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#17: Complexity and correctness Model checking

Overview Lecture #17

⇒ Repetition: from LTL to GNBA

• Correctness proof

• Complexity results

– LTL model checking is coNP-hard and PSPACE-complete
– Satisfiability and validity are PSPACE-hard

• Summary of LTL model checking
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#17: Complexity and correctness Model checking

Reduction to persistence checking

TS |= ϕ if and only if Traces(TS) ⊆ Words(ϕ)

if and only if Traces(TS) ∩ (
(2AP)ω \ Words(ϕ)

)
= ∅

if and only if Traces(TS) ∩ Words(¬ϕ)︸ ︷︷ ︸
Lω(A¬ϕ)

= ∅

if and only if TS ⊗A¬ϕ |= ��¬F

LTL model checking is thus reduced to persistence checking!
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#17: Complexity and correctness Model checking

Overview of LTL model checking

model checker

‘No’ (counter-example)

Model of system

Transition system TS

Negation of property

Product transition system
TS⊗A¬ϕ

TS⊗A¬ϕ |= Ppers(A¬ϕ)

LTL-formula ¬ϕ

Büchi automaton A¬ϕ

Generalised Büchi automaton G¬ϕ

System

‘Yes’
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#17: Complexity and correctness Model checking

From LTL to GNBA
GNBA Gϕ over 2AP for LTL-formula ϕ with Lω(Gϕ) = Words(ϕ):

• Assume ϕ only contains the operators ∧, ¬, © and U

– ∨,→, �, �, W , and so on, are expressed in terms of these basic operators

• States are elementary sets of sub-formulas in ϕ

– for σ = A0A1A2 . . . ∈ Words(ϕ), expand Ai ⊆ AP with sub-formulas of ϕ
– . . . to obtain the infinite word σ̄ = B0B1B2 . . . such that

ψ ∈ Bi if and only if σ
i
= AiAi+1Ai+2 . . . |= ψ

– σ̄ is intended to be a run in GNBA Gϕ for σ

• Transitions are derived from semantics © and expansion law for U

• Accept sets guarantee that: σ̄ is an accepting run for σ iff σ |= ϕ
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#17: Complexity and correctness Model checking

Elementary sets of formulae

B ⊆ closure(ϕ) is elementary if:

1. B is logically consistent if for all ϕ1∧ϕ2, ψ ∈ closure(ϕ):

• ϕ1 ∧ ϕ2 ∈ B ⇔ ϕ1 ∈ B and ϕ2 ∈ B
• ψ ∈ B ⇒ ¬ψ 	∈ B
• true ∈ closure(ϕ) ⇒ true ∈ B

2. B is locally consistent if for all ϕ1 Uϕ2 ∈ closure(ϕ):

• ϕ2 ∈ B ⇒ ϕ1 Uϕ2 ∈ B
• ϕ1 Uϕ2 ∈ B and ϕ2 	∈ B ⇒ ϕ1 ∈ B

3. B is maximal , i.e., for all ψ ∈ closure(ϕ):

• ψ /∈ B ⇒ ¬ψ ∈ B
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#17: Complexity and correctness Model checking

The GNBA of LTL-formula ϕ

For LTL-formula ϕ, let Gϕ = (Q, 2AP, δ,Q0,F) where

• Q = all elementary sets B ⊆ closure(ϕ) , Q0 = {B ∈ Q | ϕ ∈ B }

• F =
{{

B ∈ Q | ϕ1 Uϕ2 �∈ B or ϕ2 ∈ B
} | ϕ1 Uϕ2 ∈ closure(ϕ)

}

• The transition relation δ : Q× 2AP → 2Q is given by:

– If A 	= B ∩ AP then δ(B,A) = ∅

– δ(B,B ∩ AP) is the set of all elementary sets of formulas B ′ satisfying:
(i) For every©ψ ∈ closure(ϕ): ©ψ ∈ B ⇔ ψ ∈ B ′, and
(ii) For every ϕ1 Uϕ2 ∈ closure(ϕ):

ϕ1 Uϕ2 ∈ B ⇔
“
ϕ2 ∈ B ∨ (ϕ1 ∈ B ∧ ϕ1 Uϕ2 ∈ B′)

”
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#17: Complexity and correctness Model checking

GNBA for LTL-formula © a

{ a,© a }
B1

{ a,¬© a }
B2

{¬a,© a }
B3

{¬a,¬© a }
B4

a

¬a

a

a

¬a

¬a

¬a

a

Q0 = {B1,B3 } since© a ∈ B1 and© a ∈ B3

δ(B2, { a }) = {B3,B4 } as B2 ∩ { a } = { a }, ¬© a =©¬a ∈ B2, and ¬a ∈ B3,B4

δ(B1, { a }) = {B1,B2 } as B1 ∩ { a } = { a },© a ∈ B1 and a ∈ B1,B2

δ(B4, { a }) = ∅ since B4 ∩ { a } = ∅ 	= { a }

The set F is empty, since ϕ =© a does not contain an until-operator
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#17: Complexity and correctness Model checking

GNBA for LTL-formula aU b

{ a, b, aU b }
B1

{¬a,¬b,¬(aU b) }
B4

{ a,¬b,¬(aU b) }
B5

{¬a, b, aU b }
B2

{ a,¬b, aU b }
B3

justification: on the black board
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#17: Complexity and correctness Model checking

Overview Lecture #17

• Repetition: from LTL to GNBA

⇒ Correctness proof

• Complexity results

– LTL model checking is coNP-hard and PSPACE-complete
– Satisfiability and validity are PSPACE-hard

• Summary of LTL model checking
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#17: Complexity and correctness Model checking

Correctness theorem

Words(ϕ) = Lω(Gϕ)

Proof: on the black board
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#17: Complexity and correctness Model checking

NBA are more expressive than LTL

Corollary: every LTL-formula expresses an ω-regular property

But: there exist ω-regular properties that cannot be expressed in LTL

Example: there is no LTL formula ϕ with Words(ϕ) = P for the LT-property:

P =


A0A1A2 . . . ∈

“
2{ a }

”ω
| a ∈ A2i for i � 0

ff

But there exists an NBAA with Lω(A) = P

⇒ there are ω-regular properties that cannot be expressed in LTL!
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#17: Complexity and correctness Model checking

Overview Lecture #16

• Repetition: from LTL to GNBA

• Correctness proof

⇒ Complexity results

– LTL model checking is coNP-hard and PSPACE-complete
– Satisfiability and validity are PSPACE-hard

• Summary of LTL model checking

c© JPK 12



#17: Complexity and correctness Model checking

Complexity for LTL to NBA

For any LTL-formula ϕ (over AP) there exists an NBAAϕ
with Words(ϕ) = Lω(Aϕ) and

which can be constructed in time and space in 2O(|ϕ|· log |ϕ|)

Justification complexity: next slide
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#17: Complexity and correctness Model checking

Time and space complexity in 2O(|ϕ|· log |ϕ|)

• States GNBA Gϕ are elementary sets of formulae in closure(ϕ)

– sets B can be represented by bit vectors with single bit per subformula ψ of ϕ

• The number of states in Gϕ is bounded by 2|subf(ϕ)|

– where subf(ϕ) denotes the set of all subformulae of ϕ
– |subf(ϕ)| � 2·|ϕ|; so, the number of states in Gϕ is bounded by 2O(|ϕ|)

• The number of accepting sets of Gϕ is bounded above by O(|ϕ|)

• The number of states in NBA Aϕ is thus bounded by 2O(|ϕ)| · O(|ϕ|)

• 2O(|ϕ|) · O(|ϕ|) = 2O(|ϕ| log |ϕ|) qed
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#17: Complexity and correctness Model checking

Lower bound

There exists a family of LTL formulas ϕn with |ϕn| = O(poly(n))

such that every NBAAϕn for ϕn has at least 2n states
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#17: Complexity and correctness Model checking

Proof (1)

Let AP be non-empty, that is, |2AP| � 2 and:

Ln =
n

A1 . . .An A1 . . .An σ | Ai ⊆ AP∧σ ∈
“
2

AP
”ω o

, for n � 0

It follows Ln = Words(ϕn) where ϕn =
^
a∈AP

^
0�i<n

(©i
a←→©n+i

a)

ϕn is an LTL formula of polynomial length: |ϕn| ∈ O
“
|AP| · n

”

However, any NBAA with Lω(A) = Ln has at least 2n states
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#17: Complexity and correctness Model checking

Proof (2)

Claim: any NBAA for
^
a∈AP

^
0�i<n

(©i a←→©n+i a) has at least 2n states

Words of the form A1 . . .An A1 . . .An ∅ ∅ ∅ . . . are accepted by A
A thus has for every word A1 . . .An of length n, a state q(A1 . . .An), say,
which can be reached from an initial state by consuming A1 . . .An

From q(A1 . . .An), it is possible to visit an accept state infinitely often
by accepting the suffix A1 . . .An ∅ ∅ ∅ . . .

If A1 . . .An 	= A′1 . . .A
′
n then

A1 . . .An A′1 . . .A′n ∅ ∅ ∅ . . . /∈ Ln = Lω(A)

Therefore, the states q(A1 . . .An) are all pairwise different

Given |2AP| possible sequences A1 . . .An, NBAA has �
“˛̨̨

2AP
˛̨̨”n

� 2n states
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#17: Complexity and correctness Model checking

Complexity for LTL model checking

The time and space complexity of LTL model checking is in O
“
|TS|·2|ϕ|

”
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#17: Complexity and correctness Model checking

On-the-fly LTL model checking

• Idea: find a counter-example during the generation of Reach(TS)
and A¬ϕ
– exploit the fact that Reach(TS) and A¬ϕ can be generated in parallel

⇒ Generate Reach(TS ⊗A¬ϕ) “on demand”

– consider a new vertex only if no accepting cycle has been found yet
– only consider the successors of a state inA¬ϕ that match current state in TS

⇒ Possible to find an accepting cycle without generating A¬ϕ entirely

• This on-the-fly scheme is adopted in e.g. the model checker SPIN
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#17: Complexity and correctness Model checking

The LTL model-checking problem is co-NP-hard

The Hamiltonian path problem is polynomially reducible to

the complement of the LTL model-checking problem

In fact, the LTL model-checking problem is PSPACE-complete [Sistla & Clarke 1985]
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#17: Complexity and correctness Model checking

LTL satisfiability and validity checking

• Satisfiability problem: Words(ϕ) �= ∅ for LTL-formula ϕ?

– does there exist a transition system for which ϕ holds?

• Solution: construct an NBA Aϕ and check for emptiness

– nested depth-first search for checking persistence properties

• Validity problem: is ϕ ≡ true, i.e., Words(ϕ) =
(
2AP

)ω
?

– does ϕ hold for every transition system?

• Solution: as for satisfiability, as ϕ is valid iff ¬ϕ is satisfiable

run time is exponential; a more efficient algorithm most probably does not exist!
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LTL satisfiability and validity checking

The satisfiability and validity problem for LTL are PSPACE-complete

Black board: show the fact that these problems are PSPACE-hard
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#17: Complexity and correctness Model checking

Overview Lecture #16

• Repetition: from LTL to GNBA

• Correctness proof

• Complexity results

– LTL model checking is coNP-hard and PSPACE-complete
– Satisfiability and validity are PSPACE-hard

⇒ Summary of LTL model checking
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Summary of LTL model checking (1)

• LTL is a logic for formalizing path-based properties

• Expansion law allows for rewriting until into local conditions and next

• LTL-formula ϕ can be transformed algorithmically into NBA Aϕ

– this may cause an exponential blow up
– algorithm: first construct a GNBA for ϕ; then transform it into an equivalent NBA

• LTL-formulae describe ω-regular LT-properties

– but do not have the same expressivity as ω-regular languages
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#17: Complexity and correctness Model checking

Summary of LTL model checking (2)

• TS |= ϕ can be solved by a nested depth-first search in TS ⊗A¬ϕ
– time complexity of the LTL model-checking algorithm is linear in TS and

exponential in |ϕ|

• Fairness assumptions can be described by LTL-formulae

the model-checking problem for LTL with fairness is reducible
to the standard LTL model-checking problem

• The LTL-model checking problem is PSPACE-complete

• Satisfiability and validity of LTL amounts to NBA emptiness-check

• The satisfiability and validity problem for LTL are PSPACE-complete
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