© JPK

Linear-Time Properties
Lecture #5b of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling and Verification

E-mail: kat oen@s. r wt h- aachen. de

November 4, 2008

#5b: Linear-time properties

Model checking

Overview Lecture #5

Paths and traces
Linear-time (LT) properties
Trace equivalence and LT properties

Invariants

© JPK

#5b: Linear-time properties Model checking

Recall model checking

requirements @

Formalizing Modeling

Y

=

property
specification

™ Model Checking [+

violated +
counterexample

Ly
. . location
Simulation |——= error

we now consider: what are properties?

© JPK

#5b: Linear-time properties Model checking

Recall executions

e A finite execution fragment p of TS is an alternating sequence of
states and actions ending with a state:

0 = SpQq S1Qa ...0Qp,S, SUCH thatsi%siﬂ forall 0 <7 < n.

e An Iinfinite execution fragment p of TS is an infinite, alternating
sequence of states and actions:

p = SpQ1 S1QaSyag... Such that s, il s;11 forall 0 <.

e An execution of TS is an initial, maximal execution fragment

— amaximal execution fragment is either finite ending in a terminal state, or infinite
— an execution fragment is initial if sg € 1

© JPK 3

#5b: Linear-time properties Model checking

State graph

e The state graph of TS, notation G(TS), is the digraph (V, E)

with vertices V = S and edges £ = {(s,s’) € S x S| s’ € Post(s)}
= omit all state and transition labels in TS and ignore being initial

e Post™(s) is the set of states reachable G(TS) from s

Post*(C) = | J Post™(s) forC C S

e The notations Pre*(s) and Pre*(C) have analogous meaning

e The set of reachable states: Reach(TS) Post™ (1)

© JPK

#5b: Linear-time properties Model checking

Path fragments

e A path fragment is an execution fragment without actions

e A finite path fragment 7 of TS is a state sequence:

T = S9S1...S8, Suchthat s;.1 € Post(s;)forall0 <7 < nwheren >0

e An infinite path fragment = of TS is an infinite state sequence:

T = S9S182... suchthats;;; € Post(s;)foralli >0

e A path of TS is an initial, maximal path fragment

— a maximal path fragment is either finite ending in a terminal state, or infinite
— a path fragmentis initial if sg € 1
— Paths(s) is the set of maximal path fragments 7 with first(w) = s

© JPK 5

#5b: Linear-time properties Model checking

Semaphore-based mutual exclusion

PGl . PGQ .

))

£ noncrity } £ noncrits, }

y = y+1; [Wa|t1 } y = y+1; [walits }
y >0 Loy >
y:=y—1 . oy

\ N |
1 N 12

[Crity } [CritQ }

y=0 means “lock is currently possessed”; y=1 means “lock is free”

© JPK

#5b: Linear-time properties Model checking

Transition system TS(PG; |||PGs)

<n17 na, y:1>

© JPK 7

#5b: Linear-time properties Model checking

Example paths

© JPK

#5b: Linear-time properties Model checking

Traces

e Actions are mainly used to model the (possibility of) interaction

— synchronous or asynchronous communication

e Here, focus on the states that are visited during executions

— the states themselves are not “observable”, but just their atomic propositions

e Consider sequences of the form L(sg) L(s1) L(s2) ...

— just register the (set of) atomic propositions that are valid along the execution
aj

— instead of execution sy —%» s So ...
= this is called a trace

e For a transition system without terminal states:

— traces are infinite words over the alphabet 2, i.e., they are in (2AP>

© JPK 9

#5b: Linear-time properties

Model checking

Traces

e Let transition system TS = (S,Act,—, I, AP, L) without terminal

states

— all maximal paths (and excutions) are infinite

e The trace of path fragment m = sp s1... Is trace(mw) = L(sg) L(s1) - . .

— thetrace of @ = sgs1...syistrace(w) = L(sg) L(s1) ... L(sy)

e The set of traces of a set 11 of paths: trace(Il) = {trace(w) | # € I1 }

e Traces(s) = trace(Paths(s))

e Tracesg,(s) = trace(Pathsg,(s))

Traces(TS) = [J,; Traces(s)

Tracesg,(TS) =

sel

Tracesg,(s)

© JPK

10

#5b: Linear-time properties Model checking

Example traces
Let AP = { crity, crity }

Example path:
T = <n17n27y — 1> — <w17n27y — 1> — <Cl7n27y — O> —
(ni,n2,y =1) = (n,wa,y = 1) — (n1,c2,y =0) — ...

The trace of this path is the infinite word:
trace(m) = @ {crity } @ {crits } @ {crity } T {crity } ...

The trace of the finite path fragment:

T = (ny,ne,y=1) = (wi,ne,y=1) = (w,wr,y = 1) —

<w17027y — O> — <w17n2ay — 1> — <Cl7n27y — O>

trace(w) = @@ @ {crity } @ {crit; }

© JPK 11

#5b: Linear-time properties Model checking

Linear-time properties

e Linear-time properties specify the traces that a TS must exhibit

— LT-property specifies the admissible behaviour of system under consideration

later, a logic will be introduced for specifying LT properties

o Alinear-time property (LT property) over AP is a subset of (2AP)"

— finite words are not needed, as it is assumed that there are no terminal states
e TS (over AP) satisfies LT property P (over AP):

TS P ifandonlyif Traces(TS) C P

— TS satisfies the LT property P if all its “observable” behaviors are admissible
— state s € S satisfies P, notation s = P, whenever Traces(s) C P

© JPK 12

#5b: Linear-time properties Model checking

How to specify mutual exclusion?

“Always at most one process is in its critical section”

e Let AP = { crity, crity }

— other atomic propositions are not of any relevance for this property

e Formalization as LT property

Pute: = setof infinite words Ag Ay A, ... with { crity, crity } € A;forall0 < 4

e Contained in P,,,., are e.g., the infinite words:

— ({crity } {crit })* and {crit; } {crit; } {crit; } ... ando o o...
— but not { crity } @ { crity, crite } ... or @ { crity }, @ @ { crity, crit; }@ . ..

Does the semaphore-based algorithm satisfy P, e, ?

© JPK 13

#5b: Linear-time properties Model checking

Does the semaphore-based algorithm satisfy Poter?

N

{ crity }({c1, wa, y=0)

.

(wi, ca, yIOD{ crity

as there is no reachable state labeled with { crity, crit, }

© JPK 14

#5b: Linear-time properties Model checking

How to specify starvation freedom?

“A process that wants to enter the critical section is eventually able to do so
e Let AP = {waity,crity, waits, crits }

e Formalization as LT-property

P, e = Set of infinite words Ag A; Ao . .. such that:
(an 7. wait; € Aj) = (OHO j. crit; € Aj) foreach: e {1,2}

there exist infinitely many: (OETJ wait; € Aj> = (Vk > 0.35 > k.wait; € A;)

Does the semaphore-based algorithm satisfy P,,,st4ve?

© JPK 15

#5b: Linear-time properties Model checking

Does the semaphore-based algorithm satisfy Postarve?

601, na, y:OD{ crity }

N

{ crity, waitg }((c1, w2, y=0)

.

(w1, ca, y:OD{ waity, critg }

No. Trace @ ({ waity } { waity, waity } { crit;, waity }) € Traces(TS), but € Posiarve

© JPK 16

#5b: Linear-time properties

Model checking

Mutual exclusion algorithm revisited

this algorithm satisfies P,,,zc.

© JPK

17

#5b: Linear-time properties Model checking

Refining mutual exclusion algorithm

601, na, y:OD (n1, c2, y:OD

<’U)1, C2, y:OD
this variant algorithm with an omitted edge also satisfies P,

© JPK 18

#5b: Linear-time properties

Model checking

Trace equivalence and LT properties

For TS and TS’ be transition systems (over AP) without terminal states:

Traces(TS) C Traces(TS")
if and only if
for any LT property P: TS = P implies TS = P

Traces(TS) = Traces(TS)
if and only if

TS and TS' satisfy the same LT properties

© JPK

19

#5b: Linear-time properties Model checking

Two beverage vending machines

select,

AP = { pay, sprite, beer }

there is no LT-property that can distinguish between these machines

© JPK 20

#5b: Linear-time properties Model checking

Invariants

e Safety properties =~ “nothing bad should happen” [Lamport 1977]

e Typical safety property: mutual exclusion property

— the bad thing (having > 1 process in the critical section) never occurs
e Another typical safety property is deadlock freedom

= These properties are in fact invariants

e An invariant is an LT property

— that is given by a condition & for the states
— and requires that ® holds for all reachable states
— e.g., for mutex property ® = —crit;y VvV —crity

© JPK 21

#5b: Linear-time properties Model checking

Invariants

e An LT property P,;,, over AP is an invariant if there is a propositional
logic formula ® over AP such that:

mefU:{AoAlAg... c <2Ap)w ‘ \V/j > 0. Aj ‘:(I)}
— & is called an invariant condition of P;,,

e Note that

TS = P, iff trace(w) € P, forall paths 7 in TS

iff L(s) = @ for all states s that belong to a path of TS
iff L(s) = @ forall states s € Reach(TS)

e d has to be fulfilled by all initial states and

— satisfaction of ® is invariant under all transitions in the reachable fragment of TS

© JPK 22

#5b: Linear-time properties Model checking

Checking an invariant

e Checking an invariant for the propositional formula ®

— check the validity of ® in every reachable state
= use a slight modification of standard graph traversal algorithms (DFS and BFS)
— provided the given transition system TS is finite

e Perform a forward depth-first search

— at least one state s is found with s [~= & =- the invariance of & is violated

e Alternative: backward search

— starts with all states where ® does not hold
— calculates (by a DFS or BFS) the set | J, g .4 Pre™(s)

© JPK 23

#5b: Linear-time properties Model checking

A naive invariant checking algorithm

Input: finite transition system TS and propositional formula &
Output: true if TS satisfies the invariant "always ®”, otherwise false

set of state R := o; (* the set of visited states *)
stack of state U := ¢; (* the empty stack *)
bool b := true; (* all states in R satisfy & *)
forall s € I do

if s ¢ R then

visit(s) (* perform a dfs for each unvisited initial state *)

fi
od
return b

© JPK 24

#5b: Linear-time properties Model checking

A naive invariant checking algorithm

procedure visit (state s)

push(s, U); (* push s on the stack *)
R:=R U {s}; (* mark s as reachable *)
repeat
s’ :=top(U);
if Post(s’) C R then
pop(U);
b:=b A (s |=®); (* check validity of ® in s’ *)
else

let s” € Post(s’) \ R
push(s”, U);

R:=RU {s"}; (* state s’ is a new reachable state *)
fi
until (U = ¢€)
endproc

error indication is state refuting o
initial path fragment sg s1 s2. .. s, wWith s; = ® (i # n) and s,, [= ® is more useful

© JPK 25

#5b: Linear-time properties Model checking

Invariant checking by DFS

Input: finite transition system TS and propositional formula &
Output: "yes” if TS |= "always ®”, otherwise "no” plus a counterexample

set of states R := o, (* the set of reachable states *)
stack of states U := ¢; (* the empty stack *)
bool b := true; (* all states in R satisfy ¢ *)
while (I\ R# @ A b)do

let s € I\ R; (* choose an arbitrary initial state not in R *)

visit(s); (* perform a DFS for each unvisited initial state *)
od
if b then

return(’yes”) (* TS |= "always ®” *)
else

return(’no”, reverse(U)) (* counterexample arises from the stack content *)
fi

© JPK 26

#5b: Linear-time properties

Model checking

Invariant checking by DFS

procedure visit (state s)
push(s, U);
R:=R U {s};
repeat
s’ :=top(U);
if Post(s’) C R then
pop(U);
b:=b A (s = ®);
else
let s € Post(s’) \ R
push(s”, U);
R:=R U {s"};
fi
until (U =€) Vv —b)
endproc

(* push s on the stack *)
(* mark s as reachable *)

(* check validity of ® in s *)

(* state s’/ is a new reachable state *)

© JPK

27

#5b: Linear-time properties Model checking

Time complexity

e Under the assumption that

— s’ € Post(s) can be encountered in time ©(|Post(s)|)
= this holds for a representation of Post(s) by adjacency lists

e The time complexity for invariant checking is O(N * (1 + |®|) + M)

— where N denotes the number of reachable states, and
- M = > .o |Post(s)| the number of transitions in the reachable fragment of TS

e The adjacency lists are typically given implicitly

— e.g., by a syntactic description of the concurrent processes as program graphs
— Post(s) is obtained by the rules for the transition relation

© JPK 28

