© JPK

Transition Systems
Lecture #2 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

October 22, 2008

#2: Transition systems Model Checking

Overview Lecture #2

= Transition systems

— Executions
— Modeling data-dependent systems

e Parallelism and communication

— Interleaving
— Shared variables

© JPK 1

#2: Transition systems Model Checking

Recall model checking

Coren D
““not hiased towards the

l most probable scenarios’”

Formalizing Modeling

—™odel Checking——

ocatio
——=_"error

insufficien
memory

© JPK 2

#2: Transition systems Model Checking

Transition systems

e model to describe the behaviour of systems

e digraphs where nodes represent states, and edges model transitions

e state:

— the current colour of a traffic light
— the current values of all program variables 4+ the program counter
— the current value of the registers together with the values of the input bits

e transition: (“state change”)

— a switch from one colour to another
— the execution of a program statement
— the change of the registers and output bits for a new input

© JPK 3

#2: Transition systems Model Checking

Transition system

A transition system TS is a tuple (5, Act,—, I, AP, L) where

e S is a set of states

e Act is a set of actions

e — C S X Act X S is a transition relation
e [C S is aset of initial states

e AP is a set of atomic propositions

o L:S —2isa labeling function

S and Act are either finite or countably infinite

Notation: s % s’ instead of (s, a, s') € —

© JPK 4

#2: Transition systems

Model Checking

A beverage vending machine

get_sprile get_beer

msert_coin

states? actions?, transitions?, initial states?

© JPK

#2: Transition systems Model Checking

Atomic propositions?

© JPK 6

#2: Transition systems Model Checking

Direct successors and predecessors

Post(s, o) = { seS | s }, Post(s) = U Post(s, at)

a€Act

Pre(s,a) = {S’ES | s }, Pre(s) = U Pre(s, o).

aEAct
Post(C, o) = U Post(s,a), Post(C') = U Post(s) for C' C S.
seC seC
Pre(C, a) U Pre(s,a), Pre(C) = U Pre(s) for C C S.
seC seC

State s is called terminal if and only if Post(s) = @

© JPK 7

#2: Transition systems Model Checking

Action- and AP-determinism

Transition system TS = (S, Act, —, I, AP, L) is action-deterministic iff:

/| < 1 and |Post(s,a)| < 1 foralls,

Transition system TS = (S, Act, —, I, AP, L) is AP-deterministic iff:

[I] <1 and | Post(s) N {s'€S|L(s)=A}| <1 foralls,Aec2%

-/

equally labeled successors of s

© JPK 8

#2: Transition systems Model Checking

The role of nondeterminism

Here: nondeterminism is a feature!

e to model concurrency by interleaving

— no assumption about the relative speed of processes

e to model implementation freedom

— only describes what a system should do, not how

e to model under-specified systems, or abstractions of real systems

— use incomplete information

in automata theory, nondeterminism may be exponentially more succinct
but that’s not the issue here!

© JPK

#2: Transition systems Model Checking

Executions

e A finite execution fragment o of TS is an alternating sequence of states
and actions ending with a state:

(8% .
0 = Soa1 81 Qs ...0y S, such that s;, — - 5,1 for all 0 <7 < n.

e An infinite execution fragment p of TS is an infinite, alternating sequence
of states and actions:

(07 .
p = SgQ 81 SaQ3... such that s; —* 5,1 for all 0 < 7.

e An execution of TS is an initial, maximal execution fragment

— a maximal execution fragment is either finite ending in a terminal state, or infinite
— an execution fragment is initial if s € I

© JPK 10

#2: Transition systems Model Checking

Example executions

: / : /
p1 = pay -2 select — sprite =L pay —2" select —— sprite 4<% ..
get bget
pa = select = sprite 4% pay —2 select —— beer —2< ..
. 4 .
0o = pay -2 select T sprite 2% pay —2 select — sprite

Execution fragments p; and p are initial, but ps is not
o0 is not maximal as it does not end in a terminal state

Assuming that p; and ps are infinite, they are maximal

© JPK 11

#2: Transition systems Model Checking

Reachable states

State s € S is called reachablein TS if there exists an initial, finite execution
fragment

(84
sg s gy 22, . Qn, g = 3.

Reach(TS) denotes the set of all reachable states in TS.

© JPK 12

#2: Transition systems Model Checking

Modeling sequential circuits

1y} N X

-
y ng:m:o] fx:lr:o]

\

i ng:Orzl Xer:l])
r

{r} {xrny;

Transition system representation of a simple hardware circuit
Input variable z, output variable vy, and register r

Output function =(x @ r) and register evaluation function z V r

© JPK 13

#2: Transition systems Model Checking

Atomic propositions

Consider two possible state-labelings:

o Llet AP={uz,y,r}

- L{x=0,r=1)={r}tand L{xe=1,r=1)) ={x,ry}
- L(z=0,r=0))={yjrand L(z=1,7r=0)) ={z}
— property e.g., “once the register is one, it remains one”

e Let AP = {x,y} — the register evaluations are now “invisible”

- L{z=0,r=1)=@and Lz =1,r=1)) ={z,y}
- L(z=0,r=0))={yrand L(z =1,7=0)) ={z}
— property e.g., “the output bit y is set infinitely often”

© JPK 14

#2: Transition systems Model Checking

Beverage vending machine revisited

“Abstract” transitions:

true: coin true:refill

start > select and start > start
te>():sqget b 0:bget
select —PMC=US99 o orart and select X =009, otart
select nsprite=0 N\ nbeer=_0:ret_coin s start
Action Effect on variables
coin
ret_coin
sget nsprite := nsprite — 1
bget nbeer := nbeer — 1
refill nsprite := mazx; nbeer := max

© JPK 15

#2: Transition systems Model Checking

Program graph representation

© JPK 16

#2: Transition systems Model Checking

Some preliminaries

e typed variables with a valuation that assigns values to variables

—eg,n(x) =17 and n(y) = —2

e the set of Boolean conditions over Var

— propositional logic formulas whose propositions are of the form “Z € D"
~ (-3<2<5) A (y=green) A (2 <2)

e cffect of the actions is formalized by means of a mapping:

Effect : Act x Eval(Var) — Eval(Var)

— e.g., @ = x := y+>5 and evaluation n(x) = 17 and n(y) = —2
— Effect(a,n)(x) = n(y) +5 =3, and Effect(a,n)(y) = n(y) = —2

© JPK 17

#2: Transition systems Model Checking

Program graphs
A program graph PG over set Var of typed variables is a tuple

(Loc, Act, Effect,—, Locy, go) where
e [ocis a set of locations with initial locations Locy C Loc
e Act is a set of actions
e Effect: Act x Eval(Var) — Eval(Var) is the effect function

e — C Locx (Cond(Var) xAct) X Loc, transition relation

VO
Boolean conditions overVar

e g9 € Cond(Var) is the initial condition.

Notation: ¢ £ ¢/ denotes (6, g, o, E’) € —

© JPK 18

#2: Transition systems Model Checking

Beverage vending machine

e Loc={start, select } with Locy = { start }

o Act = { bget, sget, coin, ret_coin, refill }

o Var= { nsprite, nbeer } with domain {0,1,..., mazx }
Effect(coin, n) = n
Effect(ret_coin,n) = n
® Fffect(sget,n) = n[nsprite := nsprite—1]
Effect(bget, n) = n[nbeer := nbeer—1]
Effect(refill, n) = [nsprite := maz, nbeer := mazx]

e gy = (nsprite = max A nbeer = mazx)

© JPK 19

#2: Transition systems Model Checking

From program graphs to transition systems

e Basic strategy: unfolding

— state = location (current control) ¢ + data valuation 7
— initial state = initial location satisfying the initial condition gq

e Propositions and labeling

— propositions: “at £” and "z € D" for D C dom(x)
— (¢, n) is labeled with “at £ and all conditions that hold in n

o (L%, ¢ and g holds in 7 then (¢,n) % (¢, Effect(cx,n))

© JPK 20

#2: Transition systems Model Checking

Structured operational semantics

_ premise
e [he notation _ means:
conclusion

e If the proposition above the “solid line” (i.e., the premise) holds, then
the proposition under the fraction bar (i.e., the conclusion) holds

e Such “if ..., then ...” propositions are also called inference rules

e If the premise is a tautology, it may be omitted (as well as the “solid
line”)

e In the latter case, the rule is also called an axiom

© JPK 21

#2: Transition systems Model Checking

Transition systems for program graphs

The transition system TS(PG) of program graph
PG = (Loc, Act, Effect,—, Locy, go)

over set Var of variables is the tuple (S, Act,—, I, AP, L) where

e S = Locx Eval(Var)

(L0 A g

C is defi :
* & S Actx Sis defined by the rule: —— e

o [={({,n)|le Locy,n = go}

e AP = LocU Cond(Var) and L({¢,n)) = {£} U{g € Cond(Var) | n = g}.

© JPK 22

#2: Transition systems Model Checking

refill m refill
(e

© JPK 23

#2: Transition systems Model Checking

Transition systems # finite automata

As opposed to finite automata, in a transition system:

e there are no accept states

e set of states and actions may be countably infinite

e may have infinite branching

e actions may be subject to synchronization (cf. next lecture)

e nondeterminism has a different role

Transition systems are appropriate for reactive system behaviour

© JPK 24

