
Safety and Liveness Properties
Lecture #6 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

November 5, 2008

c© JPK

#6: Safety and Liveness Properties Model checking

Overview Lecture #6

⇒ Safety Properties

• Liveness Properties

• Safety versus Liveness Properties

• Classification of Linear-Time Properties

c© JPK 1

#6: Safety and Liveness Properties Model checking

Linear-time properties

• Linear-time properties specify desired traces of a TS

• A linear-time property (LT property) over AP is a subset of
(
2AP

)ω

– i.e., infinite words A0A1A2 . . . with Ai ⊆ AP
– finite words are not needed, as it is assumed that TS has no terminal states

• TS (over AP) satisfies LT property P (over AP):

TS |= P if and only if Traces(TS) ⊆ P

– TS satisfies the LT property P if all its “observable” behaviors are admissible

c© JPK 2

#6: Safety and Liveness Properties Model checking

Invariants

• LT property Pinv over AP is an invariant if it has the form:

Pinv =
{

A0A1A2 . . . ∈
(
2AP)ω

| ∀j > 0. Aj |= Φ
}

– where Φ is a propositional logic formula Φ over AP
– Φ is called an invariant condition of Pinv

• Note that

TS |= Pinv iff trace(π) ∈ Pinv for all paths π in TS
iff L(s) |= Φ for all states s that belong to a path of TS
iff L(s) |= Φ for all states s ∈ Reach(TS)

• Φ has to be fulfilled by all initial states and

– satisfaction of Φ is invariant under all transitions in the reachable fragment of TS

c© JPK 3

#6: Safety and Liveness Properties Model checking

Safety properties

• Safety properties may impose requirements on finite path fragments

– and cannot be verified by considering the reachable states only

• A safety property which is not an invariant:

– consider a cash dispenser, also known as automated teller machine (ATM)
– property “money can only be withdrawn once a correct PIN has been provided”

⇒ not an invariant, since it is not a state property

• But a safety property:

– any infinite run violating the property has a finite prefix that is “bad”
– i.e., in which money is withdrawn without issuing a PIN before

c© JPK 4

#6: Safety and Liveness Properties Model checking

Safety properties

• LT property Psafe over AP is a safety property if

– for all σ ∈
“
2AP

”ω

\ Psafe there exists a finite prefix bσ of σ such that:

Psafe ∩
n

σ
′ ∈

“
2AP

”ω

| bσ is a prefix of σ′
o

= ∅

• Path fragment σ̂ is a bad prefix of Psafe

– let BadPref(Psafe) denote the set of bad prefixes of Psafe

• Path fragment σ̂ is a minimal bad prefix for Psafe:

– if bσ ∈ BadPref(Psafe) and no proper prefix of bσ is in BadPref(Psafe)

c© JPK 5

#6: Safety and Liveness Properties Model checking

Example safety properties

c© JPK 6

#6: Safety and Liveness Properties Model checking

Safety properties and finite traces

For transition system TS without terminal states

and safety property Psafe:

TS |= Psafe if and only if Tracesfin(TS) ∩ BadPref(Psafe) = ∅

c© JPK 7

#6: Safety and Liveness Properties Model checking

Closure

• For trace σ ∈
(
2AP

)ω
, let pref(σ) be the set of finite prefixes of σ:

pref(σ) = { σ̂ ∈
(
2AP)∗

| σ̂ is a finite prefix of σ }

– if σ = A0 A1 . . . then pref(σ) =
n

ε, A0, A0A1, A0A1A2, . . .
o

• For property P this is lifted as follows: pref(P) =
⋃

σ∈P pref(σ)

• The closure of LT property P :

closure(P) =
{
σ ∈

(
2AP)ω

| pref(σ) ⊆ pref(P)
}

– the set of infinite traces whose finite prefixes are also prefixes of P , or
– infinite traces in the closure of P do not have a prefix that is not a prefix of P

c© JPK 8

#6: Safety and Liveness Properties Model checking

Safety properties and closures

For any LT property P over AP:

P is a safety property if and only if closure(P) = P

c© JPK 9

#6: Safety and Liveness Properties Model checking

Finite trace equivalence and safety properties

For TS and TS′ be transition systems (over AP) without terminal states:

Tracesfin(TS) ⊆ Tracesfin(TS′)

if and only if

for any safety property Psafe : TS′ |= Psafe ⇒ TS |= Psafe

Tracesfin(TS) = Tracesfin(TS′)

if and only if

TS and TS′ satisfy the same safety properties

c© JPK 10

#6: Safety and Liveness Properties Model checking

Finite vs. infinite traces

For TS without terminal states and finite TS′:

Traces(TS) ⊆ Traces(TS′) iff Tracesfin(TS) ⊆ Tracesfin(TS′)

this does not hold for infinite TS′ (cf. next slide)
but also holds for image-finite TS′

c© JPK 11

#6: Safety and Liveness Properties Model checking

Trace inclusion 6= finite trace inclusion

{ b }

{ b }

{ b }

{ b }

Traces(TS) 6⊆ Traces(TS′) and Tracesfin(TS) ⊆ Tracesfin(TS′)

c© JPK 12

#6: Safety and Liveness Properties Model checking

Why liveness?

• Safety properties specify that “something bad never happens”

• Doing nothing easily fulfills a safety property

– as this will never lead to a “bad” situation

⇒ Safety properties are complemented by liveness properties

– that require some progress

• Liveness properties assert that:

– ”something good” will happen eventually [Lamport 1977]

c© JPK 13

#6: Safety and Liveness Properties Model checking

The meaning of liveness

[Lamport 2000]

The question of whether a real system satisfies a liveness property
is meaningless; it can be answered only by observing the system for

an infinite length of time, and real systems don’t run forever.

Liveness is always an approximation to the property we really care about.
We want a program to terminate within 100 years, but proving that it does

would require addition of distracting timing assumptions.

So, we prove the weaker condition that the program eventually terminates.
This doesn’t prove that the program will terminate within our lifetimes,

but it does demonstrate the absence of infinite loops.

c© JPK 14

#6: Safety and Liveness Properties Model checking

Liveness properties

LT property Plive over AP is a liveness property whenever

pref(Plive) =
(
2AP)∗

• A liveness property is an LT property

– that does not rule out any prefix

• Liveness properties are violated in “infinite time”

– whereas safety properties are violated in finite time
– finite traces are of no use to decide whether P holds or not
– any finite prefix can be extended such that the resulting infinite trace satisfies P

c© JPK 15

#6: Safety and Liveness Properties Model checking

Example liveness properties

• “If the tank is empty, the outlet valve will eventually be closed”

• “If the outlet valve is open and the request signal disappears,
the outlet valve will eventually be closed”

• “If the tank is full and a request is present,
the outlet valve will eventually be opened”

• “The program terminates within 31 computational steps”

⇒ a finite trace may violate this; this is a safety property!

• “The program eventually terminates”

c© JPK 16

#6: Safety and Liveness Properties Model checking

Liveness properties for mutual exclusion

• Eventually:

– each process will eventually enter its critical section

• Repeated eventually:

– each process will enter ist critical section infinitely often

• Starvation freedom:

– each waiting process will eventually enter its critical section

how to formalize these properties?

c© JPK 17

#6: Safety and Liveness Properties Model checking

Liveness properties for mutual exclusion
P = {A0 A1 A2 . . . | Aj ⊆ AP ∧ . . . } and AP = {wait1, crit1, wait2, crit2}

• Eventually:
(∃j > 0. crit1 ∈ Aj) ∧ (∃j > 0. crit2 ∈ Aj)

• Repeated eventually:
“∞

∃ j > 0. crit1 ∈ Aj

”
∧

“∞

∃ j > 0. crit2 ∈ Aj

”

• Starvation freedom:

∀j > 0. (wait1 ∈ Aj ⇒ (∃k > j. crit1 ∈ Ak)) ∧

∀j > 0. (wait2 ∈ Aj ⇒ (∃k > j. crit2 ∈ Ak))

c© JPK 18

#6: Safety and Liveness Properties Model checking

Safety vs. liveness

• Are safety and liveness properties disjoint? Yes

• Is any linear-time property a safety or liveness property? No

• But:

for any LT property P an equivalent LT property P ′ exists

which is a conjunction of a safety and a liveness property

⇒ safety and liveness provide an essential characterization of LT properties

c© JPK 19

#6: Safety and Liveness Properties Model checking

Basic properties

If P (over AP) is both a safety and a liveness property then:

P =
(
2AP)ω

For any LT properties P and P ′:

closure(P ∪ P ′) = closure(P) ∪ closure(P ′)

let’s consider the proofs of these facts

c© JPK 20

#6: Safety and Liveness Properties Model checking

A non-safety and non-liveness property

“the machine provides infinitely often beer
after initially providing sprite three times in a row”

• This property consists of two parts:

– it requires beer to be provided infinitely often
⇒ as any finite trace fulfills this, it is a liveness property

– the first three drinks it provides should all be sprite
⇒ bad prefix = one of first three drinks is beer; this is a safety property

• Property is thus a conjunction of a safety and a liveness property

does this apply to all such properties?

c© JPK 21

#6: Safety and Liveness Properties Model checking

Decomposition theorem

For any LT property P over AP there exists

a safety property Psafe and a liveness property Plive

(both over AP) such that:

P = Psafe ∩ Plive

Proposal: P = closure(P)| {z }
=Psafe

∩
“

P ∪
““

2AP
”ω

\ closure(P)
””

| {z }
=Plive

c© JPK 22

#6: Safety and Liveness Properties Model checking

Proof

c© JPK 23

#6: Safety and Liveness Properties Model checking

“Sharpest” decomposition theorem

Let P be an LT property and P = Psafe ∩ Plive

where Psafe is a safety property and Plive a liveness property.

Then:

1. closure(P) ⊆ Psafe

2. Plive ⊆ P ∪
((

2AP
)ω

\ closure(P)
)

closure(P) is the strongest safety property and““
2AP

”ω

\ closure(P)
”

the weakest liveness property

c© JPK 24

#6: Safety and Liveness Properties Model checking

Classification of LT properties

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

liveness properties

neither liveness
nor safety properties

invariants

safety properties

safety and liveness property

c© JPK 25

#6: Safety and Liveness Properties Model checking

Summary LT properties

• LT properties are finite sets of infinite words over 2AP (= traces)

• An invariant requires a condition Φ to hold in any reachable state

• Each trace refuting a safety property has a finite prefix causing this

– invariants are safety properties with bad prefix Φ∗(¬Φ)

– a safety property is regular iff its set of bad prefixes is a regular language
⇒ safety properties constrain finite behaviors

• A liveness property does not rule out finite behaviour

⇒ liveness properties constrain infinite behaviors

• Any LT property is equivalent to a conjunction of a safety and a
liveness property

c© JPK 26

