CS 60030: Formal Systems Spring Semester: 2018-2019 Tutorial 2
 Linear Time Properties and ω-Regular Languages

Indian Institute of Technology, Kharagpur

$$
24^{\text {th }} \text { January } 2019
$$

1. Consider the Transition System outlined below.

Figure: Transition System: $T S_{1}$
With respect to $T S_{1}$ answer the following questions:
1.1 List two finite non-initial, initial non-maximal execution fragments.
1.2 List any maximal execution fragment.
2. For each property φ_{i}, does $T S_{1} \models \varphi_{i}$? If not, produce a counterexample trace.

$$
\begin{aligned}
& 2.1 \varphi_{1}=\forall_{i \geq 0} \quad a \in A_{i} \\
& 2.2 \varphi_{2}=\exists_{i} \geq 0 \quad a \notin A_{i} \\
& 2.3 \varphi_{3}=\exists_{i \geq 0} \quad b \in A_{i} \\
& 2.4 \quad \varphi_{4}=\exists_{i \geq 0} \forall_{j \geq i} c \in A_{j} \\
& 2.5 \varphi_{5}=\forall_{i \geq 0} \quad a \vee c \in A_{i} \\
& 2.6 \varphi_{6}=\exists_{i \geq 0} \forall_{j \geq i} d \in A_{j}
\end{aligned}
$$

3. Which of the above properties are invariants? Which are safety properties but not invariants? Which are neither?
4. Write the ω-Regular Expressions for the following statements:
4.1 A message is sent successfuly infinitely often. $\Sigma=\{S, T, F\}$
4.2 Every time the process tries to send a message, it eventually succeeds in sending it. $\Sigma=\{S, T, F\}$
4.3 The LED eventually turns red $\Sigma=\{R, G, B\}$.
4.4 Whenever the LED is Blue, it eventually turns green.
4.5 Either the LED is always Red or it alternates between Green and Blue.
4.6 The invariant, $a \vee \neg b$ over $A P=\{a, b, c\}$.
4.7 Process P visits the critical section infinitely often. $A P=\{$ wait, crit $\}$.
4.8 Consider $A P=\{a, b\}$, where the language has words of the form $A_{0} A_{1} \ldots \in\left(2^{A P}\right)^{\omega}$, and is defined as follows

$$
\begin{aligned}
& \exists \exists^{\infty} \geq 0 .\left(a \in A_{j} \wedge b \in A_{j}\right) \text { and } \exists j \geq 0 .\left(a \in A_{j} \wedge b \notin A_{j}\right) \\
& \exists \phi \equiv \underset{k \geqslant 0}{\infty} \nexists j \geq
\end{aligned}
$$

4.1) $\left[(T+F)^{*} \cdot S\right]^{\omega}$
4.2) $\left[T \cdot(F \cdot T)^{*} \cdot S+(F+S)\right]^{\omega}$
4.3) $(G+B)^{*} \cdot R \cdot(R+G+B)^{c} \quad 4 \cdot 4>\left(B^{+} \cdot G+R+G\right)^{\omega}$
4.5) $R^{\omega}+(G \cdot B)^{\omega}+(B \cdot G)^{\omega}$
4.6) For invariant $a V_{7} b$ over $\lambda P=\{a, b, c\}$

$$
\begin{aligned}
\Sigma=2^{A P} & =\{\phi,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} \\
& =\left\{S_{e}^{2}, s_{a}^{2}, s_{b}^{2}, S_{c}^{2}, S_{a b}, s_{a c}, s_{b c}, s_{a b c}\right\} \\
& v \\
\left(s_{e}+s_{a}\right. & \left.+S_{c}+s_{a b}+s_{a c}+s_{a b c}\right)^{\omega}
\end{aligned}
$$

4.7) $\quad\left(\text { wart }^{*} \cdot \text { crit }\right)^{\omega}$
4.8) true $^{*}(\{a\}+\{ \}) \cdot\left(\text { true }^{*} \cdot\{a, b\}\right)^{\omega}$
5. For each of the following pairs, determine if they are equivalent. If the two are found to be not equivalent provide a string to distinguish between the two languages.
$5.1\left(A^{*}+B^{*}\right) . C^{\omega}$ and $A^{*} . C^{\omega}+B^{*} . C^{\omega}$
$5.2(\mathrm{~A}+\mathrm{B})^{*}(\mathrm{C}+\mathrm{D})^{\omega}$ and $\left.(\mathrm{A}+\mathrm{B})^{*} . \mathrm{C}^{\omega}+(\mathrm{A}+\mathrm{B})^{*} . \mathrm{D}^{\omega}\right\}$
$5.3\left(A^{*}+B . C\right)^{+} .\left(C . C^{*}\right)^{\omega}$ and $\left(A^{*}+B . C\right)^{+} .(C)^{\omega}$
$5.4(\mathrm{~A} * \mathrm{~B})^{\omega}$ and $\mathrm{A}^{*} . \mathrm{B}^{\omega}$
5.1) Not Equivalent: $(A \cdot B)^{+} C^{\omega} \in \mathcal{L}_{1} ;(A \cdot B)^{+} C^{\omega} \notin \mathcal{L}_{2}$
5.2) Not Equivalent : $(C \cdot D)^{\omega} \in \mathcal{L}_{1} ;(C \cdot D)^{\omega} \notin \mathcal{L}_{2}$
5.3) Equivalent : $\left(c \cdot C^{*}\right)^{\omega} \equiv(C)^{\omega}$
5.4) Not Equwalent: $(A B)^{\omega} \in \mathcal{L}_{1} ;(A B)^{\omega} \notin \mathcal{L}_{2}$

