
Formal Systems
Tutorial

Hybrid System Modeling, Program Analysis

Department of Computer Science & Engineering,
Indian Institute of Technology, Kharagpur

Formal SystemsTutorialHybrid System Modeling, Program Analysis



1. There are three taps in the system, namely Tap-1 having a flow
rate of u = 5, Tap-2 having a flow capacity of v = 2, and Tap-3
having a flow capacity of w = 4. Tap-2 and Tap-3 are always on.
Tap-1 is switched on when x1 + x2 falls below 10 and is switched
off when x1 exceeds 80. Initially, we have x1 = 50 and x2 = 50.
Draw a hybrid automaton for the system. Explain the dynamics of
the system.

x1

x2

v

u

w

Formal SystemsTutorialHybrid System Modeling, Program Analysis



2. Hot-Air Balloons: Some interesting facts...

Modern hot air balloons, with an onboard heat source, were
developed by Ed Yost. Hot air balloons are able to fly to extremely
high altitudes. The burner unit gasifies liquid propane, mixes it
with air, ignites the mixture, and directs the flame and exhaust
into the mouth of the envelope.

Formal SystemsTutorialHybrid System Modeling, Program Analysis



Draw a Hybrid Automata model for the Hot-air balloon described
below.
The Hot-air balloon has a gas tank that when full, has a volume of
10 units. When the burner is burning the gas, the hot air balloon
rises at a rate of t2

2 , where t is the amount of time for which the
burner has been continuously on. When the burner is off, the
hot-air balloon rises at a rate of −t2, t being the amount of time
for which the burner has been off.
When the hot-air-balloon runs out of fuel, the fuel tank may be
re-placed. Re-placing the fuel tank takes 3 units of time. During
this time the balloon will be falling. The hot-air balloon drains at a
rate of 1 unit per unit time.
You need to design a strategy that ensures that the Hot-air balloon
stays between heights of 100 and 120 units; after having first
crossed 100 units of height.

Formal SystemsTutorialHybrid System Modeling, Program Analysis



3. Consider the following program P in a C like language.

L0: a = b = i = 0;

L1: while (a <= 1000) {

L2: a = b + i;

L3: b = a + 1;

L4: i = i + 1;

L5: }

L6: if (b > 2000) { error: exit(-1);

L7: }

3.1 Construct a Boolean program corresponding to this program P,
using only the predicates (a ≤ 1000), (b ≥ 0), (i = 0), and
(b ≤ 2000)

3.2 Show that the error location is reachable in the Boolean
program you constructed

3.3 Explain whether the error identified in this Boolean program is
a spurious counter-example.

Formal SystemsTutorialHybrid System Modeling, Program Analysis



4. Compute the Weakest Precondition for the following code
snippets, given the postcondition:

4.1 Code Snippet 1:

a := 2*(b-1)-1

{a>0}

4.2 Code Snippet 2:

a := a+2*b-1

{a>1}

4.3 Code Snippet 3:

a := 2*b+1

b := a-3

{b < 0}

Formal SystemsTutorialHybrid System Modeling, Program Analysis



5. Analyze the program using the domain Parity and then Sign.

1. y:=5; x:=-2*y;

2. if(x>0){
3. x:=x-(y%2-1);

4. y:=x*(y-1);

5. }
6. else y:=-1;

Formal SystemsTutorialHybrid System Modeling, Program Analysis



5.4 Code Snippet 4:

a := 3*(2*b+a)

b := 2*a-1

{b>5}

5.5 Code Snippet 5:

if(a==b)

b=2*a+1;

else

b=2*a;

{b>1}

Formal SystemsTutorialHybrid System Modeling, Program Analysis



6. Compute the weakest precondition for the assignment statement
a := 2 ∗ (b − 1)− 1 given the postcondition {a > 0). Substitute
the right hand side of the assignment statement for a in the
postcondition
2 ∗ (b − 1) > 0
2b − 2 > 0
2b > 2
b > 1

Formal SystemsTutorialHybrid System Modeling, Program Analysis



7. Compute the weakest precondition for the following sequence of
assignment statements, for the postcondition given.
a := 2 ∗ b + 1;
b := a− 3
b < 0

Substitute the right hand side of the second assignment in the
postcondition to get a postcondition for the first assignment, then
substitute the right hand side of the first assignment in that
postcondition to get the precondition.
a− 3 < 0
a < 3 weakest precondition for first assignment
2 ∗ b + 1 < 3
2b < 2
b < 1

Formal SystemsTutorialHybrid System Modeling, Program Analysis



8. Consider the following code fragment:

1. lock();

2. gotLock = 1;

3. while(*) {
4. if(*) {
5. if(gotLock == 1) {
6. unlock();

7. gotLock = 0;

}
}

8. if(gotLock!=1) {
9. lock();

10. gotLock = 1;

}
}

11. unlock();

12.

Formal SystemsTutorialHybrid System Modeling, Program Analysis



8.1 Draw the initial control flow graph (CFG), up to the point
where the first error is found (in which case other parts of the
CFG may still be incomplete), or else explores the entire search
space and finds no error. In your CFG:

I Number the nodes to match the number of the line that’s
about to execute.

I Label each node with “L” or “U” to represent the “lock==1”
or “lock==0” predicates, respectively (the initial node should
be labeled “U” for unlocked/lock==0).

I Label each non-branching edge with the statement executed.
I For branches, label P(pred) where pred is the condition that

must be true for that branch to be taken (thus if there are two
edges one will be pred and one !pred). For example,
P(gotLock==1) will go on one edge in the CFG. You need
not use any label if the predicate is *.

Formal SystemsTutorialHybrid System Modeling, Program Analysis



8.2 If an error state is reachable in the CFG given above, does it
represent a real bug? If so, prove it is a real bug, by showing
using Hoare Logic that the precondition of the path is not false.
If the bug is not real, show using Hoare Logic that the
precondition of the path is false.

8.3 Now, build the CFG again, this time considering the predicate
you found.

Formal SystemsTutorialHybrid System Modeling, Program Analysis



9. Consider the following code fragment:
1: if(*){
7: do{

gotLock = 0;

8: if(*) {
9: lock();

gotLock++;

}
10: if(gotLock){
11: unlock();

}
12: } while (*);

}
2: do {

lock();

old = new

3: if(*) {
4: unlock();

new++;

}
5: } while (new!=old);

6: unlock();

return;}

Formal SystemsTutorialHybrid System Modeling, Program Analysis



8. Contd...

8.1 Use predicate Lock=1 and Lock=0 to analyse the program for
the Double Lock or the Double Unlock error.

8.2 On finding an error (if at all), give a proof for the error.
8.3 If an error is found to be spurious, which predicate should be

added to improve the Abstraction. Re-analyze the program for
possible errors.

Formal SystemsTutorialHybrid System Modeling, Program Analysis


