CS 60030: Formal Systems
Spring Semester: 2018-2019
Tutorial 2
Linear Time Properties and ω -Regular Languages

Indian Institute of Technology, Kharagpur

24th January 2019

1. Consider the Transition System outlined below.

Figure: Transition System: TS₁

With respect to TS_1 answer the following questions:

- 1.1 List two finite non-initial, initial non-maximal execution fragments.
- 1.2 List any maximal execution fragment.

2. For each property φ_i , does $TS_1 \models \varphi_i$? If not, produce a counterexample trace.

2.1
$$\varphi_1 = \forall_{i \geq 0} \ a \in A_i$$

2.2
$$\varphi_2 = \exists_{i>0} \ a \notin A_i$$

2.3
$$\varphi_3 = \exists_{i>0} b \in A_i$$

2.4
$$\varphi_4 = \exists_{i>0}^- \forall_{j>i} \ c \in A_i$$

2.5
$$\varphi_5 = \forall_{i>0} \ a \lor c \in A_i$$

$$2.6 \ \varphi_6 = \exists_{i \geq 0} \forall_{j \geq i} \ d \in A_j$$

3. Which of the above properties are invariants? Which are safety properties but not invariants? Which are neither?

- 4. Write the ω -Regular Expressions for the following statements:
 - 4.1 A message is sent successfuly infinitely often. $\Sigma = \{S, T, F\}$
 - 4.2 Every time the process tries to send a message, it eventually succeeds in sending it. $\Sigma = \{S, T, F\}$
 - 4.3 The LED eventually turns red $\Sigma = \{R, G, B\}$.
 - 4.4 Whenever the LED is Blue, it eventually turns green.
 - 4.5 Either the LED is always Red or it alternates between Green and Blue.
 - 4.6 The invariant, $a \lor \neg b$ over $AP = \{a, b, c\}$.
 - 4.7 Process P visits the critical section infinitely often. $AP = \{wait, crit\}.$
 - 4.8 Consider $AP=\{a,b\}$, where the language has words of the form $A_0A_1...\in (2^{AP})^{\omega}$, and is defined as follows

$$\exists^{\infty} j \geq 0. (a \in A_j \land b \in A_j) \text{ and } \exists j \geq 0. (a \in A_j \land b \notin A_j)$$

4.1)
$$[(T+F)^*.5]$$
4.2) $[T.(F.T)^*.5 + (F+S)]^{\omega}$
4.3) $(G+B)^*.R.(R+G+B)^{\omega}$
4.4) $(B^{\dagger}.G+R+G)^{\omega}$
4.5) $R^{\omega} + (G.B)^{\omega} + (B.G)^{\omega}$
4.6) For invariant $a \ V \ Tb \ over \ P = \{a, b, c\}$

$$\sum_{i=1}^{AP} \{b, ia\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$$

$$= \{S_{e}, S_{a}, S_{b}, S_{c}, S_{ab}, S_{ac}, S_{bc}, S_{abc}\}$$

$$(S_{e} + S_{a} + S_{c} + S_{ab} + S_{ac} + S_{abc})^{\omega}$$

(wast* crit)

 $true^*(\{a\}+\{\}).(true^*,\{a,b\})^{\omega}$

5. For each of the following pairs, determine if they are equivalent. If the two are found to be not equivalent provide a string to distinguish between the two languages.

```
5.1 (A^*+B^*).C^{\omega} and A^*.C^{\omega} + B^*.C^{\omega}

5.2 (A+B)^*(C+D)^{\omega} and (A+B)^*.C^{\omega} + (A+B)^*.D^{\omega} language of the
```

5.3 $(A^* + B.C)^+.(C.C^*)^{\omega}$ and $(A^* + B.C)^+.(C)^{\omega}$

5.4 $(A*B)^{\omega}$ and $A*.B^{\omega}$

5.1> Not Equivalent:
$$(A \cdot B)^{\dagger} C^{\omega} \in \mathcal{L}_1$$
; $(A \cdot B)^{\dagger} C^{\omega} \notin \mathcal{L}_2$

5.2) Not Equivalent:
$$(C \cdot D)^{\omega} \in \mathcal{L}_1$$
 ; $(C \cdot D)^{\omega} \notin \mathcal{L}_2$

5.3 \ Equivalent:
$$(c \cdot c^*)^{\omega} = (c)^{\omega}$$

5.4) Not Equivalent:
$$(AB)^{\omega} \in \mathcal{L}_1$$
; $(AB)^{\omega} \notin \mathcal{L}_2$