Model Checking Reqular Safety Properties
Lecture #8 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

November 12, 2008

© JPK

#8: Verifying Regular Safety Properties Model checking

Overview Lecture #8

= Regqular Safety Properties

e Verifying Regular Safety Properties

— Reduction to Invariant Checking
— Proof of Correctness
— The Algorithm

© JPK 1

#8: Verifying Regular Safety Properties Model checking

Safety properties

o LT property P, over AP is a safety property If

— forall o & P, there exists a finite prefix & of ¢ such that:
Psafe M {0', c (2AP>w | o€ pFEf(O')} = U
e The set bp of bad prefixes for Pi,y.:

bp(Psafe) — (2AP>* \ pref(Psafe)

e The set mbp of minimal bad prefixes for Py.:

mbp(Puye) = {o € (2°7) | pref(o) M bp(Pus) = {0} }

© JPK

#8: Verifying Regular Safety Properties Model checking

Reqgular safety properties

e Definition:

Safety property P, is regular if bp(Py,) is a regular language

e Or, equivalently:

Safety property P Is regular if there exists

a finite automaton over the alphabet 24 recognizing bp(Pyqs.)

© JPK

#8: Verifying Regular Safety Properties Model checking

Refresh your memory: Finite automata

A nondeterministic finite automaton (NFA) A is a tuple (Q, X, d, Qo, F') where:

e () Is a finite set of states

e X is an alphabet A A

. " . B
e §:(Q x ¥ — 29 is atransition function a0 ‘ ‘h

e (Jy C @ a set of initial states

e I C ()is asetof accept (or: final) states

© JPK 4

#8: Verifying Regular Safety Properties Model checking

Language of an automaton
e NFA A= (Q,3,),Qo, F)andwordw =A;... A, € ¥*

e Arun forwin A is a finite sequence gy q; ... g, such that:

A.
_ qoeQoandqi—%qi+1f0ra”0<i<n

e Rungyq; ... g, 1S accepting if ¢,, € F
e W € X" is accepted by A if there exists an accepting run for w

e The accepted language of A:

L(A) = {w € X* | there exists an accepting run for win A }

e NFA A and A’ are equivalent if £L(A) = L(A)

© JPK

#

o

: Verifying Regular Safety Properties Model checking

Facts about finite automata
e They are as expressive as regular languages

e They are closed under N and complementation

— NFA A ® B (= cross product) accepts L(A) N L(B)
— Total DFA A (= swap all accept and normal states) accepts L(A) = X7\ L(A)

e They are closed under determinization (= removal of choice)

— although at an exponential cost.....

e L(A) = 27? = check for a reachable accept state in A

— this can be done using a simple depth-first search

e For regular language L there is a unique minimal DFA accepting £

© JPK 6

#8: Verifying Regular Safety Properties Model checking

Reqgular safety properties

e Definition:

Safety property P, is regular if bp(Py,) is a regular language

e Or, equivalently:

Safety property P Is regular if there exists
an NFA A over the alphabet 247 with £(A) = bp(Py,se)

© JPK

#8: Verifying Regular Safety Properties Model checking

Example reqgular safety properties

e Every invariant (over AP) is a regular safety property

— traces of bad prefixes are of the form &*(—®)true”
— where & is the invariant condition
— symbol & stands forany A C AP with A = &

e An example regular property which is not an invariant:

“a red light is immediately preceded by a yellow light”

e An example non-regular safety property:

“The number of inserted coins is at least the number of dispensed drinks”

© JPK 8

#8: Verifying Regular Safety Properties Model checking

Detalls

© JPK

#8: Verifying Regular Safety Properties

Model checking

Property

Safety property Pk, IS regular
if and only if

mbp(Ps.s.) IS a regular language

© JPK

10

#8: Verifying Regular Safety Properties

Model checking

Property

Safety property Pk, IS regular
if and only if

mbp(Ps,..) is a regular language

How to check whether a finite transition system
satisfies a regular safety property?

© JPK

11

#8: Verifying Regular Safety Properties

Model checking

Peterson’s banking system

Person Left behaves as follows:

while true {
rq : b1, x = true, 2;
wait until(z == 1|| = b2) {
cs : ... @accounty, . . .}

b1 = false;

Person Right behaves as follows:

rq .

CS ¢

while true {
ba, x = true, 1;
wait until(x == 2 || =b1) {
... @accountg ...}
by = false;

© JPK

12

#8: Verifying Regular Safety Properties Model checking

Is the banking system safe?

xzzl\l/
b1 =0

e

Can we guarantee that only one person at a time has access to the bank account?

“always — (@account;, A @accountg)”

© JPK 13

#8: Verifying Regular Safety Properties Model checking

Is the banking system safe?
e Safe = at most one person may have access to the account

e Unsafe: two have access to the account simultaneously

— unsafe behaviour can be characterized by bad prefix
— alternatively (in this case) by the finite automaton:

— (Qaccounty,

A Qaccountpg) ﬂ
Qaccounty, N\ Qaccount g

—J

e | Checking safety: Traces(TSp.;) N BadPref(P,p) = 97

— intersection, complementation and emptiness of languages . . .

© JPK 14

#8: Verifying Regular Safety Properties Model checking

Problem statement

Let
o P, be aregular safety property over AP

e A be an NFA recognizing the bad prefixes of P,

— assume thate ¢ L(.A)
= otherwise all finite words over 2" are bad prefixes and P,.;. = @

e TS be a finite transition system (over AP) without terminal states

How to establish whether TS = P;,.?

© JPK

15

#8: Verifying Regular Safety Properties Model checking

Basic idea of the algorithm

TS = P,y ifandonlyif Tracesg,(TS) N bp(Psye) = @
if and only if Traces;,(TS) N L(A) =2

ifand only if TS® A = “always” ¢

But...... this amounts to invariant checkingon TS ® A

= checking regular safety properties can be done by depth-first search!

© JPK

16

#8: Verifying Regular Safety Properties Model checking

Synchronous product (revisited)

For transition system TS = (.5, Act, —, I, AP, L) without terminal states
and A = (Q,%,d,Qo, F) an NFA with ¥ = 22" and Qo N F = &, let:

TS®A = (S,Act,—', I'_/AP'. L) where

e S'=S5xQ,AP" =Qand L'({s,q)) = {q}

s 25t A qﬂp

e —'Is the smallest relation defined by:

o/

<37Q>—> <t7p>
o I'={{s0.q) | so€I A 3 € Qo. q0—% ¢}

without loss of generality it may be assumed that TS ® A has no terminal states

© JPK 17

#8: Verifying Regular Safety Properties Model checking

Example product

—red A —yellow

<397 QO> <3ry7 QO>
<Sy7 q1> i <S7“7 q0>

© JPK 18

#8: Verifying Regular Safety Properties

Model checking

A note on terminal states

e Although TS has no terminal state TS ® .4 may have one
e This can only occur if §(¢q, A) = @ for some A C AP

e Let NFA A with some reachable state ¢ with §(¢, A) = @

e Obtain an equivalent NFA A’ as follows:

— introduce new state g, ¢ Q

— ifo(q, A) = o letd’(q, A) = { quw }
— set &' (quap, A) = { quap } forall A C AP
— keep all other transitions that are present in A

= Assume that TS ® A has no terminal states

© JPK

19

#8: Verifying Regular Safety Properties

Model checking

Verification of regular safety properties

Let TS over AP, NFA A, and P a regular safety property with £(.A) = bp(P)

The following statements are equivalent:
(@ TS = P
(b) Traces;,(TS) N L(A) = ©
(€©) TS®A E Py = Nyer 4

© JPK

20

#8: Verifying Regular Safety Properties

Model checking

Proof

© JPK

21

#8: Verifying Regular Safety Properties

Model checking

Counterexamples

For each initial path fragment (sg, q1) . . . (Sn, gni1) OF TS ® A:

qi,---,qn € Fand g,1 € F = trace(sgsi...sn) € L(A)
bad pref&rfor Pate

© JPK

22

#8: Verifying Regular Safety Properties Model checking

Verification algorithm

Input: finite transition system TS and regular safety property Py,

Output: true if TS = P;,z. Otherwise false plus a counterexample for P,y

Let NFA A (with accept states F') be such that L(A) = bp(Psye);
Construct the product transition system TS ® A;
Check the invariant P;,,(4) with proposition —F' = /\qu —gonTS ® A

if TS ® A = Py, then
return true
else

Determine initial path fragment (sg, g1) . . . (Sn, gn+1) OF TS ® A with ¢,,41 € F

return (false, sg s1...sn,)
fi

© JPK

23

#8: Verifying Regular Safety Properties

Model checking

Example

© JPK

24

#8: Verifying Regular Safety Properties

Model checking

Time complexity

The time and space complexity of checking TS |= Py is in:
O(|TS| - |A])
where A is an NFA with £(.A) = mbp(Psqfe)

The size of NFA A, denoted |.A|, is the number of states and transitions in A:

Al = QI+ > > [5(a,A)]

qe@ Aex

© JPK

25

