
The State Explosion Problem
Lecture #5a of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

November 4, 2008

c© JPK

#5a: The state explosion problem Model checking

The state explosion problem

• Time-complexity of model-checking algorithms

– depends on the property to be checked
– and on the size of the transition system
– that models the system to be checked

• Size of a transition system

– |TS| = |S| + | −→ |

• The size of transition systems underlying

– program graphs is exponential in number of program variables
– concurrent systems is exponential in number of components
– channel systems is exponential in number of channels

c© JPK 1

#5a: The state explosion problem Model checking

Sequential programs

• The # states of a program graph is:

∣∣#program locations
∣∣ · ∏

variable x

| dom(x) |

⇒ number of states grows exponentially in the number of program variables
– N variables with k possible values each yields kN states
– this is called the state explosion problem

• A program with 10 locations, 3 bools, 5 integers (in range 0 . . . 9):

10 · 23 · 105 = 800, 000 states

• Adding a single 50-positions bit-array yields 800, 000·250 states

c© JPK 2

#5a: The state explosion problem Model checking

Concurrent programs

• The # states of P ≡ P1 || . . . || Pn is maximally:

#states of P1 × . . . × #states of Pn

⇒ # states grows exponentially with the number of components

• The composition of N components of size k each yields kN states

• This is called the state-space explosion problem

c© JPK 3

#5a: The state explosion problem Model checking

Dijkstra’s mutual exclusion program

�0 �1 �2

�3�4

�5

b[i] := 0 k �= i :c[i] := 1

¬ b[k]

b[k] :k := i

l = N

b[i] := 1

c[i] := 1

l = i ∨ c[l] :l++

k = i :〈c[i] := 0, l := 0〉l �= i ∧ ¬ c[l]

• two bit-arrays of size N

• global variable k

– with value in 1, . . . , N

• local variable l

– with value in 1, . . . , N

• 6 program locations per process

⇒ totally 22N · N · (6N)N states

c© JPK 4

#5a: The state explosion problem Model checking

Channel systems

• Asynchronous communication of processes via channels

– each channel c has a bounded capacity cap(c)

– if a channel has capacity 0, we obtain handshaking

• # states of system with N components and K channels is maximally:

N∏
i=1

(∣∣#program locations
∣∣ ∏

variable x

| dom(x)|
)

·
K∏

j=1

|dom(cj)|cap(cj)

this is the underlying structure of Promela

c© JPK 5

#5a: The state explosion problem Model checking

The alternating bit protocol

!

snd msg(0) st tmr(0) wait(0) chk ack(0)

snd msg(1)st tmr(1)wait(1)chk ack(1)

c!〈m, 0〉

lost

tmr on

d?x

timeout

x = 1

x = 0 :
tmr off

c!〈m, 1〉

lost

tmr on

timeout

d?x

x = 0

x = 1 :
tmr off

channel capacity 10, and datums are bits, yields 2·8·6·410·210 = 3·235 ≈ 1011 states

c© JPK 6

#5a: The state explosion problem Model checking

Summary of Chapter 2

• Transition systems

– are a fundamental model for modeling software and hardware systems

• Executions

– are alternating sequences of states and actions that cannot be prolonged

• Interleaving

– execution of independent concurrent processes by nondeterminism

• Shared variables

– parallel composition on transition systems is not adequate
– instead, parallel composition of program graphs is used

c© JPK 7

#5a: The state explosion problem Model checking

Summary of Chapter 2

• Handshaking on a set H of actions

– execute actions in H simultaneously and those not in H autonomously

• Channel systems = program graphs + FIFO communication channels

– handshaking (cap = 0) or asynchronous communication (cap ¿ 0)
– semantical model of nanoPromela modeling language

• State explosion problem

– size of transition system is exponential in number of variables, concurrent
components, and channels

c© JPK 8

