Control Flow: Looping

CS10001: Programming & Data Structures

s Pallab Dasgupta
& Professor, Dept. of Computer Sc. & Engg.,
Indian Institute of Technology Kharagpur

Dept. of CSE, IIT KGPY

Types of Repeated Execution

 LOOp : Group of instructions that are executed
repeatedly while some condition remains true.

How loops are controlled

Condition Sentinel
Controlled Controlled
Counter Controlled
1,2, 3,4, ...
v....4,3,2,1

Counter Controlled Loop

q>

Read 5 integers counter «— 1, sum «— 0O
and display the '
value of their

summation. counter < 6

Sum «— sum + n

|

counter++

_/output sum,/4

Dept. of CSE, IIT KGPY é

Condition -controlled Loop

Given an exam marks as input, display the appropria te
message based on the rules below:

d If marks is greater than 49, display “PASS”, otherw ise
display “FAIL”

O However, for input outside the 0-100 range, display
“WRONG INPUT” and prompt the user to input again
until a valid input is entered

Dept. of CSE, IIT KGPY

Condition-Controlled LOOp
—

Condition-controlled
loop with its condition
being tested at the end

“FAIL"

Input m

— T —— false
m<oO || m>1O

true

RONG INPU T4

\

Condition-cooitrtod keld
loop with its
condition being

tested first
“FAIL"

Dept. of CSE, IIT KGPY

Sentinel-Controlled Loop

Receive a number of positive

Integers and display the _
summation and average of Input: A set of integers
these integers. ending with a

A negative or zero input negative integer or a zero

Indicates the end of input
process

Output: Summation and
Average of these integers

Dept. of CSE, IIT KGPY

Input Example:

Sentinel
30 16 42 ¢— Value

Output Example:
Sum = 88
Average = 29.33

while loop

while (expression)
statement

while (i<n) { statement

(loop body)

printf (“Line no : %d.\n",i);
I++;

Dept. of CSE, IIT K.

while Statement

 The “while” statement is used to carry out looping
operations, in which a group of statements is execu

repeatedly, as long as some condition remains
satisfied.

while (condition) {

while (condition) statement_1;
statement_to_repeat;

statement_N;

Note:
The while-loop will not be entered if the loop-control

expression evaluates to false (zero) even before the first
iteration.

break can be used to come out of the while loop.

Dept. of CSE, IIT KGPY

while :: Examples

Int weight ;

while (weight > 65) {
printf ("Go, exercise, ");
printf ("then come back. \n");
printf ("Enter your weight: ");
scanf ("%d", &weight);

}

iInt main () {
Int N, count, sum;
scanf (“%d”, &N) ;

sum = 0;
count = 1;
while (count <= N) {

/ RErDN sum = sum + count:

1 count = count + 1;
SUM =0 }

SIS printf (“Sum = %d \n”, sum) ;

Sum of first N natural numbers

’1 return O;
SUM = SUM + COUNT

y

COUNT = COUNT +1

N—O%/ s/

Dept. of CSE, IIT KGPY

Double your money

o Suppose your Rs 10000 is earning interest at 1% per
month. How many months until you double your money ?

my_money=10000.0;

n=0;

while (my_money < 20000.0) {
my_money = my_money*1.01;
n++:

}

printf (“My money will double in %d months.\n”,n);

Dept. of CSE, IIT KGPY

Maximum of inputs

printf (“Enter positive numbers to max, end with -
1.0\n");

max = 0.0;

count = 0;

scanf(“%f”, &next),

while (next!'=1.0) {
If (next > max)

max = next;

count++;
scanf(“%f”, &next),

}

printf (“The maximum number is %f\n”, max) ;

Printing a 2 -D Figure

« How would you print the following diagram?
* k k% % %

%k k% %

%k k% %

repeat 3 times

print a row of 5

|

star:

repeat 5 time
print *

Nested Loops

#define ROWS 3
#define COLS 5

row=1;
while (row <= ROWS) {

[* print a row of 5 *'s */

row++]

Dept. of CSE, IIT KGPY

row=1,
while (row <= ROWS) {
[* print a row of 5 *'s */
col=1;
while (col <= COLS) {
printf (“* “);
Col++;
}
printf(*\n");
row++;

do-while statement

do statement while (expression)

main () { l

Int digit=0; * Statemer

do
F
expressio

printf(“%d\n”, digit++);
while (digit <= 9) ;

Example for do -while

Usage: Prompt user to input “month” value, keep pro mpting until a
correct value of moth is input.

do {
printf (“Please input month {1-12}");
scanf (“%d”, &month);

} while ((month < 1) || (month > 12));

iInt main () {
char echo ;
do {
scanf (“%c”, &echo);
printf (“%c”,echo);

} while (echo !=\n’) ;

for Statement

* The “for” statement is the most commonly
used looping structure in C.

* General syntax:

for (exprl; expr2; expr3) statement

exprl (init) : initialize parameters
expr2 (test): test condition, loop continues if satisfied

expr3 (update): used to alter the value of the parameters
after each iteration

statement (body): body of the loop

Dept. of CSE, IIT KGPY

for (expressionl; expression2; expression3)

Statement

l

exprl
(init)

exprl,;

while (expr2) {
statement
expr3;

Sstatemern

(body)

A

ex

or3

(update)

Sum of first N natural numbers

int main () {

Int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;

count = 1;

while (count <= N) {
sum = sum + count;
count = count + 1;

}

printf (“Sum = %d\n”, sum) ;

return O;

Sum of first N natural numbers

int main () {
int N, count, sum;
scanf (“%d”, &N) :
sum = 0;
count = 1;
while (count <= N) {
sum = sum + count; int main () {

count = count + 1; int N, count, sum:

} 11 N .

printf (“Sum = %d\n”, sum) ; scanf (%d”, &N) ,

return O; sum = 0;

for (count=1; count <= N; count++)

sum = sum + count;

printf (“Sum = %d\n”, sum) ;
return O;

Dept. of CSE, IIT KGPY

2-D Figure

Print

* k% k% %
* k% k% %

* k% k% %

#define ROWS 3
#define COLS 5

for (row=1; row<=ROWS; row++) {
for (col=1; col<=COLS; col++) {
printf(**”);
}
printf(*\n”);
}

Another 2 -D Figure

Print

#define ROWS 5

Int row, col;
for (row=1; row<=ROWS; row++) {
for (col=1; col<=row; col++) {
printf(“*);
}
printf(“\n”);
}

For - Examples

Problem 1: Write a For statement that computes the sum of al | odd
numbers between 1000 and 2000.

Problem 2: Write a For statement that computes the sum of all
numbers between 1000 and 10000 that are divisible b y 17.

Problem 3: Printing square problem but this time make the sq uare
hollow.

Problem 4: Print

* k k k%

* * % %

Problem 4 : solution

Print

k% k% %

#define ROWS 5
rEEE int row, col;
for (row=0; row<ROWS; row++) {
for (col=1; col<=row; col++)
printf(" ");
for (col=1; col<=ROWS -row; col++)
printf("* ");
printf ("\n");

The comma operator

 We can give several statements separated by commas

In place of “expressionl”, “expression2”, and
“‘expression3”.

for (fact=1, i=1; i<=10; i++)
fact = fact * I;

for (sum=0, I=1; I<=N, I++)
sum=sum+1*1;

for :: Some Observations

* Arithmetic expressions

— Initialization, loop-continuation, and increment
can contain arithmetic expressions.

for(k=x; k<=4*x*y, k+=y/X)
"Increment" may be negative (decrement)

for (digit=9; digit>=0; digit--)
 If loop continuation condition initially false:

— Body of for structure not performed.
— Control proceeds with statement after for structure.

Specifying “Infinite Loop”

while (1) {
Statements

}

for (;;)
{

statements

}

do {
statements
} while (2);

The break Statement

 Break out of the loop { }
— can use with
* while
e do while
o for
e switch
— does not work with
o |f
e else

Causes immediate exit froma while, do/while, for or switch
structure.

Program execution continues with the first statemen t after the
structure.

An Example

#include <stdio.h>
iInt main() {
int fact, i:

fact=1; 1=1;

while /1i<10) { [* run loop —break when fact >100*/
fact = fact * I;
if (fgct>100) {

printf ("Factorial of %d above 100", i);

break ; [* break out of the while loop */

The continue Statement

Skips the remaining statements in the body of a
while, for or do/while structure.
— Proceeds with the next iteration of the loop.

while and do/while

— Loop-continuation test is evaluated immediately aft er the
continue statement is executed.

for structure
— expression3 is evaluated, then expression2 is evaluated.

An Example with “break” & “continue”

fact=1;1=1, [* a program segment to calculate 10!
while (1) {

fact = fact * i,

| ++

if (1<10)

continue /* not done yet ! Go to loop and
perform next iteration*/
break ;

Some Examples

iInt main () {
Int N, count, sum;
scanf (“%d”, &N) ;

sum = 0;
count = 1;
while (count <= N) {

/ RErDN sum = sum + count:

1 count = count + 1;
SUM =0 }

SIS printf (“Sum = %d \n”, sum) ;

Sum of first N natural numbers

’1 return O;
SUM = SUM + COUNT

y

COUNT = COUNT +1

N—O%/ s/

Dept. of CSE, IIT KGPY

Sum of first N natural numbers

Int main () {
Int N, count, sum;

@ scanf (“%d”, &N) ;
sum = 0O;

/ READ N / count = 1;

I for (count=1;count <= N;count++) {
SUM=0 sum = sum + count;
COUNT =1 printf (“Sum = %d\n”, sum) ;
2l return O;
SUM = SUM + COUNT, }
|

COUNT = COUNT +1

“—O%/ sy

Dept. of CSE, IIT KGPY

Example 5: SUM =12 + 22 + 32 + N2

Int main () {
Int N, count, sum;

scanf (“%d”, &N) ;

sum = 0;
L RERDN 7 count = 1;
: while (count <= N) {
SUM =0 5 |
COUNT = 1 sum = sum + count [tount;
A| count = count + 1,
SUM = SUM + COUNT OCOUNT, J
printf (“*Sum = %d\n”, sum) ;
ICOUNT = COUNT +1 return O;
‘ﬁéUTPUT suy”

Dept. of CSE, IIT KG.

Example: Computing Factorial

Int main () {
Int N, count, prod,;
scanf (“%d”, &N) ;

L READN prod = 1;

} for (count=0;count < N; count++) {

PROD =1 i N |
COUNT = 1 prod =prod*count;

2l printf (“Factorial = %d\n”, prod) ;

return O;
PROD = PROD * COUNT

y
COUNT = COUNT + 1

N—Oﬁﬂ)uww PRO[/

Dept. of CSE, IIT KGPY

Example: Computing e* series up to N terms

/REAT XN~

TERM =1
SUM =0
COUNT =1

:

SUM = SUM + TERM
TERM = TERM * X/ COUNT

y
COUNT = COUNT + 1

NOE/ OUTPUT SUM /

Dept. of CSE, IIT KGPY

iInt main () {
float X, term, sum;
Int N, count;
scanf (“%d”, &Xx) ;
scanf (“%d”, &n) ;

term = 1.0; sum = 0;

for (count = 0; count < n; count++) {
sum += term;
term [x/count;

}

printf (“%An”, sum) ;

Example 8: Computing e* series up to 4 decimal places

1//REAT XN~

TERM =1
SUM =0
COUNT =1

:

SUM = SUM + TERM
TERM = TERM * X/ COUNT

y
COUNT = COUNT + 1

1S
TERM < 0.0001?

Dept. of CSE, IIT KGPY

iInt main () {
float X, term, sum;
Int N, count;
scanf (“%d”, &Xx) ;
scanf (“%d”, &n) ;

term = 1.0; sum = 0;

for (count = 0; term<0.0001; count++) {
sum += term;
term *= x/count;

}

printf (“%An”, sum) ;

Example 1: Test if a number is prime or not

#include <stdio.h>
Int main() {
Int n, i=2;
scanf (“%d”, &n);
while (i< n) {
if(n%i==0) {
printf (“%d is not a prime \n”, n);
exit;

More efficient??

#include <stdio.h>
main()

{

int n, i=3;
scanf (“%d”, &n);
while (i < sqgrt(n)) {
if(n%i1==0) {
printf (“%d is not a prime \n”, n);
exit;
}
|1=1+2;
}

printf (“%d is a prime \n”, n);

Example 2: Find the sum of digits of a number

#include <stdio.h>
main()
{
int n, sum=0;
scanf (“%d”, &n);
while (n '=0) {
sum =sum + (n % 10);
n=n/10;
}

printf (“The sum of digits of the number is %d \n”, sum);

Example 3: Decimal to binary conversion

#include <stdio.h>
main()
{
int dec;
scanf (“%d”, &dec);
do

{
printf (“%2d”, (dec % 2));

dec =dec/ 2;
} while (dec != 0);
printf (“\n");

Example 4: Compute GCD of two humbers

#include <stdio.h> 12) 45 (3
main()
‘ 36
int A, B, temp;
scanf (%d %d”, &A, &B);
if (A>B) {temp=A; A=B; B=temp;}
while ((B % A) '=0) {
temp =B % A;
B=A;
A = temp;

}
printf (“The GCD is %d”, A);

nitial: A=12, B=45

teration 1: temp=9, B=12,A=9

teration 2: temp=3, B=9, A=3
B%A=0 = GCDIs3

Dept. of CSE, IIT KGPY

More about scanf and printf

Entering input data :: scanf function

* (General syntax:
scanf (control string, argl, arg2, ..., argn);

— “control string refers to a string typically contai ning data
types of the arguments to be read in;

— the arguments argl, arg2, ... represent pointerstoda ta
items in memory.

Example: scanf (%d %f %c”, &a, &average, &type);

« The control string consists of individual groups of characters,
with one character group for each input data item.

— ‘00’ sign, followed by a conversion character.

— Commonly used conversion characters:
single character
decimal integer
floating-point number
string terminated by null character
hexadecimal integer

— We can also specify the maximum field -width of a data item, by
specifying a number indicating the field width befo re the
conversion character.

Example: scanf (“%3d %5d”, &a, &b);

Writing output data :: printf function

e General syntax:
printf (control string, argl, arg2, ..., argn);

— “control string refers to a string containing forma tting
Information and data types of the arguments to be o utput;

— the arguments argl, arg2, ... represent the individual output
data items.

e The conversion characters are the same as in scanf.

e Examples:
printf (“The average of %d and %d is %f”, a, b, av
printf (“Hello \nGood \nMorning \n”);
printf (“%3d %3d %5d”, a, b, a*b+2);
printf (“%7.2f %5.1f", X, y);

e Many more options are available:
— Read from the book.
— Practice them in the lab.

o String I/O:

— WIll be covered later in the class.

