LTL Model Checking

FORMAL SYSTEMS (CS60030)

Pallab Dasgupta Professor, Dept. of Computer Sc & Engg

LTL Model Checking – An Overview

Taking the Product : $TS \otimes \mathcal{A}_{\varphi}$

For a transitions system TS = (S, Act, \rightarrow , I, AP, L), without terminal states, and a non-blocking NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ where $\Sigma = 2^{AP}$, let:

TS $\otimes \mathcal{A} = (S', Act, \rightarrow', I', AP', L')$ where,

• \rightarrow ' is the smallest relation defined by : $\frac{s \xrightarrow{\alpha} t \land q \xrightarrow{L(t)} p}{\langle s, q \rangle \xrightarrow{\alpha'} \langle t, p \rangle}$ • I' = {<s₀, q> | s₀ \in I $\land \exists q_0 \in Q_0 . q_0 \xrightarrow{L(s_0)} q$ }

q is a state that is reached via a transition from some $q_0 \in Q_0$ labeled with $L(s_0)$

From LTL to GNBAs

• For LTL property φ (for a transition system over AP), construct GNBA \mathcal{G}_{φ} over 2^{AP} with

 $\mathcal{L}_{\boldsymbol{\omega}}(\mathcal{G}_{\varphi}) = \boldsymbol{Words}(\varphi).$

- Assume φ contains operators \land , \neg , 0, U.
- States of the GNBA: *Elementary sets* of sub-formulas in φ
- Transitions between states of the GNBA: derived from the O and U operator expansion laws.
- Accept states guarantee that: $\hat{\sigma}$ is an accepting run in \mathcal{G}_{φ} iff $\sigma \models \varphi$

Elementary Sets (the states of the GNBA) for φ

- For $\sigma = A_0 A_1 A_2 ... \in Words(\varphi)$, each $A_i \subseteq AP$.
- For each A_i we construct B_i (a set of sub-formula of φ), to obtain word $\hat{\sigma} = B_0$

 $B_1 B_2 \dots$ such that:

- $\psi \in B_i$ "if and only if" $\sigma^i = A_i A_{i+1} A_{i+2} ... \models \psi$
 - What should the initial state of the GNBA contain in its elementary sets?
- $\hat{\sigma}$ should be a run of the GNBA \mathcal{G}_{φ} for a word σ .

Elementary Sets for φ : Computing Closure of φ

Closure.

- For an LTL-property φ , the <u>set closure(φ)</u> consists of:
 - All sub-formulas ψ of φ and their negation $\neg \psi$.
 - EXAMPLE: a U ($\neg a \land b$)

Can we take B_i to be any subset of the closure(φ)?

NO!

They must be "elementary" – consistent (logically and locally) & maximal.

"Elementary" Sets for φ

The set $B \subseteq closure(\varphi)$ is elementary if:

- 1. B is logically consistent if for all $\varphi_1 \land \varphi_2$, $\psi \in \text{closure}(\varphi)$:
 - $\varphi_1 \land \varphi_2 \in B \iff \varphi_1 \in B \text{ and } \varphi_2 \in B$
 - $\psi \in B \implies \neg \psi \notin B$
 - true \in closure(φ) \Longrightarrow true \in *B*
- 2. B is locally consistent if for all $\varphi_1 \cup \varphi_2 \in closure(\varphi)$:
 - $\varphi_2 \in B \Longrightarrow \varphi_1 \cup \varphi_2 \in B$
 - $\varphi_1 \cup \varphi_2 \in B$ and $\varphi_2 \notin B \Longrightarrow \varphi_1 \in B$
- 3. B is maximal for all $\psi \in \text{closure}(\varphi)$:
 - $\psi \notin B \Longrightarrow \neg \psi \in B$

Examples:

The GNBA for the LTL-property φ

For the LTL-property φ , let \mathcal{G}_{φ} = (Q, 2^{AP}, δ , Q₀, \mathcal{F}), where

- Q is the set of elementary sets of formulas $B \subseteq closure(\varphi)$.
 - $Q_0 = \{ B \in Q \mid \varphi \in B \}$
- $\mathcal{F} = \{ \{ B \in \mathbb{Q} \mid \varphi_1 \cup \varphi_2 \notin B \text{ or } \varphi_2 \in B \} \mid \varphi_1 \cup \varphi_2 \in \text{closure}(\varphi) \}$
- The transition relation δ : Q x $2^{AP} \rightarrow Q$ is given by:
 - $\delta(B, B \cap AP)$ is the set of all elementary sets of formulas B' satisfying:
 - For every $\mathsf{O} \psi \in \mathsf{closure}(arphi)$:
 - $\Theta \psi \in B \Leftrightarrow \psi \in B'$ AND
 - For every $\varphi_1 \cup \varphi_2 \in \text{closure}(\varphi)$:

 $\varphi_1 \cup \varphi_2 \in B \iff (\varphi_2 \in B \lor (\varphi_1 \in B \land \varphi_1 \cup \varphi_2 \in B'))$

GNBA for φ = Oa

GNBA for φ = a U b

