
Transition Systems
Lecture #2 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

October 22, 2008

c© JPK

#2: Transition systems Model Checking

Overview Lecture #2

⇒ Transition systems

– Executions

– Modeling data-dependent systems

• Parallelism and communication

– Interleaving

– Shared variables

c© JPK 1

#2: Transition systems Model Checking

Recall model checking

most probable scenarios’’

‘‘not biased towards the

satisfied

insufficient
memory

counterexample Simulation location
error

system

violated +

Model Checking

requirements

Formalizing Modeling

system modelproperty
specification

c© JPK 2

#2: Transition systems Model Checking

Transition systems

• model to describe the behaviour of systems

• digraphs where nodes represent states, and edges model transitions

• state:

– the current colour of a traffic light

– the current values of all program variables + the program counter

– the current value of the registers together with the values of the input bits

• transition: (“state change”)

– a switch from one colour to another

– the execution of a program statement

– the change of the registers and output bits for a new input

c© JPK 3

#2: Transition systems Model Checking

Transition system

A transition system TS is a tuple (S, Act,→, I,AP, L) where

• S is a set of states

• Act is a set of actions

• −→ ⊆ S × Act × S is a transition relation

• I ⊆ S is a set of initial states

• AP is a set of atomic propositions

• L : S → 2AP is a labeling function

S and Act are either finite or countably infinite

Notation: s α−→ s′ instead of
`
s, α, s′´ ∈ −→

c© JPK 4

#2: Transition systems Model Checking

A beverage vending machine

pay

selectsprite beer

insert coin

τ
τ

get sprite get beer

states? actions?, transitions?, initial states?

c© JPK 5

#2: Transition systems Model Checking

Atomic propositions?

c© JPK 6

#2: Transition systems Model Checking

Direct successors and predecessors

Post(s, α) =
{

s′ ∈ S | s α−−→ s′
}

, Post(s) =
⋃

α∈Act

Post(s, α)

Pre(s, α) =
{

s′ ∈ S | s′ α−−→ s
}
, Pre(s) =

⋃
α∈Act

Pre(s, α).

Post(C, α) =
⋃
s∈C

Post(s, α), Post(C) =
⋃
s∈C

Post(s) for C ⊆ S.

Pre(C,α) =
⋃
s∈C

Pre(s, α), Pre(C) =
⋃
s∈C

Pre(s) for C ⊆ S.

State s is called terminal if and only if Post(s) = ∅

c© JPK 7

#2: Transition systems Model Checking

Action- and AP-determinism

Transition system TS = (S,Act,→, I,AP, L) is action-deterministic iff:

| I | � 1 and |Post(s, α) | � 1 for all s, α

Transition system TS = (S,Act,→, I,AP, L) is AP-deterministic iff:

| I | � 1 and | Post(s) ∩ { s′ ∈ S | L(s′) = A }︸ ︷︷ ︸
equally labeled successors of s

| � 1 for all s, A ∈ 2AP

c© JPK 8

#2: Transition systems Model Checking

The role of nondeterminism

Here: nondeterminism is a feature!

• to model concurrency by interleaving

– no assumption about the relative speed of processes

• to model implementation freedom

– only describes what a system should do, not how

• to model under-specified systems, or abstractions of real systems

– use incomplete information

in automata theory, nondeterminism may be exponentially more succinct

but that’s not the issue here!

c© JPK 9

#2: Transition systems Model Checking

Executions

• A finite execution fragment � of TS is an alternating sequence of states
and actions ending with a state:

� = s0 α1 s1 α2 . . . αn sn such that si
αi+1−−−−→ si+1 for all 0 � i < n.

• An infinite execution fragment ρ of TS is an infinite, alternating sequence
of states and actions:

ρ = s0 α1 s1 α2 s2 α3 . . . such that si
αi+1−−−−→ si+1 for all 0 � i.

• An execution of TS is an initial, maximal execution fragment

– a maximal execution fragment is either finite ending in a terminal state, or infinite

– an execution fragment is initial if s0 ∈ I

c© JPK 10

#2: Transition systems Model Checking

Example executions

ρ1 = pay coin−−−→ select τ−→ sprite sget−−−→ pay coin−−−→ select τ−→ sprite sget−−−→ . . .

ρ2 = select τ−→ sprite sget−−−→ pay coin−−−→ select τ−→ beer bget−−−→ . . .

� = pay coin−−−→ select τ−→ sprite sget−−−→ pay coin−−−→ select τ−→ sprite

Execution fragments ρ1 and � are initial, but ρ2 is not

� is not maximal as it does not end in a terminal state

Assuming that ρ1 and ρ2 are infinite, they are maximal

c© JPK 11

#2: Transition systems Model Checking

Reachable states

State s ∈ S is called reachable in TS if there exists an initial, finite execution
fragment

s0
α1−−→ s1

α2−−→ . . . αn−−→ sn = s .

Reach(TS) denotes the set of all reachable states in TS.

c© JPK 12

#2: Transition systems Model Checking

Modeling sequential circuits

XOR

OR

�y�

NOT

�x�

�r� �x�r�y�

x� 0 r � 0

x� 0 r � 1

x� 1 r � 0

x� 1 r � 1

r

x y

Transition system representation of a simple hardware circuit

Input variable x, output variable y, and register r

Output function ¬(x ⊕ r) and register evaluation function x ∨ r

c© JPK 13

#2: Transition systems Model Checking

Atomic propositions

Consider two possible state-labelings:

• Let AP = {x, y, r }
– L(〈x = 0, r = 1〉) = { r } and L(〈x = 1, r = 1〉) = { x, r, y }
– L(〈x = 0, r = 0〉) = { y } and L(〈x = 1, r = 0〉) = {x }
– property e.g., “once the register is one, it remains one”

• Let AP′ = {x, y } – the register evaluations are now “invisible”

– L(〈x = 0, r = 1〉) = ∅ and L(〈x = 1, r = 1〉) = { x, y }
– L(〈x = 0, r = 0〉) = { y } and L(〈x = 1, r = 0〉) = {x }
– property e.g., “the output bit y is set infinitely often”

c© JPK 14

#2: Transition systems Model Checking

Beverage vending machine revisited

“Abstract” transitions:

start true:coin−−−−−−→ select and start true:refill−−−−−−→ start

select nsprite>0 :sget−−−−−−−−−→ start and select nbeer>0 :bget−−−−−−−−→ start

select nsprite=0 ∧ nbeer=0 :ret coin−−−−−−−−−−−−−−−−−−→ start

Action Effect on variables

coin
ret coin
sget nsprite := nsprite − 1

bget nbeer := nbeer − 1

refill nsprite := max ; nbeer := max

c© JPK 15

#2: Transition systems Model Checking

Program graph representation

c© JPK 16

#2: Transition systems Model Checking

Some preliminaries

• typed variables with a valuation that assigns values to variables

– e.g., η(x) = 17 and η(y) = −2

• the set of Boolean conditions over Var

– propositional logic formulas whose propositions are of the form “x ∈ D”

– (−3 < x � 5) ∧ (y = green) ∧ (x � 2·x′)

• effect of the actions is formalized by means of a mapping:

Effect : Act × Eval(Var) → Eval(Var)

– e.g., α ≡ x := y+5 and evaluation η(x) = 17 and η(y) = −2

– Effect(α, η)(x) = η(y) + 5 = 3, and Effect(α, η)(y) = η(y) = −2

c© JPK 17

#2: Transition systems Model Checking

Program graphs
A program graph PG over set Var of typed variables is a tuple

(Loc, Act, Effect,−→, Loc0, g0) where

• Loc is a set of locations with initial locations Loc0 ⊆ Loc

• Act is a set of actions

• Effect : Act × Eval(Var) → Eval(Var) is the effect function

• −→ ⊆ Loc × (Cond(Var)︸ ︷︷ ︸
Boolean conditions overVar

×Act) × Loc, transition relation

• g0 ∈ Cond(Var) is the initial condition.

Notation: � g:α−−→ �′ denotes
`
�, g, α, �′

´ ∈ −→

c© JPK 18

#2: Transition systems Model Checking

Beverage vending machine

• Loc = { start , select } with Loc0 = { start }

• Act = { bget , sget , coin, ret coin, refill }

• Var = {nsprite, nbeer } with domain { 0, 1, . . . ,max }

•
Effect(coin, η) = η

Effect(ret coin, η) = η

Effect(sget, η) = η[nsprite := nsprite−1]

Effect(bget, η) = η[nbeer := nbeer−1]

Effect(refill , η) = [nsprite := max , nbeer := max]

• g0 = (nsprite = max ∧ nbeer = max)

c© JPK 19

#2: Transition systems Model Checking

From program graphs to transition systems

• Basic strategy: unfolding

– state = location (current control) � + data valuation η

– initial state = initial location satisfying the initial condition g0

• Propositions and labeling

– propositions: “at �” and “x ∈ D” for D ⊆ dom(x)

– 〈�, η〉 is labeled with “at �” and all conditions that hold in η

• � g:α−−−→ �′ and g holds in η then 〈�, η〉 α−−→〈�′, Effect(α, η)〉

c© JPK 20

#2: Transition systems Model Checking

Structured operational semantics

• The notation
premise

conclusion
means:

• If the proposition above the “solid line” (i.e., the premise) holds, then
the proposition under the fraction bar (i.e., the conclusion) holds

• Such “if . . ., then . . .” propositions are also called inference rules

• If the premise is a tautology, it may be omitted (as well as the “solid
line”)

• In the latter case, the rule is also called an axiom

c© JPK 21

#2: Transition systems Model Checking

Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc, Act, Effect,−→, Loc0, g0)

over set Var of variables is the tuple (S,Act,−→, I,AP, L) where

• S = Loc × Eval(Var)

• −→⊆ S × Act × S is defined by the rule:
� g:α−−−→ �′ ∧ η |= g

〈�, η〉 α−−→〈�′,Effect(α, η)〉

• I = {〈�, η〉 | � ∈ Loc0, η |= g0}

• AP = Loc ∪ Cond(Var) and L(〈�, η〉) = {�} ∪ {g ∈ Cond(Var) | η |= g}.
c© JPK 22

#2: Transition systems Model Checking

start

select

startstart

selectselect

start
startstart

select selectselect

startstart

selectselect

start

select

coin

coin coin

bget

sget

coincoincoin

bget

sget

coincoin

sget

bget

spritebeer

bget

sget

bget

sget

coinret coin

refill

refill refill

c© JPK 23

#2: Transition systems Model Checking

Transition systems �= finite automata

As opposed to finite automata, in a transition system:

• there are no accept states

• set of states and actions may be countably infinite

• may have infinite branching

• actions may be subject to synchronization (cf. next lecture)

• nondeterminism has a different role

Transition systems are appropriate for reactive system behaviour

c© JPK 24

