© JPK

Verifying w-Regular Properties
Lecture #11 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

November 25, 2008

#11: Verifying w-regular properties

Model checking

Overview Lecture #11

= Checking Regular Safety Properties

e Checking w-Regular Properties

— persistence properties
— reduction to checking persistence properties
— checking persistence properties

e Nested depth-first search

e Summary of regular properties

© JPK

#11: Verifying w-regular properties Model checking

Reqgular safety properties

Safety property P, over AP is regular

if its set of bad prefixes is a regular language over 247

© JPK

#11: Verifying w-regular properties Model checking

Basic idea of the algorithm

TS = Py ifandonlyif Traces;,(TS) N BadPref(Py) # <

Psafe
if and only if Tracesg,(TS) N L(A) # &

ifandonlyif TS® A = ‘“always” —F

invarianrproperty

—- checking regular safety properties is reduced to invariant checking!

© JPK

#11: Verifying w-regular properties Model checking

Verifying regular safety properties

Let TS over AP and NFA A with alphabet 2" as before, regular safety
property P;,z over AP such that £(.A) is the set of bad prefixes of Py,

The following statements are equivalent:
(@) TS = Py
(b) Traces;,(TS) N L(A) = ©
() TS®A E Piya

where P;,,4y = “always” - F

© JPK 4

#11: Verifying w-regular properties

Model checking

Overview Lecture #11

e Checking Regular Safety Properties

= Checking w-Regular Properties

— persistence properties
— reduction to checking persistence properties
— checking persistence properties

e Nested depth-first search

e Summary of regular properties

© JPK

#11: Verifying w-regular properties Model checking

w-regular properties

LT property P over AP is w-regular

if P is an w-regular language over 247

© JPK

#11: Verifying w-regular properties Model checking

Basic idea of the algorithm

TS = P ifandonlyif Traces(TS) € P
if and only if Traces(TS)N (2°°)"\ P #£ o
if and only if Traces(TS)NP # @
if and only if Traces(TS)N L, (A) # @

ifand only if TS® A [# “eventually for ever” —F

persistenc?é property

where A is an NBA accepting the complement property P = (QAP)) \ P

© JPK

#11: Verifying w-regular properties Model checking

Persistence property

A persistence property over AP is an LT property P, C (27)"
“eventually for ever ®” for some propositional logic formula ® over AP:

Pors = {PoAiAs ... € ()7 32 0. > i Aj |- @)

¢ is called a persistence (or state) condition of P,

“®P Is an invariant after a while”

© JPK

#11: Verifying w-regular properties Model checking

Example persistence property

g 8 ¢

true a true

let {a} = AP, ie., 2" = {A,B} where A = {} and B = {a}

"eventually for ever a” equals (A + B)*B* = ({} + {a})" {a}”

© JPK

#11: Verifying w-regular properties Model checking

Recall synchronous product

For transition system TS = (5, Act, —, I, AP, L) without terminal states
and A = (Q, %, 4, Qo, F) a non-blocking NBA with ¥ = 24P let:

TS®A = (S Act,—',I'_/AP'. L) where

e ' =SxQ,AP =Qand L'((s,q) = {q}

e —'Is the smallest relation defined by:

o I"'={(s0,q) | so €I N g0 € Qo. C]OMQ}

© JPK 10

#11: Verifying w-regular properties Model checking

Verifying w-regular properties
Let:

e TS be a transition system without terminal states over AP
e P be an w-regular property over AP, and
e A anon-blocking NBA such that £,,(A) = P.

The following statements are equivalent:
@ TS = P
(b) Traces(TS) N L, (A) = @
(€ TS®A | Ppes(a)

where P,.., 4y = “eventually for ever — F”

= checking w-regular properties is reduced to persistence checking!

© JPK 11

#11: Verifying w-regular properties

Model checking

Proof

© JPK

12

#11: Verifying w-regular properties Model checking

Infinitely often green?

{red} green } true —green true
. —green Q green
{q} {a} {a}

{aq} {a1} {aq2}

© JPK 13

#11: Verifying w-regular properties

Model checking

Infinitely often green?

%) {red} green }
-

© JPK

14

#11: Verifying w-regular properties Model checking

Persistence checking

e Aim: establish whether TS [~ P, = “eventually for ever ®”

e Let state s be reachable in TS and s (= ®

— TS has an initial path fragment that ends in s

e If sis on a cycle

— this path fragment can be continued by an infinite path
— by traversing the cycle containing s infinitely often

= TS may visit the ~®-state s infinitely often and so: TS = P,

e If no such s is found then: TS = 7.,

© JPK 15

#11: Verifying w-regular properties

Model checking

In picture

© JPK

16

#11: Verifying w-regular properties

Model checking

Persistence checking and cycle detection

Let

e TS be a finite transition system without terminal states over AP
e ® a propositional formula over AP, and
e P, the persistence property "eventually for ever ®”

TS & Ppers
If and only if
ds € Reach(TS).s = ® A sisonacyclein G(TS)

© JPK

17

#11: Verifying w-regular properties Model checking

Infinitely often green?

{red} green } true —green true
. —green Q green
{q} {a} {a}

{aq} {a1} {aq2}

© JPK 18

#11: Verifying w-regular properties

Model checking

Infinitely often green?

%) {red} green }
-

© JPK

19

#11: Verifying w-regular properties

Model checking

Overview Lecture #11

e Checking Regular Safety Properties

e Checking w-Regular Properties

— persistence properties
— reduction to checking persistence properties
— checking persistence properties

= Nested Depth-First Search

e Summary of Regular Properties

© JPK

20

#11: Verifying w-regular properties Model checking

Cycle detection

How to check for reachable cycles containing a —®-state?

e Alternative 1:

— compute the strongly connected components (SCCs) in G(TS)
— check whether one such SCC is reachable from an initial state
— ... that contains a —®-state

— “eventually for ever ®” is refuted if and only if such SCC is found

e Alternative 2:

— use a nested depth-first search
—=- more adequate for an on-the-fly verification algorithm
=~ easier for generating counterexamples

let’s have a closer look into this by first dealing with two-phase DFS

© JPK 21

#11: Verifying w-regular properties Model checking

A two-phase depth first-search

1. Determine all —®-states that are reachable from some Initial state

this is performed by a standard depth-first search

2. For each reachable —®-state, check whether it belongs to a cycle

— start a depth-first search in s
— check for all states reachable from s whether there is a “backward” edge to s

e Time complexity: O(N-(|®|+N+M))

— where N is the number of states and M the number of transitions
— fragments reachable via K —®-states are searched K times

© JPK 22

#11: Verifying w-regular properties Model checking

Two-phase depth first-search

Input: finite transition system TS without terminal states, and proposition
Output: "yes” if TS |= "eventually for ever ®”, otherwise "no”.

setof states R := J; R—¢ := I, (* set of reachable states resp. —®-states *)
stack of states U := ¢; (* DFS-stack for first DFS, initial empty *)
set of states T := o (* set of visited states for the cycle check *)
stack of states V := ¢; (* DFS-stack for the cycle check *)
forall s € I\ R do visit(s); od (* phase one *)
forall s € R_¢ do
T := 2,V =g (* phase two *)
if cycle_check(s) then return "no” (* s belongs to a cycle *)
od
return "yes” (* none of the —®-states belongs to a cycle *)

© JPK

23

#11: Verifying w-regular properties Model checking

Find —®-states

procedure visit (state s)
push(s, U); (* push s on the stack *)
R:=R U {s}; (* mark s as reachable *)
repeat
s’ = top(U);
if Post(s’) C R then
pop(U);
if s’ = ®then R.g := R_gp U {s };fi
else
let s” € Post(s’) \ R
push(s”, U);

R:=R U {s"}; (* state s’ is a new reachable state *)
fi
until (U = ¢)
endproc

this is a standard DFS checking for —®-states

© JPK 24

#11: Verifying w-regular properties Model checking

Cycle detection

procedure boolean cycle_check(state s)

boolean cycle_found := false;
push(s,V); T :=T U {s };
repeat
s’ :=top(V);
if s € Post(s’) then
cycle_found := true;
push(s, V');
else
if Post(s") \ T' # @ then
let s” € Post(s’) \ T}

push(s”", V), T :=T u {s"};

else pop(V);
fi
fi
until ((V =¢€) Vv cycle_found)
return cycle_found
endproc

(* no cycle found yet *)
(* push s on the stack *)

(* take top element of V' *)

(*if s € Post(s"), acycleis found *)
(* push s on the stack *)

(* push an unvisited successor of s’ *)
(* unsuccessful cycle search for s’ *)

© JPK

25

#11: Verifying w-regular properties Model checking

Nested depth-first search

e ldea: perform the two depth-first searches in an interleaved way

— the outer DFS serves to encounter all reachable —®-states
— the inner DFS seeks for backward edges leading to a —$-state

e Nested DFS

— on full expansion of —®-state s in the outer DFS, start inner DFS
— in inner DFS, visit all states reachable from s not visited in the inner DFS yet
— no backward edge found to s? continue the outer DFS (look for next = state)

e Counterexample generation: DFS stack concatenation

— stack U for the outer DFS = path fragment from sg € I to s (in reversed order)
— stack V for the inner DFS = a cycle from state s to s (in reversed order)

© JPK 26

#11: Verifying w-regular properties

Model checking

The outer DFS (1)

Input: transition system TS without terminal states, and proposition &
Output: "yes” if TS |= "eventually for ever ®”, otherwise "no” plus counterexample

set of states R := @;

stack of states U := ¢;

set of states T := o;

stack of states V := ¢;
boolean cycle_found := false;

while (I \ R # @ A —cycle_found) do
let s € I\ R;
reachable_cycle(s);
od
if —cycle_found then
return ("yes”)
else
return ("no”, reverse(V.U))
fi

(* set of visited states in the outer DFS *)
(* stack for the outer DFS *)
(* set of visited states in the inner DFS *)
(* stack for the inner DFS *)

(* explore the reachable *)
(* fragment with outer DFS *)

(* TS |= "eventually for ever ®” *)

(* stack contents yield a counterexample *)

© JPK

27

#11: Verifying w-regular properties

Model checking

The outer DFS (2)

procedure reachable_cycle (state s)
push(s, U);
R:=R U {s};
repeat
s’ :=top(U);
if Post(s’) \ R # @ then
let s € Post(s’) \ R;
push(s”, U);
R:=R U {s"};
else
pop(U);
if s’ = @ then
cycle_found := cycle_check(s');

fi
fi
until (U =€) Vv cycle_found)

endproc

(* push s on the stack *)

(* push the unvisited successor of s’ *)
(* and mark it reachable *)

(* outer DFS finished for s’ *)
(* proceed with the inner *)

(* DFS in state s’ *)

(* stop when stack for the outer *)
(* DFS is empty or cycle found *)

© JPK

28

#11: Verifying w-regular properties

Model checking

Example

© JPK

29

#11: Verifying w-regular properties

Model checking

The order of cycle detection

© JPK

30

#11: Verifying w-regular properties

Model checking

Let:

Correctness of nested DFS

e TS be a finite transition system over AP without terminal states and
e P, apersistence property

The nested DFS algorithm yields "no” if and only if TS (& P

© JPK

31

#11: Verifying w-regular properties

Model checking

Time complexity

The worst-case time complexity of nested DFS is Iin
O(N+M)+ N-|®|)

where N is # reachable states in TS, and M is # transitions in TS

© JPK

32

#11: Verifying w-regular properties

Model checking

Overview Lecture #11

e Checking Regular Safety Properties

e Checking w-Regular Properties

— persistence properties
— reduction to checking persistence properties
— checking persistence properties

e Nested Depth-First Search

= Summary of Regular Properties

© JPK

33

#11: Verifying w-regular properties Model checking

Summary of regular properties (1)

e Languages recognized by NFA/DFA = regular languages

— serve to represent the bad prefixes of regular safety properties

e Checking a regular safety property = invariant checking on a product

— “never visit an accept state” in the NFA for the bad prefixes
— amounts to solving a (DFS) reachability problem

e w-regular languages are languages of infinite words

— can be described by w-regular expressions

e Languages recognized by NBA = w-regular languages

— serve to represent w-regular properties

© JPK 34

#11: Verifying w-regular properties Model checking

Summary of regular properties (2)

e DBA are less powerful than NBA

— fall, e.g., to represent the persistence property "eventually for ever a”

e Generalized NBA require repeated visits for several acceptance sets

— the languages recognized by GNBA = w-regular languages

e Checking an w-regular property = checking persistency on a product

— “eventually for ever no accept state” in the NBA for the complement property
e Persistence checking is solvable in linear time by a nested DFS

e Nested DFS = a DFS for reachable —®-states + a DFS for cycle detection

© JPK 35

