© JPK

Fairness in LTL
Lecture #15 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

December 10, 2008

#15: Fairness in LTL Model checking

What did we treat so far?

e LTL semantics: for words, states and transition systems
e LTL equivalence: idempotence, duality, absorption, and expansion
e Dual operators to until: weak until and release

e Expansion law as characteristic equation for until and weak until

e Positive normal form

— for weak until: exponential blow-up of formula
— for release: linear transformation

e LTL is a specification formalism for LT properties

what about fairness in LTL?

© JPK 1

#15: Fairness in LTL

Model checking

Overview Lecture #15

=- Repetition: action-based fairness
e State-based fairness in LTL
e Action-based versus state-based fairness

e LTL with fairness constraints

© JPK

#15: Fairness in LTL Model checking

Process one starves

<<Cl’ n9, y:O)> C(nla c2, Y= O>)

<<cl, wa, y=0) (w1, ca, y:O>>

© JPK 3

#15: Fairness in LTL Model checking

Fairness

e Starvation freedom is often considered under process fairness

= there is a fair scheduling of the execution of processes

e Fairness is typically needed to prove liveness

— not for safety properties!
— to prove some form of progress, progress needs to be possible

e Fairness is concerned with a fair resolution of nondeterminism

— such that it is not biased to consistently ignore a possible option

e Problem: liveness properties constrain infinite behaviours

— but some traces—that are unfair—refute the liveness property

© JPK 4

#15: Fairness in LTL Model checking

Summary of fairness

e Fairness constraints rule out unrealistic executions

— by putting constraints on the actions that occur along infinite executions

e Unconditional, strong, and weak fairness constraints

— unconditional =- strong fair = weak fair
— weak fairness rules out the least number of runs; unconditional the most

e Fairness assumptions allow distinct constraints on distinct action sets

¢ (Realizable) fairness assumptions are irrelevant for safety properties

— important for the verification of liveness properties

© JPK 5

#15: Fairness in LTL Model checking

Action-based fairness constraints

For set A of actions and infinite run p:

e Unconditional fairness

some action in A occurs infinitely often along p

e Strong fairness

if actions in A are infinitely often enabled (not necessarily always!)
then some action in A has to occur infinitely often in p

e Weak fairness

if actions in A are continuously enabled (no temporary disabling!)
then it has to occur infinitely often in p

© JPK 6

#15: Fairness in LTL Model checking

Action-based fairness constraints

For TS = (S, Act, —, I, AP, L) without terminal states, A C Act,

1

and infinite execution fragment p = sy —% s, ..Oof TS:

1. pis unconditionally A-fair whenever: Vk>0.35 2 k. o € A

infinitely often A is taken
2. pis strongly A-fair whenever:

(Vk >0.35 > k:ACt(sj)ﬂA;é@) — (VE2>20.3j>k.a; € A)

infinitely often A is enabled infinitely often A is taken

3. pisweakly A-fair whenever:

(3k>0.Vj > kACt(sj)ﬂA;é@) — (VE2>20.3j>k.a; € A)

Als eventually always enabled infinitely often A is taken

© JPK .

#15: Fairness in LTL Model checking

Examples

“ reqo
\‘\ enterq
‘((c1,n9,0))‘ | (wy, wg,1)
reqy '© Q oh

o Run <7’L1, na, 1> ﬂ) <w17n27 1>

enter1

<Clan270> r—e|> <’n1,n2, 1> 7 .-

req1

— is not unconditionally A-fair for A = { enter; }
— but strongly A-fair, as in no p-state, the action enter, is enabled

re re
¢ Run <TL1, na, 1> A) <TL1,’U)2, 1> A) <w17 w2, 1> m <Claw2a O> —re_|_> <TL1, w2, 1> ce

— is not strongly A-fair: along p, enters is infinitely often enabled but never taken
— but weakly A-fair, since enter; is always not enabled along p

© JPK 8

#15: Fairness in LTL Model checking

Fairness assumptions

e A fairness assumption for Act is a triple
F = (fucondafstmngafweak)

: Act
with Fuconda fstronga Fweak € 2 .

e Execution p is F-fair if:

— itis unconditionally A-fair for all A € F,.on4, and
— itis strongly A-fair for all A € Fiong, and
— itis weakly A-fair for all A € Fear

e F isrealizable for TS if for any s € Reach(TS): FairPathsz(s) # o

fairness assumption (@, ', @) denotes strong fairness; (o, @, F') weak, etc.

© JPK 9

#15: Fairness in LTL Model checking

Example: fairness assumption for mutual exclusion
skip

@nla €2, yZOD

w1,C2,y=0)
F = (@, {{ enter; }, { enter, }}, {{ req; }, { req, }}>
fs??ong }—;)reak

in any F’-fair execution each process infinitely often requests access

© JPK

10

#15: Fairness in LTL Model checking

Fair paths and traces

o Let fairness assumption F = (Fcond; Fstrongs Fuweak)

e Path sg — s; — s5...1s F-fair if

— there exists an F-fair execution sg — s1 —25 s, . . .
— FairPaths ~(s) denotes the set of F-fair paths that start in s
— FairPaths(TS) = |J,.; FairPathsx(s)

e Trace o is F-fair if there exists an F-fair execution p with trace(p) = o

— FairTracesz(s) = trace(FairPathsz(s))
— FairTracesz(TS) = trace(FairPaths =(TS))

© JPK 11

#15: Fairness in LTL Model checking

Fair satisfaction

e TS satisfies LT-property P:

TS =P ifandonlyif Traces(TS) C P

e TS fairly satisfies LT-property P wrt. fairness assumption F:
TS =+ P ifandonlyif FairTracesx(TS) C P

— TS satisfies the LT property P if all its fair observable behaviors are admissible

© JPK 12

#15: Fairness in LTL

Model checking

Overview Lecture #15

e Repetition: action-based fairness
— State-based fairness in LTL
e Action-based versus state-based fairness

e LTL with fairness constraints

© JPK

13

#15: Fairness in LTL

Model checking

LTL fairness constraints
Let & and W be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:

ufair = OOW

2. A strong LTL fairness condition is of the form:

sfair = O00® — OOU

3. A weak LTL fairness constraint is of the form:

wfarr = OO00 — OOY

d stands for “something is enabled”; ¥ for “something is taken”

© JPK

14

#15: Fairness in LTL Model checking

LTL fairness assumption

e LTL fairness assumption = conjunction of LTL fairness constraints

— the fairness constraints are of any arbitrary type

e Strong fairness assumption: sfair = Ag.;y (D<><I>i s D<>\IJZ-)

— compare this to an action-based strong fairness constraint over A with |A| = k

e General format: fair = ufair N sfair N wfair

e Rules of thumb:

— strong (or unconditional) fairness assumptions are useful for solving contentions
— weak fairness suffices for resolving nondeterminism resulting from interleaving

© JPK 15

#15: Fairness in LTL Model checking

Fair satisfaction

For state s in transition system TS (over AP) without terminal states, let

FairPathsy,;(s) = {m € Paths(s) | fair }
FairTracesy,,(s) = {trace(r) | 7 € FairPaths,,(s) }

For LTL-formula ¢, and LTL fairness assumption fair:

s =mir ¢ ifand only if Vr e FairPathsy,;,(s). 7 =¢ and
TS =pnir p ifandonly if Vsg € 1. s¢ F=pair ¢

= 14ir 1S the fair satisfaction relation for LTL; |~ the standard one for LTL

© JPK

16

#15: Fairness in LTL Model checking

Randomized arbiter

noncrity noncrito

unlock

rel rel

TS || Arbiter || TS, = O crity

But: TS; || Arbiter || TSy =, OOcrity A OOcrity with fair = O<Chead A O<$tail

© JPK 17

#15: Fairness in LTL Model checking

Semaphore-based mutual exclusion
skip

<7’L1, na, y:1>

(wy, ¢3,y=0))

on black board: some action- versus state-based fairness assumptions

© JPK 18

#15: Fairness in LTL Model checking

State- versus action-based fairness

e From action-based to (state-based) LTL fairness assumptions:

— premise: deduce from state label, the possible enabled actions
— conclusion: deduce from state label, the just executed actions

e General scheme:

— copy each non-initial state s and keep track of action used to enter s
— copy (s, o) means s has been entered via action «

= Any action-based fairness assumption can be transformed
Into an equivalent LTL fairness assumption

— the reverse, however, does not hold

© JPK 19

#15: Fairness in LTL Model checking

Turning action-based into state-based fairness
For TS = (S, Act, —, I, AP, L) let TS' = (S, ActU { begin }, —', I', AP’, L") with:

o S = I x{begin} U S xActand I' = I x { begin }
e —'is the smallest relation satisfying:

Q / Q
s 255 So— S sg € 1
a ! / and } a !
<S75> - <S ,Oé) <807 begzn> - <S7 Oé>

e AP = AP U { enabled(a), taken(a) | o € ACt}
e labeling function:
— L'({s0, begin)) = L(so) U {enabled(ﬁ) 1B ¢ Act(so)}

~ L'({s,a)) = L(s) U {taken(a)} U {enabled(ﬁ) 18 € Act(s)}

it follows: Tracesap(TS) = Tracesap(TS')

© JPK 20

#15: Fairness in LTL Model checking

State- versus action-based fairness

e Strong A-fairness is described by the LTL fairness assumption:

sfair , = OO \/ enabled(o) — OO \/ taken(a)
acA acA

e The fair traces of TS and its action-based variant TS’ are equal:

{traceAp(w) | m € Paths(TS), 7 is]—“—fair}
— {traceAp(w’) | ' € Paths(TS'), ' |= faz‘r}

e For every LT-property P (over AP): TS |=x P iff TS =, P

© JPK 21

#15: Fairness in LTL

Model checking

Example

© JPK

22

#15: Fairness in LTL

Model checking

For:

Reducing =y, to =

e transition system TS without terminal states
e LTL formula ¢, and
e LTL fairness assumption fair

it holds:

TS ir @ ifandonlyif TS |= (fair — o)

verifying an LTL-formula under a fairness assumption can be done
using standard verification algorithms for LTL

© JPK

23

