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Formal methods for verification

Model-based testing : automatically generate a set of testing scenarios, given
mathematical representations for system under test and
specification.

Static analysis : analyze properties of source code in a static manner, i.e.
without unfolding all possible behaviours.

Automated proof : (partially automatically) prove correctness of a program
through a logical reasoning using deduction rules.

Model checking : automatically prove that mathematical representation for the
system satisfies model for the specification.
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Principles of model checking

Does
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specification
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ϕ
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?|=
model-checker
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Models for systems

Systems under analysis are represented by transition systems.

I finite automata

I pushdown automata

I counter automata

I timed automata

I hybrid automata

I Petri nets

I channel systems

I message sequence charts

I ...
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Examples of models

I A numerical code door lock

0 0 0 0
2 0 7

2∗

∗

2∗

I A vending machine

on on

nb c=4

nb d > 0, give drink, nb d --, nb c:=0

nb d =0, coins back, nb c:=0
nb c ++

I A time-switch

Off On

x≤3

x :=0

x=3
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The model, informally

Timed automaton: Finite automaton enriched with clocks.

`0 `1 `2

tt,

a

,{x} x=1,

b

,∅

y=1,

a

,∅

x>0,

b

,{y}

X={x,y}

Transitions are equipped with guards and sets of reset clocks.
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Syntax

`0 `1 `2

tt,a,{x} x=1,b,∅

y=1,a,∅

x>0,b,{y}

Timed automata

A timed automaton is a tuple A = (L, L0, Lacc , Σ,X , E) with

I L finite set of locations L = {`0, `1, `2}
I L0 ⊆ L initial locations L0 = {`0}
I Lacc ⊆ L set of accepting locations Lacc = {`2}
I Σ finite alphabet Σ = {a, b}
I X finite set of clocks X = {x , y}

I E ⊆ L× G × Σ× 2X × L set of edges `0
x>0,a,{y}−−−−−−→ `0

where G = {
V

x ./ c | x ∈ X , c ∈ N} is the set of guards.
(with ./ ∈ {<,≤, =,≥, >})
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Semantics

Valuation: v ∈ RX+ assigns to each clock a clock-value

State: (`, v) ∈ L× RX+ composed of a location and a valuation.

Transitions between states of A:

I Delay transitions: (`, v)
τ−→ (`, v + τ)

I Discrete transitions: (`, v)
a−→ (`′, v ′)

if ∃(`, g , a, Y , `′) ∈ E with v |= g and

(
v ′(x) = 0 if x ∈ Y ,

v ′(x) = v(x) otherwise.

Run of A:
(`0, v0)

τ1−→ (`0, v0 + τ1)
a1−→ (`1, v1)

τ2−→ (`1, v1 + τ2)
a2−→ · · · ak−→ (`k , vk)

or simply: (`0, v0)
τ1,a1−−−→ (`1, v1)

τ2,a2−−−→ · · · τk ,ak−−−→ (`k , vk)
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Semantics (cont.)

Time sequence: t = (ti )1≤i≤k finite non-decreasing sequence over R+.

Timed word: w = (σ, t) = (ai , ti )1≤i≤k where ai ∈ Σ and t time sequence.

Accepted timed word

A timed word w = (a0, t0)(a1, t1) . . . (ak , tk) is accepted in A,

if there is a run ρ = (`0, v0)
τ0,a0−−−→ (`1, v1)

τ1,a1−−−→ . . . (`k+1, vk+1)
with `0 ∈ L0, `k+1 ∈ Lacc , and ti =

P
j<i τj .

Accepted timed language: L(A) = {w | w accepted by A}.
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Back to the example

NB: In the examples, we omit

I the guard when it is equivalent to tt, and

I the reset set when it is empty.

`0 `1 `2

a,{x} x=1,b

y=1,a

x>0,b,{y}

w = (b, 0.1)(b, 0.3)(a, 1.3)(b, 1.5)(a, 1.5)(b, 2.5) is an accepted timed word

An accepting run for w is

(`0, 0, 0)
0.1,b−−−→ (`0, 0.1, 0)

0.2,b−−−→ (`0, 0.3, 0)
1,a−−→ (`0, 1.3, 1)

0.2,b−−−→ (`0, 1.5, 0)
0,a−−→ (`1, 0, 0)

1,b−−→ (`2, 1, 1)
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More examples

`0 `1 `2

a,{x} x=1,a

aa a

L(A) = {(a, t1) · · · (a, tk)|∃i < j , tj − ti = 1}

`0 `1

`2

`3

0<x<1,a,{y}

x<1,c

y<1,a,{y}

y=1,b x<1,c

x=1,d

Does there exist an accepted timed word containing action b?
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Variants of timed automata

Many variants in the litterature:

I Diagonal constraints: Guards are conjunctions of constraints of the form
x ./ c and x − y ./ c.

I Additive clock constraints: Constraints of the form x ./ c and x + y ./ c.

I Epsilon transitions: Actions from the alphabet Σ ∪ {ε}.

I Updatable TA: Clocks updates of the form: x :./ c and x :./ y + c.
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Region partitioning

Let A be a timed automaton with set of clocks X and set of constraints C.
Let R be a finite partition of RX+ , the set of valuations.

Set of regions

R is a set of regions (for C) if

1. for every g ∈ C and for every R ∈ R, R ⊆ JgK or JgK ∩ R = ∅,
2. for all R, R ′ ∈ R, if there exists v ∈ R and t ∈ R with v + t ∈ R ′ then for

every v ′ ∈ R there exists t′ ∈ R with v ′ + t′ ∈ R ′, and

3. for all R, R ′ ∈ R, for every Y ⊆ X if R[Y←0] ∩ R ′ 6= ∅, then R[Y←0] ⊆ R ′.

Let M be the maximal constant in A.
The following equivalence relation yields the set of standard regions:

v ≡M v ′ if for every x , y ∈ X
I v(x) > M ⇔ v ′(x) > M

I v(x) ≤ M ⇒
“`
bv(x)c = bv ′(x)c

´
and

`
{v(x)} = 0⇔ {v ′(x)} = 0

´”
I

`
v(x) ≤ M and v(y) ≤ M

´
⇒

`
{v(x)} ≤ {v(y)} ⇔ {v ′(x)} ≤ {v ′(y)}

´
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Regions with 2 clocks

Standard regions for 2 clocks can be represented in 2 dimensions.

`0 `1 `2

a,{x} x=1,b

y=2,a

x>0,b,{y}

x

y

2

2

1

1

v ≡M v ′ if for every x , y ∈ X
I v(x) > M ⇔ v ′(x) > M

I v(x) ≤ M ⇒
“`
bv(x)c = bv ′(x)c

´
and

`
{v(x)} = 0⇔ {v ′(x)} = 0

´”
I

`
v(x) ≤ M and v(y) ≤ M

´
⇒

`
{v(x)} ≤ {v(y)} ⇔ {v ′(x)} ≤ {v ′(y)}

´

The partition is compatible with constraints, time elapsing and resets.
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Operations on region

For two clocks, the (bounded) regions have the following shapes:

•

R[Y←0] denotes the region obtained from R by resetting clocks in Y ⊆ X .
R ′ is a time-successor of R if there exists v ′ ∈ R ′, v ∈ R, t ∈ R+ with
v ′ = v + t.

x

y

2

2

1

1

(x=0,y=0)

delay−−−→ (0<x=y<1)
y :=0−−→ (0<x<1,y=0)

delay−−−→ (0<y<x<1)
delay−−−→ (0<y<1=x)

delay−−−→ (1<x<

2,0<y<1,{x}<{y})
delay−−−→ (y=1<x<2)

x :=0−−→ (x=0,y=1)
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Region automaton: construction

From a timed automaton A we build a finite automaton α(A) as follows:
I States: L×R Initial: L0 ×R Final: Lacc ×R
I Transitions:

I (`, R)
a−→ (`′, R′) if there exists `

g,a,Y−−−−→ `′ in A, there exists R′′

time-successor of R with R′′ ⊆ JgK and R′ = R′′
[Y←0]

.

Example Region automaton for the second timed automaton of Slide 13.

`1,x=1,y=0 `1,x>1,y=0 `3,x=1,0<y<1

`2,x>1,y=1 `3,0<x<1,y=0 `3,0<y<x<1

`0,x=y=0 `1,0<x<1,y=0
a

cc

a a

b

d

a

a

b

a

a
aa d

d

b
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Region automaton: properties

The number of states in α(A) is bounded by

|L| · 2|X| · |X |! · (2M + 2)|X|

Untime(L(A)) = {σ|(σ, t) ∈ L(A)} ⊆ Σ∗ is the untimed language of A.

Property

Untime(L(A)) = L(α(A))

Consequence: the untimed language of A is regular.
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Justification of the region automaton

Time-abstract bisimulation

Let A1 and A2 be timed automata.
≡⊆(L1×RX1

+ )×(L2×RX2
+ ) is a time-abstract bisimulation between A1 and A2 if

I if (`1, v1) ≡ (`2, v2) and (`1, v1)
τ1−→ (`1, v1 + τ1) for some τ1 ∈ R+, then

there exists τ2 ∈ R+ with (`2, v2)
τ2−→ (`2, v2 + τ2) and

(`1, v1 + τ1) ≡ (`2, v2 + τ2)

I if (`1, v1) ≡ (`2, v2) and (`1, v1)
a−→ (`′1, v

′
1) for some a ∈ Σ, then there

exists (`′2, v
′
2) with (`2, v2)

a−→ (`′2, v
′
2) and (`′1, v

′
1) ≡ (`′2, v

′
2)

I and vice versa.

Let A be a timed automaton with maximal constant M.

Regions and time-abstract bisimulation

The relation ≡M is a time-abstract bisimulation with finite index.
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Reachability problem

Input: A timed automaton, ` location of A
Question: is location ` reachable in A?

Reachability problem

Reachability is decidable for timed automata. It is a PSPACE-complete problem.

Proof
I PSPACE-membership:

I ` is reachable in A if and only if (`, R) is reachable in α(A) for some R.
I reachability is in NLOGSPACE for finite automata
I α(A) has exponentially more states than A

I PSPACE-hardness: reduction of the termination problem for a Turing
machine with linearly bounded work space. See black board.
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Universality and language inclusion

Universality
Input: A timed automaton
Question: does A accept all timed words?

Undecidability result

Universality is undecidable for timed automata.

Language inclusion
Input: A1, A2 timed automata
Question: L(A1) ⊆ L(A2)?

Corollary: Language inclusion in undecidable for timed automata.
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Complementation

Non-closure

Timed automata are not closed under complement.

Proof hint The automaton below accepts a timed language whose complement
cannot be recognized by a timed automaton.

`0 `1

a,{x}

a x 6=1,a

b x 6=1,b
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Determinization

Deterministic TA

A is deterministic if |L0| = 1 and for each ` ∈ L, for every a ∈ Σ, `
g1,a,Y1−−−−→ `1

and `
g2,a,Y2−−−−→ `2 implies Jg1K ∩ Jg2K = ∅.

If A is deterministic, there is at most one run on each timed word.

Closure

Deterministic timed automata are closed under complementation.

Expressivity

Timed automata are strictly more expressive than deterministic ones.
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Determinizability

Example The automaton below accepts a timed language which cannot be
recognized by a deterministic timed automaton. See black board.

`0 `1 `2

a,{x} x=1,a

a a a

Determinizability

Telling whether a timed automaton can be determinized is undecidable.

Proof See black board.
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Diagonal constraints

Guards may contain atomic constraints of the form x − y ./ c for x , y ∈ X .

Expressivity

Timed automata with diagonal constraints are equally expressive as classical
timed automata.

Proof hint For every diagonal constraint x − y ≤ c, duplicate the timed
automaton: In the first copy x − y ≤ c holds and in the other copy x − y > c
holds.

Efficiency

Timed automata with diagonal constraints can be exponentially more succint
than classical timed automata.
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Silent transitions

Actions are taken from the alphabet Σ ∪ {ε}.

Expressivity

Timed automata with silent transitions are stricly more expressive than classical
timed automata.

Example

Lε = {(a, t1) · · · (a, tn) | ∀k, tk mod 2 = 0}

is recognizable by a timed automaton with ε-transitions, but cannot be
recognized by a classical timed automaton.

Reachability

Reachability is decidable for timed automata with silent transitions.
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Additive clock constraints

Guards may contain atomic constraints of the form x + y ./ c for x , y ∈ X .

Two clocks

The reachability problem for timed automata with two clocks and additive clock
constraints is decidable.

Four or more clocks

The reachability problem for timed automata with four (or more) clocks and
additive clock constraints is undecidable.

Proof Reduction of the halting problem for a two counter machine. See black
board.
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Symbolic model checking

Two general methods to solve the reachability problem.

Forward analysis

Target

Init

iterative computation

of successors of Init

Backward analysis

Target

Init

iterative computation

of predecessors of Target

Issues: Representation of the sets of states + Termination of the computation.
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Zones

Zones are symbolic representations of sets of valuations.
A clock constraint g defines a zone JgK = {v ∈ RX+ |v |= g}.

For verification purposes, the following operations on zones Z , Z ′ are needed.

I forward analysis:

I Future of Z :
−→
Z = {v + t|v ∈ Z , t ∈ R+}

I Reset in Z of clocks in Y ⊆ X : Z[Y←0] = {v[Y←0]|v ∈ Z}
I Intersection of Z and Z ′: Z ∩ Z ′ = {v |v ∈ Z and v ∈ Z ′}
I Emptiness test: decide if Z is empty.

I backward analysis:

I Past of Z :
←−
Z = {v − t|v ∈ Z , t ∈ R+}

I Inverse reset: Z[Y←0]−1 the largest Z ′ with Z ′
[Y←0]

= Z
I Intersection
I Emptiness test
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Data structure

Zones are represented by Difference Bounded Matrices (DBM).

Difference Bounded Matrix

A DBM over the set of n clocks X is an (n + 1)-square matrix of pairs

(m,≺) with ≺∈ {<,≤} and m ∈ Z ∪ {∞}

(mi,j ,≺i,j) encodes the constraint xi − xj ≺i,j mi,j (with convention x0 = 0)

Example A DBM and the zone it represents.

0@
0 x y

0 (∞, <) (−3,≤) (∞, <)
x (∞, <) (∞, <) (4, <)
y (5,≤) (∞, <) (∞, <)

1A x ≥ 3 ∧ y ≤ 5 ∧ x − y < 4

Normal form (via Floyd algorithm)

0@
0 x y

0 (0,≤) (−3,≤) (0,≤)
x (9, <) (0,≤) (4, <)
y (5,≤) (2,≤) (0,≤)

1A
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Comparison

Backward analysis

The backward analysis terminates and is correct.

Proof Termination is based on the fact that finite union of regions are stable

under the following operations: past
←−
Z , inverse reset Z[Y←0]−1 , and

intersection g ∩ Z .

Forward analysis

The forward analysis is correct when it terminates.

Note that it may not terminate.

Example

`0

x ≥ 1 ∧ y = 1, a, {y}

x54321

y

1

2
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Uppaal in a nutshell

Uppaal

I developed at Uppsala and Aalborg universities

I performs forward analysis (with extrapolation) for timed automata

http://www.uppaal.com/

See demo.
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The end!
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