© JPK

Channel Systems
Lecture #4 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling and Verification

E-mail: kat oen@s. r wt h- aachen. de

October 29, 2008

#4. Channel systems

Model checking

Overview Lecture #4

What is a channel system?

Example: alternating bit protocol

From channel systems to transition systems
The modeling language NanoPr onel a
Examples

Semantics of NanoPr onel a models

© JPK

#4. Channel systems Model checking

Channels

e Processes communicate via channels (¢ € Chan)
e Channels are first-in, first-out buffers
e Channels are typed (wrt. their content — dom(c))

e Channels buffer messages (of appropriate type)

e Channel capacity = maximum # messages that can be stored

— if cap(c) € IN then c is a channel with finite capacity

— if cap(c) = oo then ¢ has an infinite capacity

— if cap(c) > 0, there is some “delay” between sending and receipt
— if cap(c) = 0, then communication via ¢ amounts to handshaking

© JPK 2

#4. Channel systems Model checking

Channels

e Process P; = program graph PG, + communication actions

cle transmit the value of expression e along channel ¢

c?’xr receive a message via channel ¢ and assign it to variable x
e Comm = {cle, c?x | ¢ € Chan, e € Expr, z € Var. dom(x) O dom(c) = dom(e) }

e Sending and receiving a message

— cle puts the value of e at the rear of the buffer c (if ¢ is not full)
— c?x retrieves the front element of the buffer and assigns it to x (if c is not empty)
— if cap(c) = 0, channel ¢ has no buffer
— if cap(c) = 0, sending and receiving can takes place simultaneously
this is called synchronous message passing or handshaking
— if cap(c) > 0, sending and receiving can never take place simultaneously
this is called asynchronous message passing

© JPK 3

#4. Channel systems Model checking

Channel systems

A program graph over (Var, Chan) is a tuple
PG = (Loc, Act, Effect, —, Locy, go)
where
— C Loc x Cond(Var) x (Act U Comm) x Loc
A channel system CS over (| J,.;,, Var;, Chan):
CS = [PGy|...|PG,]

with program graphs PG; over (Var;, Chan)

© JPK 4

#4. Channel systems Model checking

Communication actions
e Handshaking

— if cap(c) = 0, then process P; can perform £; <% ¢/ only
— ... if P}, say, can perform ¢; <% ¢’
— the effect corresponds to the (atomic) distributed assignment = := value(e)

e Asynchronous message passing

— if cap(c) > 0, then process P; can perform £; <% ¢/

— ... ifand only if less than cap(c) messages are stored in ¢

— P; may perform ¢; ctz, Eg. if and only if the buffer of c is not empty

— then the first element of the buffer is extracted and assigned to x (atomically)

executable if . .. | effect
cle | cisnot“full” Enqueue(c, value(e))
c?x | cis notempty (x := Front(c); Dequeue(c));

© JPK 5

#4. Channel systems Model checking

The alternating bit protocol

© JPK 6

#4. Channel systems Model checking

The alternating bit protocol: sender

c!l(m,0) d?x
Snd_msg tmr_on! hk_ack(o)
\’ =
i ?
=1 timeout” r=0:
tmr_off! _ tmr_off!
timeout?
d?x cl{m, 1)

© JPK .

#4. Channel systems Model checking

The alternating bit protocol: receiver

c?(m, y)
: y=20
wait(0) r_msg(O) snd_ack(0)
y=1
tmr_off?
d!1l d!0 timeout!
on?
y=0
snd_ack(1) s =1 pr_msg(lwait(l)
c?(m, y)

© JPK 8

#4. Channel systems Model checking

Channel evaluations

e A channel evaluation € is

— a mapping from channel ¢ € Chan onto a sequence £(c) € dom(c)* such that
— current length cannot exceed the capacity of c: len(&(c)) < cap(c)
— &(c) = v vy ...v, (cap(c) > k) denotes v, is at front of buffer etc.

e {|c:=wvp...v;] denotes the channel evaluation

if ¢ £ ¢

v1...0 Ife=C.

e Initial channel evaluation &, equals &y(c) = ¢ for any ¢

© JPK 9

#4. Channel systems Model checking

Transition system semantics of a channel system
Let CS = [PG, | ... | PG,] be a channel system over (Chan, Var) with
PG, = (Loc;, Act;, Effect;,~;,L0Cp ;,90:), TforO<i<n

TS(CS) is the transition system (.S, Act, —, I, AP, L) where:

e S = (Locy; x ... x Loc,) x Eval(Var) x Eval(Chan)

Act = (Hycic, Acti) W {7}

e — is defined by the inference rules on the next slides

o | = { (l1,...,0n,m, &) | Vi. (4i € Locos A = go.i) ANVe. €o(c) = 8}
o AP = H,.;,,Loc; & Cond(Var)

L(<£17'°'a£n7777£>) — {617'° ,En} U {g € Cond(Var) | n |: g}

© JPK 10

#4. Channel systems Model checking

Inference rules (I)

e Interleaving for a € Act;:

liE=0 AN nEg
<€17---7€7j7--- n777€> <€1,...,€;,...,€n,n/,€>

where 1 = Effect(a, 1)

e Synchronous message passing over ¢ € Chan, cap(c) = 0:

05T, g g ke LV ANNEGNG AN i #]
<€17---7€z’7---7€j7---7 n,n,€> <€1,...,€;,...,€;,...,fn,n/,§>

where " = nlz := n(e)].

© JPK 11

#4. Channel systems Model checking

Inference rules (Il)
e Asynchronous message passing for ¢ € Chan, cap(c) > 0:

— receive a value along channel ¢ and assign it to variable z:

f; L U ANnEg A Ien(g(N)=k>0 A &) = v1...0p
2 T Y A I o I 0 2 DAY S /Sy L o

where 1’ = nlz :=vi] and &' = &lc == v ... vyl

— transmit value n(e) € dom(c) over channel c:

0220 A g A len(E(c)) =k <cap(c) A £(c) = vr...v

<€17---7€u---7 n7777£> T <€1,...,€;,...,€n,?7,£,>

where ¢’ = &lc:= vy v, .. v n(e)].

© JPK 12

#4. Channel systems

Model checking

Handling unexpected messages

sender S timer | receiver R | channel c channel d | event

snd_-msg(0) | off wait(0) %) %)

st_tmr(0) off wait(0) (m, 0) %) message with bit O
transmitted

wait(0) on wait(0) (m, 0) %)

snd_-msg(0) | off wait(0) (m, 0) %) timeout

st_tmr(0) off wait(0) (m,0) (m,0) | @ retransmission

st_tmr(0) off pr-msg(0) | (m,O0) %) receiver reads
first message

st_tmr(0) off snd_ack(0) | (m,0) @

st_tmr(0) off wait(1) (m, 0) 0 receiver changes
into mode-1

st_tmr(0) off pr-msg(1l) | @ 0 receiver reads
retransmission

st_tmr(0) off wait(1) %) 0 and ignores it

© JPK

13

#4. Channel systems Model checking

nanoPromela

e Promela (Process Meta Language) is modeling language for SPIN

— SPIN = most widely used model checker
— developed by Gerard Holzmann (Bell Labs, NASA JPL)
— ACM Software Award 2002

e nNnanoPromela is the core of Promela

— shared variables and channel-based communication
— formal semantics of a Promela model is a channel system
— processes are defined by means of a guarded command language

e NO actions, statements describe effect of actions

© JPK 14

#4. Channel systems Model checking

nanoPromela
nanoPromela-program P = [Py]|...|P,] with P; a process

A process is specified by a statement:

stmt n= skip | z:=expr | c?z | clexpr |

stmt; ; stmt, | at oni c{assignments} |

if g =stmty ... :g,=stmt, fi |
do :g¢gy=stmty ... :g,=stmt, do
assighments ;= 1z := expry; ro (= expry; ... Ty = expr,,

x 1S a variable in Var, expr an expression and ¢ a channel, g; a guard

assume the Promela specification is type-consistent

© JPK 15

#4. Channel systems Model checking

Conditional statements

If :: g1 = stmt; ... :: g, = stmt,, fi
e Nondeterministic choice between statements stmt; for which g; holds

e Test-and-set semantics: (deviation from Promela)

— guard evaluation + selection of enabled command + execution first atomic step
of selected statement is all performed atomically

e The if—fi—command blocks if no guard holds

— parallel processes may unblock a process by changing shared variables
— e.g.,when y=0,if ::y >0 = x := 42 fi waits until y exceeds 0

e Standard abbreviations:

— if g then stmt; else stmt; fi = if :: g = stmt; :: =g = stmt; fi
— ifgthenstmt; fi = if :: g = stmt; :: =g = ski pfi

© JPK 16

#4. Channel systems

Model checking

lteration statements

do :g; = stmt; ... :: g,, = stmt,, od

e Iterative execution of nondeterministic choice among g, = stmt;

— where guard g; holds in the current state

e No blocking if all guards are violated; instead, loop is aborted

e do :: g = stmt od = while ¢ do stmt od

e NoO break-statements to abort a loop

(deviation from Promela)

© JPK

17

#4. Channel systems Model checking

Peterson’s algorithm

The nanoPromela-code of process P; is given by the statement:

do : true = skip;
atom c{b, :=true;z := 2};
if = (x=1)V-by = crity :=true fi
at om c{crit; := false; b, := false}
od

© JPK 18

#4. Channel systems Model checking

Beverage vending machine

The following nanoPromela program describes its behaviour:

do : true =
ski p;
if . nsprite >0 = nsprite := nsprite — 1

nbeer >0 = nbeer:=nbeer—1
nsprite = nbeer =0 = ski p
fi
true = at om c{nbeer := max; nsprite := max}
od

© JPK 19

#4. Channel systems Model checking

Formal semantics

The semantics of a nanoPromela-statement over (Var,Chan) is a
program graph over (Var, Chan).

The program graphs PGq,...,PG,, for the processes P,,...,P, of a

nanoPromela-program P = [Py]...|P,] constitute a channel system
over (Var,Chan)

Example:

loop = do @ x>1 = y:=x+y
y<x = x:=0;,y:==x
od

© JPK 20

#4. Channel systems

Model checking

Sub-statements

© JPK

21

#4. Channel systems Model checking

Inference rules

ski p rued, exit

where id denotes an action that does not change the values of the variables

true : assign(x, expr)

x = expr exit

assign(x, expr) denotes the action that only changes x, no other variables

7 true : c?x true : clexpr

> exit

> exit clexpr

© JPK 22

#4. Channel systems Model checking

Inference rules

true : am

at om c{x; :=expry;...;x, = expr,, } > exit

where oy = id, o; = Effect(assign(z;, expr,), Effect(a;—1,n)) for1 < ¢ < m

stmt; &% stmt| # exit
stmt;; stmt, £ stmt]; stmt,

stmt; = exit
stmt; ; stmt, <= stmt,

© JPK 23

#4. Channel systems

Model checking

stmt;

Inference ru

les

stmt; stmt

cond_cmd

—% stmt], #£ exit

loop

giNh:«

giNh:a

stmt;

stmt;

—= exit

stmt;; loop

loop

|00p —g1/\...\7gn

> exit

giNh:«

loop

© JPK

24

