© JPK

Concurrency
Lecture #3 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling and Verification

E-mail: kat oen@s. r wt h- aachen. de

October 28, 2008

#3: Concurrency

Model checking

Overview Lecture #3

= Concurrency

— The interleaving paradigm

e Communication principles

— Shared variable “communication”
— Handshaking
— Synchronous communication

e Channel systems

e The state-space explosion problem

© JPK

#3: Concurrency Model checking

Concurrent systems

e Transition systems
— suited for modeling sequential data-dependent systems
— and for modeling sequential hardware circuits
e How about concurrent systems?
— multi-threading
— distributed algorithms and communication protocols
e Can we model:

— multi-threading with shared variables?
— synchronous communication?
— synchronous composition of hardware?

© JPK 2

#3: Concurrency Model checking

Interleaving

e Abstract from decomposition of system in components

e Actions of independent components are merged or “interleaved”

— a single processor is available
— on which the actions of the processes are interlocked

e NO assumptions are made on the order of processes

— possible orders for non-terminating independent processes P and Q:

P Q P Q P Q@ Q@ Q P
P P Q P P Q P P Q
P Q P P Q P P P Q

— assumption: there is a scheduler with an a priori unknown strategy

© JPK

#3: Concurrency Model checking

Interleaving

e Justification for interleaving:

the effect of concurrently executed, independent actions o and 3 equals
the effect when o and 3 are successively executed in arbitrary order

e Symbolically this is stated as:

Effect(a ||| 3,n) = Effect((a; 8) + (85 a),n)

— ||| stands for the (binary) interleaving operator
— “” stands for sequential execution, and “+” for non-deterministic choice

© JPK

#3: Concurrency Model checking

Interleaving

c=atlllly=y—2

© JPK

#3: Concurrency Model checking

Interleaving of transition systems

Let TS; = (95;,Act;,, —;, I;,AP;, L;) i=1, 2, be two transition systems

Transition system
TS, ’H TS, = (Sl X SQ, Act; & ACtQ, —, I; X IQ, AP, W APQ, L)

where L((s1,s2)) = Li1(s1) U Lo(s2) and the transition relation — is
defined by the rules:

« / e’ /
S1 —1 51 S92 —/2 S9

and
<81,82> i><S/1,82> <81782> L <81,S/2>

© JPK 6

#3: Concurrency Model checking

What are program graphs?

A program graph PG over a set Var of typed variables is a tuple
(Loc, Act, Effect, —, Locg, g9) where

e Loc is a set of locations with initial locations Locy C Loc

e Effect: Act x Eval(Var) — Eval(Var) is the effect function

e — C Locx Cond(Var) xAct x Loc, transition relation

v
Boolean conditions overVar

e go € Cond(Var) is the initial condition.

© JPK

#3: Concurrency Model checking

Beverage vending machine

e Loc = { start, select } with Locy = { start }
o Act = { bget, sget, coin, ret_coin, refill }

e Var = { nsprite, nbeer } with domain {0,1,..., mazx }

Effect(coin, n) n
Effect(ret_coin,m) = n

e Effect(sget, n) = n|nsprite := nsprite—1]
Effect(bget, n) = mn[nbeer := nbeer—1]
Effect(refill, n) = [nsprite := max, nbeer := max]

e go = (nsprite = maxr N nbeer = mazx)

© JPK

#3: Concurrency Model checking

From program graphs to transition systems

e Basic strategy: unfolding

— state = location (current control) ¢ + data valuation n
— initial state = initial location satisfying the initial condition g

e Propositions and labeling

— propositions: “at " and “x € D” for D C dom(x)
— (¢, n) is labeled with “at ¢” and all conditions that hold in 7

o if (2%, ¢" and g holds in 7 then (¢, n) -2 (¢', Effect(a, n))

© JPK 9

#3: Concurrency Model checking

Transition systems for program graphs
The transition system TS(PG) of the program graph

PG = (Loc, Act, Effect, —, Locy, go)
over a set Var of variables is the tuple (S, Act,—, I, AP, L) where
e S =Loc x Eval(Var)

(L0 AN nEg

— C S x Act x S is defined by the rule:
* o= A Y (0. 1) 5 (7', Effect(a, 7))

o I ={({l,n)|¢eLocy,n =go}

e AP =LocuCond(Var)and L({¢/,n)) = {{} U{g € Cond(Var) | n = g}.

© JPK 10

#3: Concurrency Model checking

Interleaving of program graphs

For program graphs PG, (on Var,) and PG, (on Vars) without shared
variables, i.e., Var; N Var, = &,

TS(PGy) ||| TS(PG:)

faithfully describes the concurrent behavior of PG, and PG,

what if they have variables in common?

© JPK 11

#3: Concurrency

Model checking

Shared variable communication

=2z ||| g:=x+1 withinitially z = 3
action o action s

|

r=3 r=3 O‘/@:zfﬁ, x:@\ﬂ

a | 3 — @:6, x:@ @:3, :U:@

=06 rx=4 o =06, r=4 o

(x=6, x=4) is an inconsistent state!

= no faithful model of the concurrent execution of o and 3

© JPK

12

#3: Concurrency Model checking

Modeling concurrent program graphs
e If PG; and PG, share no variables:
TS(PGy) ||| TS(PGy)
— interleaving of transition systems
e If PG; and PG, share some variables:
TS(PG, ||| PGy)
— interleaving of program graphs

e In general: TS(PG;) ||| TS(PGs) # TS(PG, ||| PG»)

© JPK 13

#3: Concurrency Model checking

Interleaving of program graphs

Let PG, = (Loc,, Act;, Effect;, —;, Locy 4, go;) over variables Var;.

Program graph PG, ||| PG, over Var, U Var, is defined by:
(Locy x Locy, Act; W Acty, Effect, —, Locy 1 x LoCq 2, 90,1 A go.2)

where — is defined by the inference rules:

— and —
(01, La) —F= (07, 4s) (1, La) —F= (0, 05)

and Effect(«,n) = Effect;(a,n) if a € Act;.

© JPK 14

#3: Concurrency

Model checking

Example

=2z ||| a:=2x+1 withinitially z =3
action « action 3

note that TS(PG,) ||| TS(PG2) # TS(PG; ||| PGs)

© JPK

15

#3: Concurrency Model checking

On atomicity

r=c+Ly:=2zx+1z:=ydivae ||| x:=0
non-atomic

Possible execution fragment:

(2= 11) B=2FL, (g = 12) =200, (0 = 19) =0, (p =) 22T

(r=x+Liy:=2x+1;2:=ydivz) [|| z:=0

hd .
atomic

Either the left process or the right process is completed first:

(= 11) Z=2F1, (3 = 19) L2200 — 12) 22U, = 12) == (g = 0)

© JPK 16

#3: Concurrency Model checking

Peterson’s mutual exclusion algorithm

P, loop forever
(* non-critical actions *)
(by :=true; = := 2); (* request *)
waituntil (x =1 VvV —by)
do critical section od
b, := false (* release *)
(* non-critical actions *)

end loop

b; Is true if and only if process P; is waiting or in critical section
if both processes want to enter their critical section, x decides who gets access

© JPK 17

#3: Concurrency Model checking

Banking system

Person Left behaves as follows: Person Right behaves as follows:
while true { while true {
nc : (b1, z = true, 2;) nc : (by, x = true, 1;)
wait until(x ==1 || - b2) { : wait until(gj == 2 || — bl) {
cs : ... @account . . .} cs : ... @account. ..}
b1 = false; by = false;
} }

Can we guarantee that only one person at a time has access to the bank account?

© JPK 18

#3: Concurrency

Model checking

Program graph representation

© JPK

19

#3: Concurrency Model checking

Is the banking system safe?

Manually inspect whether two may have access to the account simultaneously:No

© JPK 20

#3: Concurrency

Model checking

Person Left behaves as follows:

nc:

rq :

CS ¢

while true {
xr = 2
b1 = true;

wait until(x == 1|| = bg) {
... @account. ..}
b, = false;

Banking system with non-atomic assignment

Person Right behaves as follows:

while true {
nc : xr =1,
rq : bo = true;

wait until(z == 2|| =b1) {
cs : ...@account. ..}
by = false;

© JPK

21

#3: Concurrency

Model checking

(neq,
(necy,
(rq1,
(wtq,
(csq,
(csq,

(csq,

On atomicity again
Assume that the location inbetween the assignments x := ... and b; :=
true in program graph PG,; is called rg;. Possible state sequence:

ncy,

rqz,
rq2,
rqa,

rqa,

U,?tg y

CSo,

b, = false, = false)
b, = false, = false)
b, = false, = false)
by = true, = false)
by = true, = false)

by =true, by = true)

by = true, by = true)!

violation of the mutual exclusion property

© JPK

22

#3: Concurrency Model checking

Parallelism and handshaking

e Concurrent processes run truly in parallel
e TO obtain cooperation, some interaction mechanism is needed

e If processes are distributed there is no shared memory

= Message passing

— synchronous message passing (= handshaking)
— asynchronous message passing (= channel communication)

© JPK 23

#3: Concurrency Model checking

Handshaking

e Concurrent processes interact by synchronous message passing

— processes execute synchronized actions together

— that is, in interaction both processes need to participate at the same time
— the interacting processes “shake hands”

e Abstract from information that is exchanged

e H Is a set of handshake actions

— actions outside H are independent and are interleaved
— actions in H need to be synchronized

© JPK 24

#3: Concurrency Model checking

Handshaking

Let TS, = (SZ',ACti, —4, IZ',APi, Lz), 1=1, 2 and H C Act; N Acts

TS, HH TS, = (Sl X SQ,ACtl UACtQ, —>,11 X IQ,APl L‘UAPQ,L)

where L((s1,s2)) = L1(s1) U La(s2) and with — defined by:

o i — | 27 72% interleaving for o & H
51,82) — (s],52 51,82) — (51,5
1 2

S1 Ll Sll A\ S92 i>2 8/2
(81,82) — (s7,53)

note that TSy || TS2 = TSy ||y TSy but (TS [|gy TS2) [lm, TS3 # TS1 gy (TS2 [, TS3)

handshaking for o« € H

© JPK 25

#3: Concurrency Model checking

A booking system

store scan prt_.cmd store print prt_.cmd

BCR || BP || Printer

|| is a shorthand for ||z with H = Act; N Act,

© JPK 26

#3: Concurrency

Model checking

The parallel composition

© JPK

27

#3: Concurrency Model checking

Pairwise handshaking

T81H . HTSn for Hi,j = Act; N ACtj with Hi,j NAct, = @ for k §é {Z,j}

State space of TS,|| ... [|TS, is the Cartesian product of those of TS;
o fora € Act; \ (U Hi,j) and 0 < i < n:
0<g<n
i)
si 25 s,
(815 -y 8iyennySn) = (S1,..., 85 ...5,)

o fora e H;;and 0 <t < 5 < n:

oo, ! A R
Si i S SJ iS5

(S1y ey SiyervySjyennySp) — <81,...,S;,...,S;,...,Sn>

© JPK 28

#3: Concurrency Model checking

Synchronous parallelism

LetTS; = (S;, Act, —;, I;, AP;, L;) and Act x Act — Act, («a,0) — axf

TSI ® TSy = (Sl X So,Act, —, I; x I, AP; W& APQ,L)

with L as defined before and — is defined by the following rule:

/ /
S1 i>181 /N\ S92 i>282

<817 82> Oé_*5> <8,17 8l2>

typically used for synchronous hardware circuits, cf. next example

© JPK 29

#3: Concurrency

Model checking

© JPK

30

