
Fairness
Lecture #7 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

November 11, 2008

c© JPK

#7: Fairness Model checking

Overview Lecture #7

⇒ The Importance of Fairness

• Fairness Constraints

• Fairness Assumptions

• Fairness and Safety Properties

c© JPK 1

#7: Fairness Model checking

Does this program always terminate?

Inc |||Reset

where

proc Inc = while 〈x > 0 do x := x + 1 〉 od

proc Reset = x := −1

x is a shared integer variable that initially has value 0

c© JPK 2

#7: Fairness Model checking

Is it possible to starve?

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

c© JPK 3

#7: Fairness Model checking

Process two starves

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

Is it fair that process two has infinitely many possibilities
to enter the critical section, but never enters it?

c© JPK 4

#7: Fairness Model checking

Process two starves

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

Is it fair that process two has infinitely many possibilities
to enter the critical section, but only enters it finitely often?

c© JPK 5

#7: Fairness Model checking

Fairness

• Starvation freedom is often considered under process fairness

⇒ there is a fair scheduling of the execution of processes

• Fairness is typically needed to prove liveness

– not for safety properties!
– to prove some form of progress, progress needs to be possible

• Fairness is concerned with a fair resolution of nondeterminism

– such that it is not biased to consistently ignore a possible option

• Problem: liveness properties constrain infinite behaviours

– but some traces—that are unfair—refute the liveness property

c© JPK 6

#7: Fairness Model checking

Fairness constraints

• What is wrong with our examples? Nothing!

– interleaving: not realistic as in no processor is infinitely faster than another
– semaphore-based mutual exclusion: level of abstraction

• Rule out “unrealistic” exectuions by imposing fairness constraints

– what to rule out? ⇒ different kinds of fairness constraints

• “A process gets its turn infinitely often”

– always unconditional fairness
– if it is enabled infinitely often strong fairness
– if it is continuously enabled from some point on weak fairness

c© JPK 7

#7: Fairness Model checking

Fairness

This program terminates under unconditional (process) fairness:

proc Inc = while 〈x > 0 do x := x + 1 〉 od

proc Reset = x := −1

x is a shared integer variable that initially has value 0

c© JPK 8

#7: Fairness Model checking

Overview Lecture #7

• The Importance of Fairness

⇒ Fairness Constraints

• Fairness Assumptions

• Fairness and Safety Properties

c© JPK 9

#7: Fairness Model checking

Fairness constraints

• Unconditional fairness

an activity is executed infinitely often

• Strong fairness

if an activity is infinitely often enabled (not necessarily always!)
then it has to be executed infinitely often

• Weak fairness

if an activity is continuously enabled (no temporary disabling!)
then it has to be executed infinitely often

we will use actions to distinguish fair and unfair behaviours

c© JPK 10

#7: Fairness Model checking

Fairness definition
For TS = (S, Act,→, I, AP, L) without terminal states, A ⊆ Act,

and infinite execution fragment ρ = s0
α0−−→ s1

α1−−→ . . . of TS:

1. ρ is unconditionally A-fair whenever: true =⇒ ∀k > 0. ∃j > k. αj ∈ A
| {z }

infinitely often A is taken

2. ρ is strongly A-fair whenever:

(∀k > 0. ∃j > k. Act(sj) ∩ A 6= ∅)
| {z }

infinitely often A is enabled

=⇒ ∀k > 0. ∃j > k. αj ∈ A
| {z }

infinitely often A is taken

3. ρ is weakly A-fair whenever:

(∃k > 0. ∀j > k. Act(sj) ∩ A 6= ∅)
| {z }

A is eventually always enabled

=⇒ ∀k > 0. ∃j > k. αj ∈ A
| {z }

infinitely often A is taken

where Act(s) =
n

α ∈ Act | ∃s′ ∈ S. s α−−→ s′
o

c© JPK 11

#7: Fairness Model checking

Example (un)fair executions

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

c© JPK 12

#7: Fairness Model checking

Which fairness notion to use?

• Fairness constraints aim to rule out “unreasonable” runs

• Too strong? ⇒ relevant computations ruled out

verification yields:
– “false”: error found
– “true”: don’t know as some relevant execution may refute it

• Too weak? ⇒ too many computations considered

verification yields:
– “true”: property holds
– “false”: don’t know, as refutation maybe due to some unreasonable run

c© JPK 13

#7: Fairness Model checking

Relation between fairness constraints

unconditional A-fairness =⇒ strong A-fairness =⇒ weak A-fairness

c© JPK 14

#7: Fairness Model checking

Overview Lecture #7

• The Importance of Fairness

• Fairness Constraints

⇒ Fairness Assumptions

• Fairness and Safety Properties

c© JPK 15

#7: Fairness Model checking

Fairness assumptions

• Fairness constraints impose a requirement on any α ∈ A

• In practice: different constraints on different action sets needed

• This is realised by fairness assumptions

c© JPK 16

#7: Fairness Model checking

Fairness assumptions

• A fairness assumption for Act is a triple

F = (Fucond ,Fstrong ,Fweak)

with Fucond ,Fstrong ,Fweak ⊆ 2Act

• Execution ρ is F-fair if:

– it is unconditionally A-fair for all A ∈ Fucond , and
– it is strongly A-fair for all A ∈ Fstrong , and
– it is weakly A-fair for all A ∈ Fweak

fairness assumption (∅,F ′, ∅) denotes strong fairness; (∅, ∅,F ′) weak, etc.

c© JPK 17

#7: Fairness Model checking

Fairness for mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

F = (∅,
n

{ enter1, enter2 }
o

| {z }
Fstrong

, ∅)

c© JPK 18

#7: Fairness Model checking

Fairness for mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

F ′ = (∅,
n

{ enter1 }, { enter2 }
o

| {z }
Fstrong

, ∅)

c© JPK 19

#7: Fairness Model checking

Fairness for mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

F ′′ =

„

∅,
n

{ enter1 }, { enter2 }
o

| {z }
Fstrong

,
n

{ req1 }, { req2 }
o

| {z }
Fweak

«

in any F ′′-fair execution each process infinitely often requests access

c© JPK 20

#7: Fairness Model checking

Fair paths and traces

• Path s0−→ s1−→ s2 . . . is F-fair if

– there exists an F -fair execution s0
α1−−→ s1

α2−−→ s2 . . .

– FairPathsF(s) denotes the set of F -fair paths that start in s

– FairPathsF(TS) =
S

s∈I FairPathsF(s)

• Trace σ is F-fair if there exists an F-fair execution ρ with trace(ρ) = σ

– FairTracesF(s) = trace(FairPathsF(s))

– FairTracesF(TS) = trace(FairPathsF(TS))

these notions are only defined for infinite paths and traces; why?

c© JPK 21

#7: Fairness Model checking

Fair satisfaction

• TS satisfies LT-property P :

TS |= P if and only if Traces(TS) ⊆ P

– TS satisfies the LT property P if all its observable behaviors are admissible

• TS fairly satisfies LT-property P wrt. fairness assumption F :

TS |=F P if and only if FairTracesF(TS) ⊆ P

– if all paths in TS are F -fair, then TS |=F P if and only if TS |= P

– if some path in TS is not F -fair, then possibly TS |=F P but TS 6|= P

c© JPK 22

#7: Fairness Model checking

Fairness for mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

TS 6|= “every process enters its critical section infinitely often”

and TS 6|=F′ “every . . . often”

but TS |=F′′ “every . . . often”

c© JPK 23

#7: Fairness Model checking

Overview Lecture #7

• The Importance of Fairness

• Fairness Constraints

• Fairness Assumptions

⇒ Fairness and Safety Properties

c© JPK 24

#7: Fairness Model checking

Realizable fairness

For TS with set of actions Act and fairness assumption F for Act:

F is realizable for TS if for any s ∈ Reach(TS): FairPathsF(s) 6= ∅

every initial finite execution fragment of TS can be completed to a fair execution

c© JPK 25

#7: Fairness Model checking

The suffix property

If infinite execution fragment ρ is fair

then all suffixes of ρ are fair.

If infinite execution fragment ρ is fair

then any finite execution fragment continued with ρ is fair.

s′0
β1−−→ s′1

β2−−→ . . .
βn−−→ s′n︸ ︷︷ ︸

arbitrary starting fragment

= s0
α1−−→ s1

α2−−→ s2
α3−−→ . . .

︸ ︷︷ ︸

fair continuation ρ

c© JPK 26

#7: Fairness Model checking

Realizable fairness and safety

For TS and safety property Psafe (both over AP)

and F a realizable fairness assumption for TS:

TS |= Psafe if and only if TS |=F Psafe

Safety properties are thus preserved by realizable fairness assumptions

c© JPK 27

#7: Fairness Model checking

Non-realizable fairness may harm safety properties

c© JPK 28

#7: Fairness Model checking

Summary of fairness

• Fairness constraints rule out unrealistic executions

– i.e., constraints on the actions that occur along infinite executions
– important for the verification of liveness properties

• Unconditional, strong, and weak fairness constraints

– unconditional ⇒ strong fair ⇒ weak fair

• Fairness assumptions allow distinct constraints on distinct action sets

• (Realizable) fairness assumptions are irrelevant for safety properties

c© JPK 29

