
Channel Systems
Lecture #4 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

October 29, 2008

c© JPK

#4: Channel systems Model checking

Overview Lecture #4

• What is a channel system?

• Example: alternating bit protocol

• From channel systems to transition systems

• The modeling language NanoPromela

• Examples

• Semantics of NanoPromela models

c© JPK 1

#4: Channel systems Model checking

Channels

• Processes communicate via channels (c ∈ Chan)

• Channels are first-in, first-out buffers

• Channels are typed (wrt. their content — dom(c))

• Channels buffer messages (of appropriate type)

• Channel capacity = maximum # messages that can be stored

– if cap(c) ∈ IN then c is a channel with finite capacity
– if cap(c) = ∞ then c has an infinite capacity
– if cap(c) > 0, there is some “delay” between sending and receipt
– if cap(c) = 0, then communication via c amounts to handshaking

c© JPK 2

#4: Channel systems Model checking

Channels
• Process Pi = program graph PGi + communication actions

c!e transmit the value of expression e along channel c

c?x receive a message via channel c and assign it to variable x

• Comm = { c!e, c?x | c ∈ Chan, e ∈ Expr, x ∈ Var. dom(x) ⊇ dom(c) = dom(e) }

• Sending and receiving a message

– c!e puts the value of e at the rear of the buffer c (if c is not full)
– c?x retrieves the front element of the buffer and assigns it to x (if c is not empty)
– if cap(c) = 0, channel c has no buffer
– if cap(c) = 0, sending and receiving can takes place simultaneously

this is called synchronous message passing or handshaking
– if cap(c) > 0, sending and receiving can never take place simultaneously

this is called asynchronous message passing

c© JPK 3

#4: Channel systems Model checking

Channel systems

A program graph over (Var, Chan) is a tuple

PG = (Loc, Act, Effect,→, Loc0, g0)

where

→ ⊆ Loc × Cond(Var) × (Act ∪ Comm) × Loc

A channel system CS over (
⋃

0<i�n Vari, Chan):

CS = [PG1 | . . . | PGn]

with program graphs PGi over (Vari, Chan)

c© JPK 4

#4: Channel systems Model checking

Communication actions

• Handshaking

– if cap(c) = 0, then process Pi can perform �i
c!e−−→ �′i only

– . . . if Pj, say, can perform �j
c?x−−→ �′j

– the effect corresponds to the (atomic) distributed assignment x := value(e)

• Asynchronous message passing

– if cap(c) > 0, then process Pi can perform �i
c!e−−→ �′i

– . . . if and only if less than cap(c) messages are stored in c

– Pj may perform �j
c?x−−→ �′j if and only if the buffer of c is not empty

– then the first element of the buffer is extracted and assigned to x (atomically)

executable if . . . effect

c!e c is not “full” Enqueue(c, value(e))
c?x c is not empty 〈x := Front(c) ; Dequeue(c)〉;

c© JPK 5

#4: Channel systems Model checking

The alternating bit protocol

c© JPK 6

#4: Channel systems Model checking

The alternating bit protocol: sender

snd msg(0) st tmr(0) wait(0) chk ack(0)

snd msg(1)st tmr(1)wait(1)chk ack(1)

c!〈m, 0〉

lost

tmr on!

d?x

timeout?

x = 1

x = 0 :
tmr off!

c!〈m, 1〉

lost

tmr on

timeout?

d?x

x = 0

x = 1 :
tmr off!

c© JPK 7

#4: Channel systems Model checking

The alternating bit protocol: receiver

wait(0) pr msg(0) snd ack(0)

wait(1)pr msg(1)snd ack(1)

c?〈m, y〉

y = 1

y = 0

d!0

c?〈m, y〉

y = 0

y = 1

d!1

off

on

tmr on?
timeout!

tmr off?

c© JPK 8

#4: Channel systems Model checking

Channel evaluations

• A channel evaluation ξ is

– a mapping from channel c ∈ Chan onto a sequence ξ(c) ∈ dom(c)∗ such that
– current length cannot exceed the capacity of c: len(ξ(c)) � cap(c)
– ξ(c) = v1 v2 . . . vk (cap(c) � k) denotes v1 is at front of buffer etc.

• ξ[c := v1 . . . vk] denotes the channel evaluation

ξ[c := v1 . . . vk](c′) =
{

ξ(c′) if c �= c′

v1 . . . vk if c = c′.

• Initial channel evaluation ξ0 equals ξ0(c) = ε for any c

c© JPK 9

#4: Channel systems Model checking

Transition system semantics of a channel system

Let CS = [PG1 | . . . | PGn] be a channel system over (Chan, Var) with

PGi = (Loci, Acti, Effecti, �i, Loc0,i, g0,i) , for 0 < i � n

TS(CS) is the transition system (S, Act,→, I, AP, L) where:

• S = (Loc1 × . . . × Locn) × Eval(Var) × Eval(Chan)

• Act =
`U

0<i�n Acti
´ 	 { τ }

• → is defined by the inference rules on the next slides

• I =


〈�1, . . . , �n, η, ξ0〉 | ∀i. (�i ∈ Loc0,i ∧ η |= g0,i) ∧∀c. ξ0(c) = ε

ff

• AP =
U

0<i�n Loci 	 Cond(Var)

• L(〈�1, . . . , �n, η, ξ〉) = { �1, . . . , �n } ∪ { g ∈ Cond(Var) | η |= g }

c© JPK 10

#4: Channel systems Model checking

Inference rules (I)

• Interleaving for α ∈ Acti:

�i
g:α−−−→ �′i ∧ η |= g

〈�1, . . . , �i, . . . , �n, η, ξ〉 α−−→〈�1, . . . , �′i, . . . , �n, η′, ξ〉

where η′ = Effect(α, η)

• Synchronous message passing over c ∈ Chan, cap(c) = 0:

�i
g:c?x−−−−→ �′i ∧ �j

g′:c!e−−−−→ �′j ∧ η |= g ∧ g′ ∧ i �= j

〈�1, . . . , �i, . . . , �j, . . . , �n, η, ξ〉 τ−→〈�1, . . . , �′i, . . . , �′j, . . . , �n, η′, ξ〉

where η′ = η[x := η(e)].

c© JPK 11

#4: Channel systems Model checking

Inference rules (II)
• Asynchronous message passing for c ∈ Chan, cap(c) > 0:

– receive a value along channel c and assign it to variable x:

�i
g:c?x−−−−→ �′i ∧ η |= g ∧ len(ξ(c)) = k > 0 ∧ ξ(c) = v1 . . . vk

〈�1, . . . , �i, . . . , �n, η, ξ〉 τ−→〈�1, . . . , �′i, . . . , �n, η′, ξ′〉
where η′ = η[x := v1] and ξ′ = ξ[c := v2 . . . vk].

– transmit value η(e) ∈ dom(c) over channel c:

�i
g:c!e−−−−→ �′i ∧ η |= g ∧ len(ξ(c)) = k < cap(c) ∧ ξ(c) = v1 . . . vk

〈�1, . . . , �i, . . . , �n, η, ξ〉 τ−→〈�1, . . . , �′i, . . . , �n, η, ξ′〉
where ξ′ = ξ[c := v1 v2 . . . vk η(e)].

c© JPK 12

#4: Channel systems Model checking

Handling unexpected messages

sender S timer receiver R channel c channel d event

snd msg(0) off wait(0) ∅ ∅

st tmr(0) off wait(0) 〈m, 0〉 ∅ message with bit 0
transmitted

wait(0) on wait(0) 〈m, 0〉 ∅

snd msg(0) off wait(0) 〈m, 0〉 ∅ timeout
st tmr(0) off wait(0) 〈m, 0〉 〈m, 0〉 ∅ retransmission
st tmr(0) off pr msg(0) 〈m, 0〉 ∅ receiver reads

first message
st tmr(0) off snd ack(0) 〈m, 0〉 ∅

st tmr(0) off wait(1) 〈m, 0〉 0 receiver changes
into mode-1

st tmr(0) off pr msg(1) ∅ 0 receiver reads
retransmission

st tmr(0) off wait(1) ∅ 0 and ignores it
...

c© JPK 13

#4: Channel systems Model checking

nanoPromela

• Promela (Process Meta Language) is modeling language for SPIN

– SPIN = most widely used model checker
– developed by Gerard Holzmann (Bell Labs, NASA JPL)
– ACM Software Award 2002

• nanoPromela is the core of Promela

– shared variables and channel-based communication
– formal semantics of a Promela model is a channel system
– processes are defined by means of a guarded command language

• No actions, statements describe effect of actions

c© JPK 14

#4: Channel systems Model checking

nanoPromela

nanoPromela-program P = [P1| . . . |Pn] with Pi a process

A process is specified by a statement:

stmt ::= skip
∣∣ x := expr

∣∣ c?x
∣∣ c!expr

∣∣
stmt1 ; stmt2

∣∣ atomic{assignments} ∣∣
if :: g1 ⇒ stmt1 . . . :: gn ⇒ stmtn fi |
do :: g1 ⇒ stmt1 . . . :: gn ⇒ stmtn do

assignments ::= x1 := expr1 ; x2 := expr2 ; . . . ; xm := exprm

x is a variable in Var, expr an expression and c a channel, gi a guard

assume the Promela specification is type-consistent

c© JPK 15

#4: Channel systems Model checking

Conditional statements

if :: g1 ⇒ stmt1 . . . :: gn ⇒ stmtn fi

• Nondeterministic choice between statements stmti for which gi holds

• Test-and-set semantics: (deviation from Promela)

– guard evaluation + selection of enabled command + execution first atomic step
of selected statement is all performed atomically

• The if–fi–command blocks if no guard holds

– parallel processes may unblock a process by changing shared variables
– e.g., when y=0, if :: y > 0 ⇒ x := 42 fi waits until y exceeds 0

• Standard abbreviations:

– if g then stmt1 else stmt2 fi ≡ if :: g ⇒ stmt1 :: ¬g ⇒ stmt2 fi
– if g then stmt1 fi ≡ if :: g ⇒ stmt1 :: ¬g ⇒ skip fi

c© JPK 16

#4: Channel systems Model checking

Iteration statements

do :: g1 ⇒ stmt1 . . . :: gn ⇒ stmtn od

• Iterative execution of nondeterministic choice among gi ⇒ stmti

– where guard gi holds in the current state

• No blocking if all guards are violated; instead, loop is aborted

• do :: g ⇒ stmt od ≡ while g do stmt od

• No break-statements to abort a loop (deviation from Promela)

c© JPK 17

#4: Channel systems Model checking

Peterson’s algorithm

The nanoPromela-code of process P1 is given by the statement:

do :: true ⇒ skip;

atomic{b1 := true; x := 2};
if :: (x = 1) ∨ ¬b2 ⇒ crit1 := true fi

atomic{crit1 := false; b1 := false}
od

c© JPK 18

#4: Channel systems Model checking

Beverage vending machine

The following nanoPromela program describes its behaviour:

do :: true ⇒
skip;

if :: nsprite > 0 ⇒ nsprite := nsprite − 1

:: nbeer > 0 ⇒ nbeer := nbeer − 1

:: nsprite = nbeer = 0 ⇒ skip

fi

:: true ⇒ atomic{nbeer := max; nsprite := max}
od

c© JPK 19

#4: Channel systems Model checking

Formal semantics

The semantics of a nanoPromela-statement over (Var, Chan) is a
program graph over (Var, Chan).

The program graphs PG1, . . . , PGn for the processes P1, . . . ,Pn of a
nanoPromela-program P = [P1| . . . |Pn] constitute a channel system
over (Var, Chan)

Example:

loop = do :: x > 1 ⇒ y := x + y
:: y < x ⇒ x := 0; y := x

od

c© JPK 20

#4: Channel systems Model checking

Sub-statements

c© JPK 21

#4: Channel systems Model checking

Inference rules

skip true: id−−−−−→ exit

where id denotes an action that does not change the values of the variables

x := expr true : assign(x, expr)−−−−−−−−−−−−−→ exit

assign(x, expr) denotes the action that only changes x, no other variables

c?x true : c?x−−−−−−→ exit c!expr true : c!expr−−−−−−−→ exit

c© JPK 22

#4: Channel systems Model checking

Inference rules

atomic{x1 := expr1; . . . ; xm := exprm} true : αm−−−−−−→ exit

where α0 = id, αi = Effect(assign(xi, expri), Effect(αi−1, η)) for 1 � i � m

stmt1
g:α−−−→ stmt′1 �= exit

stmt1; stmt2
g:α−−−→ stmt′1; stmt2

stmt1
g:α−−−→ exit

stmt1; stmt2
g:α−−−→ stmt2

c© JPK 23

#4: Channel systems Model checking

Inference rules

stmti
h:α−−−→ stmt′i

cond cmd gi∧h:α−−−−−→ stmt′i

stmti
h:α−−−→ stmt′i �= exit

loop gi∧h:α−−−−−→ stmt′i; loop

stmti
h:α−−−→ exit

loop gi∧h:α−−−−−→ loop

loop ¬g1∧...∧¬gn−−−−−−−−−→ exit

c© JPK 24

