arguments to be o utput; 

– the arguments arg1, arg2, … represent the individual  output 
data items.
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• The conversion characters are the same as in scanf.



• Examples:
printf  (“The average of %d and %d is %f”, a, b, av g);
printf  (“Hello \nGood \nMorning \n”);
printf (“%3d %3d %5d”, a, b, a*b+2);
printf (“%7.2f  %5.1f”, x, y);
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• Many more options are available:
– Read from the book.
– Practice them in the lab.

• String I/O:
– Will be covered later in the class.


