© JPK

Simulation Preorder
Lecture #25 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

February 3, 2009

Model checking

Overview Lecture #25

= Simulation Order
e Simulation Equivalence
e Comparing Trace Equivalence, Bisimulation and Simulation

e Universal Fragment of CTL*

© JPK

Model checking

Simulation order

Let TS; = (.5;, Act;, —;, I;, AP, L;), i=1, 2, be transition systems.

A simulation for (TS, TSs) is a binary relation R C S; x S such that:
1. Vsy € I1dsy € Is. (81, 82) ER

2. for all (s1,s2) € R it holds:
(@) Li(s1) = La(s2)

(b) if s} € Post(sq) then there exists s/, € Post(sy) with (s},5s5) € R
1 2 1y <2

TS, <X TS, iff there exists a simulation R for (TS, TS,)

© JPK

Model checking

but not necessarily:

S1

R

So — S

Simulation order

can be completed to

can be completed to

© JPK

Model checking

Example

© JPK

Model checking

The use of simulations

e As a notion of correctness for refinement

— TS < TS whenever TS is obtained by deleting transitions from TS’
— e.g., nondeterminism is resolved by choosing one alternative

e AsS a notion of correctness for abstraction

— abstract from concrete values of certain program or control variables

— use instead abstract values or ignore their value completely

— used in e.g., software model checking of Cand Java

— formalised by an abstraction function f that maps s onto its abstraction f(s)

© JPK

Model checking

Abstraction function
e f:S — Sis an abstraction function if f(s) = f(s') = L(s) = L(s)
— S is a set of concrete states and S a set of abstract states, i.e. |§ | << |S]
e Abstraction functions are useful for:
— data abstraction: abstract from values of program or control variables
f : concrete data domain — abstract data domain
— predicate abstraction: use predicates over the program variables
f : state — valuations of the predicates
— localization reduction: partition program variables into visible and invisible

f : all variables — visible variables

© JPK

Model checking

Abstract transition system
For TS = (5, Act, —, I, AP, L) and abstraction function f : S — S let:

TSy = (S, Act, —¢,1r, AP, L¢), the abstraction of TS under f

where
o /
S— S
o — is defined by: —
! f(s) =5 £(5)

o Ir={f(s)|sel}

o L;(f(s))=L(s), forse S\ f(S), labeling is undefined

R ={(s, f(s))|se€S}isasimulation for (TS, TSy)

© JPK

Model checking

Example(s)

© JPK

Model checking

Simulation order on paths
Whenever we have:

S0 — S1 — S92 — S3 — S4......

R
to

this can be completed to
S9 — S1 — S22 — 83 — S4......
R R R R R
to — 1 — to — t3 — Tlg......
the proof of this fact is by induction on the length of the path

note that a finite path may be simulated by a prefix of an infinite path!

© JPK

Model checking

Simulation is a pre-order

< Is a preorder, i.e., reflexive and transitive

© JPK

10

Model checking

Overview Lecture #25

e Simulation Order
= Simulation Equivalence
e Comparing Trace Equivalence, Bisimulation and Simulation

e Universal Fragment of CTL*

© JPK

11

Model checking

Simulation equivalence

TS, and TS, are simulation equivalent, denoted TS ~ TS,
If TS <X TSs and TS, <X TSy

© JPK

12

Model checking

Simulation order on states
A simulation for TS = (S, Act, —, I, AP, L) isa binary relation R C Sx S

such that for all (s1, s2) € R:
1. L(Sl) = L(Sg)
2. if 51 € Post(s1) then there exists an s, € Post(s,) with (s7,s5) € R

s1 Is simulated by s», denoted by s; <15 s9,
if there exists a simulation R for TS with (s1,s2) € R

s1 =ts s2 Ifandonlyif TS; =< TS,

s1 ~1s So Mfandonlyif s =<is ssand sy, <15 sq

© JPK 13

Model checking

Simulation guotient transition system

For TS = (5, Act,—, I, AP, L) and simulation equivalence ~ C § x S let
TS/~= (8 {r},—',I'AP, L"), the quotient of TS under ~

where

o '=5/~= {[sl~|seS}tandI'={[s|]~|sel}

s 254

5= [5)=

e —’ is defined by:

o L'([s]l~) = L(s)

lemma: TS ~ TS/~ ; proof not straightforward!

© JPK 14

Model checking

Overview Lecture #25

e Simulation Order
e Simulation Equivalence
= Comparing Trace Equivalence, Bisimulation and Simulation

e Universal Fragment of CTL*

© JPK

15

Model checking

Trace, bisimulation and simulation equivalence

bisimulation equivalence

/ TS1 ~ TSy \

simulation equivalence trace equivalence
TS1 =~ TSo Traces(TS7) = Traces(TSy)

\ finite trace equiva|enc/

Traces g, (TSq) = Traces fin (TS9)

simulation order trace inclusion
TS1 X TSy Traces(TSy) C Traces(TS9)

\ finite trace inclusion /

Traces g, (TS1) C Tracesg, (TSa)

© JPK 16

Model checking

Similar but not bisimilar

(s){a} (t){a}
(52 (53)2 OF

saj{b} (s5){c} (ts){b} (t){c}

TSleft =~ TSright but TSleft 7(‘ TSright

© JPK

17

Model checking

Terminal states and determinism
For transition systems TS; and TS, over AP:

e If TS; has no terminal states:

TS; <X TSy implies Traces(TS;) C Traces(TS;)

o If TS; Is AP-deterministic:

TS, ~ TS, iff Traces(TS;) = Traces(TS;) iff TS; ~ TS,

e TS = (S,Act,—, I, AP, L) is AP-deterministic if:

1. for ACAP: |I N {s|L(s)=A} < 1,and
2. s s'and s % s and L(s") = L(s") implies s’ = s”

© JPK 18

Model checking

Overview Lecture #25

e Simulation Order
e Simulation Equivalence
e Comparing Trace Equivalence, Bisimulation and Simulation

= Universal Fragment of CTL*

© JPK

19

Model checking

Universal fragment of CTL *

VCTL" state-formulas are formed according to:
® ::= true ‘ false | a | —a ‘ d; A Dy | b, VvV Py | Vo

where a € AP and ¢ is a path-formula

VCTL" path-formulas are formed according to:

p = @ ‘ O ‘ ©1 N\ P2 ‘ ©1 V P2 ‘ 01 U @2 ‘ ©1 R s

where @ is a state-formula, and ¢, ¢, and ¢, are path-formulas

in VCTL, the only path operators are ()®, &, U &, and ®; R &,

© JPK 20

Model checking

Universal CTL * contains LTL

For every LTL formula there exists an equivalent VCTL"™ formula

© JPK

21

Model checking

Simulation order and VYCTL"”

Let TS be a finite transition system (without terminal states) and s, s’ states in TS.
The following statements are equivalent:
1) s =rs &
(2) for all VCTL*-formulas ®: s’ = ® implies s = ®
(3) for all VCTL-formulas ®: s’ |= ® implies s |= ®

proof is carried out in three steps: (1) = (2) = @) = (1)

© JPK 22

Model checking

Example

© JPK

23

Model checking

Existential fragment of CTL *

JCTL" state-formulas are formed according to:
® ::= true ‘ false | a | —a ‘ d; A Dy | b, VvV Py | Jp

where a € AP and ¢ is a path-formula

JCTL" path-formulas are formed according to:

p = @ ‘ O ‘ ©1 N\ P2 ‘ ©1 V P2 ‘ 01 U @2 ‘ ©1 R s

where @ is a state-formula, and ¢, ¢, and ¢, are path-formulas

in 4CTL, the only path operators are ()®, &, U &, and &, R &,

© JPK 24

Model checking

Simulation order and 3CTL"

Let TS be a finite transition system (without terminal states) and s, s’ states in TS.
The following statements are equivalent:
1) s =15 &
(2) for all ACTL*-formulas ®: s = ® implies s’ = ®
(3) for all ICTL-formulas ®: s = ® implies s’ |= ®

© JPK 25

Model checking

Overview implementation relations

bisimulation simulation trace
equivalence order equivalence
preservation of CTL® VCTL*/3CTL* LTL
temporal-logical CTL VCTL/ACTL (LT properties)
properties
checking PTIME PTIME PSPACE-
equivalence complete
graph PTIME PTIME —
minimization O(M log |S]) O(M-|S|)

© JPK

26

