© JPK

Linear Temporal Logic (2)
Lecture #14 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

December 3, 2008

#14: Linear temporal logic (2) Model checking

Overview Lecture #14

= Repetition: LTL syntax and semantics
e EXxpansion laws

e Positive normal form

© JPK

#14: Linear temporal logic (2) Model checking

Linear temporal logic

BNF grammar for LTL formulas over propositions AP with a € AP:

p = Ttrue ‘ a | 901/\902| g ‘ O ‘ 1 U 2

auxiliary temporal operators: & ¢ =trueUgpandO0¢p = =< = ¢

© JPK

#14: Linear temporal logic (2) Model checking

LTL semantics
The LT-property induced by LTL formula ¢ over AP is:

Words(y) = {0 € (ZAP)w | o = ga},where = is the smallest relation satisfying:

o = true

o E a iff aec Ay (i.e., Ag = a)

o E ©oiNpy Iff oFEpando = oo

o = - Iff o~y

o = Oy iff of[l.]=A14A45... =¢

o = @i1Upy iff 352>20.0[j..] Eps and ofi..] =1, 0<i <
for o = AgA1As. .. we have oli.] = A;A; 11 Ajis. .. isthe suffix of o from index i on

© JPK 3

#14: Linear temporal logic (2)

Model checking

Semantics of O, &, OC and &O

Iff

Iff

Iff

Iff

45 > 0.0[j..] E ¢

vj

WV

0.00j.] E ¢
Vi>0.3i>j.0fi..] ¢

435>0V >j.0i..]Ep

© JPK

#14: Linear temporal logic (2) Model checking

LTL semantics

Let TS = (S,Act,—, I,AP, L) be a transition system without terminal
states, and let © be an LTL-formula over AP.

e For infinite path fragment = of TS:

TEp Iff trace(m) = ¢

e For state s € S

sk Iff (Vr € Paths(s). m = ¢)

e TS satisfies o, denoted TS = ¢, if Traces(TS) C Words(y)

© JPK 5

#14: Linear temporal logic (2) Model checking

Overview Lecture #14

e Repetition: LTL syntax and semantics
= Expansion laws

e Positive normal form

© JPK

#14: Linear temporal logic (2) Model checking

Equivalence

LTL formulas ¢, vy are equivalent, denoted ¢ = 1, If:

Words(¢) = Words(v))

© JPK

#14: Linear temporal logic (2) Model checking

Expansion laws

Expansion: ¢ U
O
Ho

v (e N O(eUy))
oV OCo
o N OD9

proof on the black board

© JPK

#14: Linear temporal logic (2) Model checking

Expansion for until

P = Words(y¢ U v) satisfies:
P = WOde(w) U { AOA1A2 ... € WOde(gO) | A1Ay ... € P}
and is the smallest LT-property such that:

Words(¢) U {AgA1A;... € Words(p) | A1Ay...€e P} C P (%)

smallest LT-property satisfying condition (*) means that:
P = Words(y U 1)) satisfies (*) and Words(p U) C P for each P satisfying (*)

© JPK

#14: Linear temporal logic (2)

Model checking

Proof

© JPK

10

#14: Linear temporal logic (2) Model checking

Weak until

def

e The weak-until (or: unless) operator: oWy = (pU) V Op

— as opposed to until, © W 1) does not require a 1-state to be reached

e Until U and weak until W are dual:

—(pUy) = (A=Y)W (=p A=)
(W) = (pA-Y)U(=p A1)

e Until and weak until are equally expressive:
— Oy = yWfalseand pUv = (W) A -0

e Until and weak until satisfy the same expansion law

— but until is the smallest, and weak until the largest solution!

© JPK

11

#14: Linear temporal logic (2) Model checking

Expansion for weak until

P = Words(p W) satisfies:
P = WOde(w) U { AOA1A2 ... € WOde(gO) | A1Ay ... € P}
and is the largest LT-property such that:

Words(¢) U {AgA1As... € Words(p) | A1Ay...€ P} D P (%)

largest LT-property satisfying condition (**) means that:
P D Words(p W 1) satisfies (**) and Words(¢ W) D P for each P satisfying (**)

© JPK 12

#14: Linear temporal logic (2)

Model checking

Overview Lecture #14

e Repetition: LTL syntax and semantics
e LTL equivalence
e Expansion laws

= Positive normal form

© JPK

13

#14: Linear temporal logic (2) Model checking

(Weak-until) positive normal form

e Canonical form for LTL-formulas

— negations only occur adjacent to atomic propositions
— disjunctive and conjunctive normal form is a special case of PNF
— for each LTL-operator, a dual operator is needed

- eg.(pUw) = ((eA=¥)U(=pA¥)) Vv Dl A=)
— thatis: =(eUy) = (¢ A=) W (mp A1)

e For a € AP, the set of LTL formulas in PNF is given by:

p = true‘false‘a|ﬂa|901A902‘901\/902‘ O¢|901U902|901W902

— O and < are also permitted: Op = ¢ W false and G = true U ¢

© JPK 14

#14: Linear temporal logic (2) Model checking

(Weak until) PNF is always possible

For each LTL-formula there exists an equivalent LTL-formula in PNF

Transformations:

—true ~» false

T ~ P

(P AY) ~ —pV oy

(P VYY) ~ Ay

—Q ~ O~

—(pUy) ~ (A=) W (mp A1)
—|<>g0 N> D_'SO

—|Dgp ~> <>—|g0

but an exponential growth in size is possible

© JPK 15

#14: Linear temporal logic (2) Model checking

Example

Consider the LTL-formula —=0O((aUb) vV O ¢)

This formula is not in PNF, but can be transformed into PNF as follows:

]
&
J
—~
S
-
S

]
& O
B
>
]
(S
=
n
S
>
]
=
>
O
]
=

can the exponential growth in size be avoided?

© JPK 16

#14: Linear temporal logic (2) Model checking

The release operator

def

e The release operator: pRy = —=(—pU—)

—) always holds, a requirement that is released as soon as ¢ holds

e Until U and release R are dual;

pUy = —(-pR-7)
eRY = —(-pU—9)

e Until and release are equally expressive:

— Oy = falseRyp and Uy = —(—¢p R)

e Release satisfies the expansion law: oRy =4 A (¢ V O (pR))

© JPK 17

#14: Linear temporal logic (2)

Model checking

Iff

lii

Iff

Iff

lii

Iff

Semantics of release
o= ¢Ry
(* definition of R *)

~3j > 0. (a[j..] =) AV < j.oli] B —|g0>
(* semantics of negation *)

~3j > 0. (a[j..] £ ap A Vi< g.oolin] go)
(* duality of 3 and V *)

Vj > 0. —u(a[j..] b A Vi< §.ofin] go)

(* de Morgan’s law *)

Vi 0. (ﬂ<a[j..1) v Vi < . ofi] I w)

(* semantics of negation *)

Vj > 0. (0[]’..] = Vv 3i<joofi] E <p>

Vj > 0.00.] ¢ or 3i>0 (oli) Ee) AVE<iolk.] =)

© JPK

18

#14: Linear temporal logic (2) Model checking

Positive normal form (revisited)

Fora € AP, LTL formulas in PNF are given by:

p = tfue‘false‘af‘ﬂa‘ 901/\902‘801\/802‘ Q@‘%Uwz‘s&l R 2

© JPK 19

#14: Linear temporal logic (2)

Model checking

PNF In linear size

For any LTL-formula ¢ there exists

an equivalent LTL-formula vy in PNF with || = O(|¢|)

Transformations:

—true ~» false

— P ~ P

(P AY) ~ SV Y
(P VYY) ~ —pA-y
O ¢ ~ O~
“(pUvy) ~ —9R-y
O ~ O=p
—Oep ~ O

© JPK

20

