
Bisimulation
Lecture #23 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 27, 2009

c© JPK

#23: Bisimulation Model checking

Overview Lecture #23

⇒ Bisimulation equivalence

• Quotient transition system

c© JPK 1

#23: Bisimulation Model checking

Implementation relations

• A binary relation on transition systems

– when does a transition systems correctly implements another?

• Important for system synthesis

– stepwise refinement of a system specification TS into an “implementation” TS′

• Important for system analysis

– use the implementation relation as a means for abstraction
– replace TS |= ϕ by TS′ |= ϕ where | TS′ | << | TS | such that:

TS |= ϕ iff TS′ |= ϕ or TS′ |= ϕ ⇒ TS |= ϕ

⇒ Focus on state-based bisimulation and simulation

– definition: what is bisimulation?
– logical characterization: which logical formulas are preserved by bisimulation?

c© JPK 2

#23: Bisimulation Model checking

Bisimulation equivalence

Let TSi = (Si, Acti,→i, Ii, AP, Li), i=1, 2, be transition systems

A bisimulation for (TS1, TS2) is a binary relation R ⊆ S1 × S2 such that:

1. ∀s1 ∈ I1 ∃s2 ∈ I2. (s1, s2) ∈ R and ∀s2 ∈ I2 ∃s1 ∈ I1. (s1, s2) ∈ R

2. for all states s1 ∈ S1, s2 ∈ S2 with (s1, s2) ∈ R it holds:

(a) L1(s1) = L2(s2)

(b) if s′
1 ∈ Post(s1) then there exists s′

2 ∈ Post(s2) with (s′
1, s′

2) ∈ R

(c) if s′
2 ∈ Post(s2) then there exists s′

1 ∈ Post(s1) with (s′
1, s′

2) ∈ R

TS1 and TS2 are bisimilar, denoted TS1 ∼ TS2, if there exists a bisimulation for (TS1, TS2)

c© JPK 3

#23: Bisimulation Model checking

Bisimulation equivalence

s1 −→ s′1 s1 −→ s′1

R can be completed to R R

s2 s2 −→ s′2

and

s1 s1 −→ s′1

R can be completed to R R

s2 −→ s′2 s2 −→ s′2

c© JPK 4

#23: Bisimulation Model checking

Example (1)

s0

s1

s2 s3

t0

t1

t2

t4t3

{ pay } { pay }

∅ ∅

{ beer } { sprite } { beer } { sprite }

{ beer }

R =
n

(s0, t0), (s1, t1), (s2, t2), (s2, t3), (s3, t4)
o

is a bisimulation for (TS1, TS2) where AP = { pay, beer, sprite }

c© JPK 5

#23: Bisimulation Model checking

Example (2)

s0

s1

s2 s3

u0

u1

u4u3

{ pay } { pay }

∅ ∅

{ beer } { sprite } { beer } { sprite }

∅u2

TS1 6∼ TS3 for AP = { pay, beer, sprite }

But: { (s0, u0), (s1, u1), (s1, u2), (s2, u3), (s2, u4), (s3, u3), (s3, u4) }

is a bisimulation for (TS1, TS3) for AP = { pay, drink }

c© JPK 6

#23: Bisimulation Model checking

∼ is an equivalence

For any transition systems TS, TS1, TS2 and TS3 over AP:

TS ∼ TS (reflexivity)

TS1 ∼ TS2 implies TS2 ∼ TS1 (symmetry)

TS1 ∼ TS2 and TS2 ∼ TS3 implies TS1 ∼ TS3 (transitivity)

c© JPK 7

#23: Bisimulation Model checking

Bisimulation on paths

Whenever we have:

s0 −→ s1 −→ s2 −→ s3 −→ s4

R

t0

this can be completed to

s0 −→ s1 −→ s2 −→ s3 −→ s4

R R R R R

t0 −→ t1 −→ t2 −→ t3 −→ t4

proof: by induction on index i of state si

c© JPK 8

#23: Bisimulation Model checking

Bisimulation vs. trace equivalence

TS1 ∼ TS2 implies Traces(TS1) = Traces(TS2)

bisimilar transition systems thus satisfy the same LT properties!

c© JPK 9

#23: Bisimulation Model checking

Overview Lecture #23

• Bisimulation equivalence

⇒ Quotient transition system

c© JPK 10

#23: Bisimulation Model checking

Bisimulation on states

R ⊆ S × S is a bisimulation on TS if for any (s1, s2) ∈ R:

• L(s1) = L(s2)

• if s′
1 ∈ Post(s1) then there exists an s′

2 ∈ Post(s2) with (s′
1, s′

2) ∈ R

• if s′
2 ∈ Post(s2) then there exists an s′

1 ∈ Post(s1) with (s′
1, s′

2) ∈ R

s1 and s2 are bisimilar, s1 ∼TS s2, if (s1, s2) ∈ R for some bisimulation R for TS

s1 ∼TS s2 if and only if TSs1 ∼ TSs2

c© JPK 11

#23: Bisimulation Model checking

Coarsest bisimulation

∼TS is a bisimulation, an equivalence,

and the coarsest bisimulation for TS

c© JPK 12

#23: Bisimulation Model checking

Quotient transition system
For TS = (S, Act,→, I, AP, L) and bisimulation ∼TS ⊆ S × S on TS let

TS/∼TS = (S′, { τ },→′, I ′, AP, L′), the quotient of TS under ∼TS

where

• S′ = S/∼TS = { [s]∼ | s ∈ S } with [s]∼ = { s′ ∈ S | s ∼TS s′ }

• →′ is defined by:
s α−−→ s′

[s]∼
τ−→′ [s′]∼

• I ′ = { [s]∼ | s ∈ I }

• L′([s]∼) = L(s)

note that TS ∼ TS/∼TS Why?

c© JPK 13

#23: Bisimulation Model checking

A ternary semaphore and its quotient

s0

s1

s2

s3

passeer

passeer

passeer

passeer

verhoog

verhoog

verhoog

verhoog

s′
0

s′
1

s′
2

passeer

passeer

verhoog

verhoog

c© JPK 14

#23: Bisimulation Model checking

The Bakery algorithm

Process 1:
.

while true {

.

n1 : x1 := x2 + 1;

w1 : wait until(x2 = 0 ||x1 < x2) {

c1 : . . . critical section . . .}

x1 := 0;

.

}

Process 2:
.

while true {

.

n2 : x2 := x1 + 1;

w2 : wait until(x1 = 0 ||x2 < x1) {

c2 : . . . critical section . . .}

x2 := 0;

.

}

this algorithm can be applied to arbitrary many processes

c© JPK 15

#23: Bisimulation Model checking

Example path fragment

process P1 process P2 x1 x2 effect

n1 n2 0 0 P1 requests access to critical section
w1 n2 1 0 P2 requests access to critical section
w1 w2 1 2 P1 enters the critical section
c1 w2 1 2 P1 leaves the critical section
n1 w2 0 2 P1 requests access to critical section
w1 w2 3 2 P2 enters the critical section
w1 c2 3 2 P2 leaves the critical section
w1 n2 3 0 P2 requests access to critical section
w1 w2 3 4 P2 enters the critical section
.

c© JPK 16

#23: Bisimulation Model checking

Bakery algorithm transition system

n1 n2
x1 = 0
x2 = 0

n1 c2
x1 = 0
x2 = 1

n1 w2
x1 = 0

w1 w2
x1 = 2
x2 = 1

c1 w2
x1 = 1
x2 = 2

c1 n2
x1 = 1
x2 = 0

w1 n2
x1 = 1
x2 = 0

w1 c2

n1 c2
x1 = 0

n1 w2
x1 = 0

x1 = 3

c1 n2

x2 = 0

x2 = 0

x2 = 3
x1 = 0

x2 = 0

x2 = 1

w1 w2
x1 = 1
x2 = 2

x1 = 2
x2 = 1

x2 = 2

x2 = 2

w1 w2

x2 = 2

c1 w2 w1 c2: : : : : :n1 w2 w1 n2: : : : : :
w1 w2
x1 = 2

w1 n2
x1 = 2

x1 = 2

c1 n2
x1 = 3

n1 c2

x2 = 3 : : : : : :
infinite state space due to possible unbounded increase of counters

c© JPK 17

#23: Bisimulation Model checking

Data abstraction

Function f maps a reachable state of TSBak onto an abstract one in TSabs

Bak

Let s = 〈ℓ1, ℓ2, x1 = b1, x2 = b2〉 be a state of TSBak with ℓi ∈ {ni, wi, ci } and
bi ∈ IN

Then:

f(s) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

〈ℓ1, ℓ2, x1 = 0, x2 = 0〉 if b1 = b2 = 0

〈ℓ1, ℓ2, x1 = 0, x2 > 0〉 if b1 = 0 and b2 > 0

〈ℓ1, ℓ2, x1 > 0, x2 = 0〉 if b1 > 0 and b2 = 0

〈ℓ1, ℓ2, x1 > x2 > 0〉 if b1 > b2 > 0

〈ℓ1, ℓ2, x2 > x1 > 0〉 if b2 > b1 > 0

It follows: R = { (s, f(s)) | s ∈ S } is a bisimulation for (TSBak , TSabs

Bak
)

for any subset of AP = { noncriti, waiti, criti | i = 1, 2 }

c© JPK 18

#23: Bisimulation Model checking

Bisimulation quotient
n1 n2

x1 = 0
x2 = 0

n1 w2

x1 = 0
x2 > 0

w1 n2

x1 > 0
x2 = 0

n1 c2

x1 = 0
x2 > 0

c1 n2

x1 > 0
x2 = 0

w1 w2

x1 > x2 > 0
w1 w2

x2 > x1 > 0

c1 w2

x2 > x1 > 0
w1 c2

x1 > x2 > 0

TSabs

Bak
= TSBak/ ∼ for AP = { crit1, crit2 }

c© JPK 19

#23: Bisimulation Model checking

Remarks

• Data abstraction yields a bisimulation relation

– in this example; typically a simulation relation is obtained

• TSabs

Bak
|= ϕ with, e.g.,:

– 2(¬crit1 ∨ ¬crit2) and (23wait1 ⇒ 23crit1) ∧ (23wait2 ⇒ 23crit2)

• Since TSabs

Bak
∼ TSBak , it follows TSBak |= ϕ

• Note: Traces(TSabs

Bak
) = Traces(TSBak)

– but checking trace equivalence is PSPACE-complete
– while checking bisimulation equivalence is in poly-time

c© JPK 20

