
Model Checking Regular Safety Properties
Lecture #8 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 12, 2008

c© JPK

#8: Verifying Regular Safety Properties Model checking

Overview Lecture #8

⇒ Regular Safety Properties

• Verifying Regular Safety Properties

– Reduction to Invariant Checking
– Proof of Correctness
– The Algorithm

c© JPK 1

#8: Verifying Regular Safety Properties Model checking

Safety properties

• LT property Psafe over AP is a safety property if

– for all σ 6∈ Psafe there exists a finite prefix bσ of σ such that:

Psafe ∩
n

σ
′
∈

“

2
AP

”ω

| bσ ∈ pref(σ)
o

= ∅

• The set bp of bad prefixes for Psafe:

bp(Psafe) =
“

2AP
”∗

\ pref(Psafe)

• The set mbp of minimal bad prefixes for Psafe:

mbp(Psafe) = {σ ∈
“

2AP
”∗

| pref(σ) ∩ bp(Psafe) = {σ } }

c© JPK 2

#8: Verifying Regular Safety Properties Model checking

Regular safety properties

• Definition:

Safety property Psafe is regular if bp(Psafe) is a regular language

• Or, equivalently:

Safety property Psafe is regular if there exists

a finite automaton over the alphabet 2AP recognizing bp(Psafe)

c© JPK 3

#8: Verifying Regular Safety Properties Model checking

Refresh your memory: Finite automata

A nondeterministic finite automaton (NFA) A is a tuple (Q, Σ, δ, Q0, F) where:

• Q is a finite set of states

• Σ is an alphabet

• δ : Q × Σ → 2Q is a transition function

• Q0 ⊆ Q a set of initial states

• F ⊆ Q is a set of accept (or: final) states

q0 q1 q2

A

B

B

A

B

c© JPK 4

#8: Verifying Regular Safety Properties Model checking

Language of an automaton
• NFA A = (Q, Σ, δ,Q0, F) and word w = A1 . . . An ∈ Σ∗

• A run for w in A is a finite sequence q0 q1 . . . qn such that:

– q0 ∈ Q0 and qi
Ai+1−−−−→ qi+1 for all 0 6 i < n

• Run q0 q1 . . . qn is accepting if qn ∈ F

• w ∈ Σ∗ is accepted by A if there exists an accepting run for w

• The accepted language of A:

L(A) =
{

w ∈ Σ∗ | there exists an accepting run for w in A
}

• NFA A and A′ are equivalent if L(A) = L(A′)

c© JPK 5

#8: Verifying Regular Safety Properties Model checking

Facts about finite automata

• They are as expressive as regular languages

• They are closed under ∩ and complementation

– NFA A ⊗ B (= cross product) accepts L(A) ∩ L(B)

– Total DFA A (= swap all accept and normal states) accepts L(A) = Σ∗ \L(A)

• They are closed under determinization (= removal of choice)

– although at an exponential cost.....

• L(A) = ∅? = check for a reachable accept state in A

– this can be done using a simple depth-first search

• For regular language L there is a unique minimal DFA accepting L

c© JPK 6

#8: Verifying Regular Safety Properties Model checking

Regular safety properties

• Definition:

Safety property Psafe is regular if bp(Psafe) is a regular language

• Or, equivalently:

Safety property Psafe is regular if there exists

an NFA A over the alphabet 2AP with L(A) = bp(Psafe)

c© JPK 7

#8: Verifying Regular Safety Properties Model checking

Example regular safety properties

• Every invariant (over AP) is a regular safety property

– traces of bad prefixes are of the form Φ∗(¬Φ)true∗

– where Φ is the invariant condition
– symbol Φ stands for any A ⊆ AP with A |= Φ

• An example regular property which is not an invariant:

“a red light is immediately preceded by a yellow light”

• An example non-regular safety property:

“The number of inserted coins is at least the number of dispensed drinks”

c© JPK 8

#8: Verifying Regular Safety Properties Model checking

Details

c© JPK 9

#8: Verifying Regular Safety Properties Model checking

Property

Safety property Psafe is regular

if and only if

mbp(Psafe) is a regular language

c© JPK 10

#8: Verifying Regular Safety Properties Model checking

Property

Safety property Psafe is regular

if and only if

mbp(Psafe) is a regular language

How to check whether a finite transition system
satisfies a regular safety property?

c© JPK 11

#8: Verifying Regular Safety Properties Model checking

Peterson’s banking system

Person Left behaves as follows:

while true {

.

rq : b1, x = true, 2;

wt : wait until(x == 1 || ¬ b2) {

cs : . . . @accountL . . .}

b1 = false;

.

}

Person Right behaves as follows:

while true {

.

rq : b2, x = true, 1;

wt : wait until(x == 2 || ¬ b1) {

cs : . . . @accountR . . .}

b2 = false;

.

}

c© JPK 12

#8: Verifying Regular Safety Properties Model checking

Is the banking system safe?
x == 1

b1 = 1

b1 = 0

b2 = 0

x = 2

b1 = 1 b2 = 1

x = 1

b2 = 1

x = 1

b1 = 1

x = 2

b2 = 0
b1 = 0

x = 1

b1 = 1

x = 2

b2 = 1

x == 1 x == 2

x == 2

Can we guarantee that only one person at a time has access to the bank account?

“always ¬ (@accountL ∧ @accountR)”

c© JPK 13

#8: Verifying Regular Safety Properties Model checking

Is the banking system safe?

• Safe = at most one person may have access to the account

• Unsafe: two have access to the account simultaneously

– unsafe behaviour can be characterized by bad prefix
– alternatively (in this case) by the finite automaton:

@accountL ∧@accountR

¬ (@accountL
∧@accountR)

• Checking safety: Traces(TSPet) ∩ BadPref(Psafe) = ∅?

– intersection, complementation and emptiness of languages . . .

c© JPK 14

#8: Verifying Regular Safety Properties Model checking

Problem statement

Let

• Psafe be a regular safety property over AP

• A be an NFA recognizing the bad prefixes of Psafe

– assume that ε /∈ L(A)

⇒ otherwise all finite words over 2AP are bad prefixes and Psafe = ∅

• TS be a finite transition system (over AP) without terminal states

How to establish whether TS |= Psafe?

c© JPK 15

#8: Verifying Regular Safety Properties Model checking

Basic idea of the algorithm

TS |= Psafe if and only if Tracesfin(TS) ∩ bp(Psafe) = ∅

if and only if Tracesfin(TS) ∩ L(A) = ∅

if and only if TS ⊗A |= “always” Φ

But this amounts to invariant checking on TS ⊗ A

⇒ checking regular safety properties can be done by depth-first search!

c© JPK 16

#8: Verifying Regular Safety Properties Model checking

Synchronous product (revisited)

For transition system TS = (S, Act,→, I, AP, L) without terminal states
and A = (Q, Σ, δ,Q0, F) an NFA with Σ = 2AP and Q0 ∩ F = ∅, let:

TS ⊗A = (S′, Act,→ ′, I ′, AP′
, L′) where

• S′ = S × Q, AP′ = Q and L′(〈s, q〉) = { q }

• → ′ is the smallest relation defined by:
s

α−−→ t ∧ q
L(t)

−−−→ p

〈s, q〉 α−−→′ 〈t, p〉

• I ′ = { 〈s0, q〉 | s0 ∈ I ∧ ∃q0 ∈ Q0. q0
L(s0)−−−−→ q }

without loss of generality it may be assumed that TS ⊗ A has no terminal states

c© JPK 17

#8: Verifying Regular Safety Properties Model checking

Example product

sr { red }

sy { yellow } sry

∅

sg

∅

q0

q1 qF

red

yellow ∧ ¬red

¬yellow

¬red ∧ ¬yellow

〈sg, q0〉 〈sry, q0〉

〈sy, q1〉 〈sr, q0〉

yellow

c© JPK 18

#8: Verifying Regular Safety Properties Model checking

A note on terminal states

• Although TS has no terminal state TS ⊗A may have one

• This can only occur if δ(q,A) = ∅ for some A ⊆ AP

• Let NFA A with some reachable state q with δ(q,A) = ∅

• Obtain an equivalent NFA A′ as follows:

– introduce new state qtrap 6∈ Q

– if δ(q, A) = ∅ let δ′(q, A) = { qtrap }

– set δ′(qtrap, A) = { qtrap } for all A ⊆ AP
– keep all other transitions that are present in A

⇒ Assume that TS ⊗A has no terminal states

c© JPK 19

#8: Verifying Regular Safety Properties Model checking

Verification of regular safety properties

Let TS over AP, NFA A, and P a regular safety property with L(A) = bp(P)

The following statements are equivalent:

(a) TS |= P

(b) Tracesfin(TS) ∩ L(A) = ∅

(c) TS ⊗A |= Pinv(A) =
∧

q∈F ¬ q

c© JPK 20

#8: Verifying Regular Safety Properties Model checking

Proof

c© JPK 21

#8: Verifying Regular Safety Properties Model checking

Counterexamples

For each initial path fragment 〈s0, q1〉 . . . 〈sn, qn+1〉 of TS ⊗ A:

q1, . . . , qn 6∈ F and qn+1 ∈ F ⇒ trace(s0 s1 . . . sn)
| {z }

bad prefix for Psafe

∈ L(A)

c© JPK 22

#8: Verifying Regular Safety Properties Model checking

Verification algorithm

Input: finite transition system TS and regular safety property Psafe

Output: true if TS |= Psafe. Otherwise false plus a counterexample for Psafe.

Let NFA A (with accept states F) be such that L(A) = bp(Psafe);
Construct the product transition system TS ⊗ A;
Check the invariant Pinv(A) with proposition ¬F =

V

q∈F ¬q on TS ⊗ A

if TS ⊗ A |= Pinv(A) then
return true

else
Determine initial path fragment 〈s0, q1〉 . . . 〈sn, qn+1〉 of TS ⊗ A with qn+1 ∈ F

return (false, s0 s1 . . . sn)

fi

c© JPK 23

#8: Verifying Regular Safety Properties Model checking

Example

c© JPK 24

#8: Verifying Regular Safety Properties Model checking

Time complexity

The time and space complexity of checking TS |= Psafe is in:

O(|TS| · |A|)

where A is an NFA with L(A) = mbp(Psafe)

The size of NFA A, denoted |A|, is the number of states and transitions in A:

|A| = |Q| +
X

q∈Q

X

A∈Σ

| δ(q, A) |

c© JPK 25

