© JPK

Fairness
Lecture #7 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling and Verification

E-mail: kat oen@s. r wt h- aachen. de

November 11, 2008

#7: Fairness

Model checking

Overview Lecture #7

= The Importance of Fairness
e Fairness Constraints
e Fairness Assumptions

e Fairness and Safety Properties

© JPK

#7: Fairness Model checking

Does this program always terminate?

Inc ||| Reset
where
proc Inc = while (x>0do z:=z+1) od
proc Reset = x:= -1

x 1S a shared integer variable that initially has value O

© JPK

#7: Fairness Model checking

IS it possible to starve?

<<n1, c2, y:O>>

%

(wy, ¢3,y=0))

© JPK

#7: Fairness Model checking

Process two starves

Is it fair that process two has infinitely many possibilities
to enter the critical section, but never enters it?

© JPK

#7: Fairness Model checking

Process two starves

Is it fair that process two has infinitely many possibilities
to enter the critical section, but only enters it finitely often?

© JPK

#7: Fairness Model checking

Fairness

e Starvation freedom is often considered under process fairness

= there is a fair scheduling of the execution of processes

e Fairness is typically needed to prove liveness

— not for safety properties!
— to prove some form of progress, progress needs to be possible

e Fairness is concerned with a fair resolution of nondeterminism

— such that it is not biased to consistently ignore a possible option

e Problem: liveness properties constrain infinite behaviours

— but some traces—that are unfair—refute the liveness property

© JPK 6

#7: Fairness Model checking

Fairness constraints

e What is wrong with our examples? Nothing!

— interleaving: not realistic as in no processor is infinitely faster than another
— semaphore-based mutual exclusion: level of abstraction

e Rule out “unrealistic” exectuions by imposing fairness constraints

— what to rule out? = different kinds of fairness constraints

e “A process gets its turn infinitely often”

— always unconditional fairness
— if it is enabled infinitely often strong fairness
— if it is continuously enabled from some point on weak fairness

© JPK 7

#7: Fairness Model checking

Fairness

This program terminates under unconditional (process) fairness:

proc Inc = while (x>0do z:=z+ 1) od

proc Reset = x:= -1

x 1S a shared integer variable that initially has value O

© JPK

#7: Fairness

Model checking

Overview Lecture #7

e The Importance of Fairness
= Fairness Constraints
e Fairness Assumptions

e Fairness and Safety Properties

© JPK

#7: Fairness Model checking

Fairness constraints

e Unconditional fairness

an activity is executed infinitely often

e Strong fairness

if an activity is infinitely often enabled (not necessarily always!)
then it has to be executed infinitely often

e Weak fairness

if an activity is continuously enabled (no temporary disabling!)
then it has to be executed infinitely often

we will use actions to distinguish fair and unfair behaviours

© JPK 10

#7: Fairness Model checking

Fairness definition
For TS = (S, Act, —, I, AP, L) without terminal states, A C Act,

|

and infinite execution fragment p = s 20, 54 .of TS:

1. pis unconditionally A-fair whenever: true —- Vk>0.3j 2 k. a; € A

infinitely often A is taken
2. pis strongly A-fair whenever:

(Vk>0.35 > kACt(sﬂﬂA#@) — Vk2>20.3j>k.a; € A

infinitely often A is enabled infinitely often A is taken

3. pis weakly A-fair whenever:

(3k>0.Vj > kACt(sﬂﬂA#@) — Vk2>20.3j>k.a; € A

Als eventually always enabled infinitely often A is taken

where Act(s) = {a cAct]|3Is' €8 .52 }

© JPK 11

#7: Fairness Model checking

Example (un)fair executions

<<n1, c2, y:O>>

%

(wy, ¢3,y=0))

© JPK 12

#7: Fairness Model checking

Which fairness notion to use?

e Fairness constraints aim to rule out “unreasonable” runs

e ToO strong? = relevant computations ruled out

verification yields:
— “false”: error found
— “true™ don’t know as some relevant execution may refute it

e ToO weak? = too many computations considered

verification yields:
— “true”: property holds
— “false”. don’'t know, as refutation maybe due to some unreasonable run

© JPK 13

#7: Fairness Model checking

Relation between fairness constraints

unconditional A-fairness — strong A-fairness — weak A-fairness

© JPK 14

#7: Fairness

Model checking

Overview Lecture #7

e The Importance of Fairness
e Fairness Constraints
= Fairness Assumptions

e Fairness and Safety Properties

© JPK

15

#7: Fairness Model checking

Fairness assumptions

e Fairness constraints impose a requirementon any a € A
e In practice: different constraints on different action sets needed

e This is realised by fairness assumptions

© JPK 16

#7: Fairness Model checking

Fairness assumptions

e A fairness assumption for Act is a triple

F = (fuconda fstmnga fweak)
With Fucond, Fitrongs Fueak S 2
ucondy v strongs v weak =

e Execution p is F-fair if:

— it is unconditionally A-fair for all A € F,.on4, and
— itis strongly A-fair for all A € Fng, and
— itis weakly A-fair for all A € Fear

fairness assumption (@, F’', @) denotes strong fairness; (&, @, F') weak, etc.

© JPK 17

#7: Fairness

Model checking

Fairness for mutual exclusion

wi, €2, yIOD

F = (9, {{ enter, enter, }},)

\

VO
F strong

© JPK

18

#7: Fairness

Model checking

Fairness for mutual exclusion

wi, €2, yIOD

F' = (2, {{ enter; }, { enter, }},)

'
fstrong

© JPK

19

#7: Fairness

Model checking

Fairness for mutual exclusion

Knla C2, y:OD

w1,02,y=0)
F' = (@, {{ enter; }, { enter; }}7 {{ req, }, { req, }}>
fs;fong “7:':”;@]‘3

in any F’'-fair execution each process infinitely often requests access

© JPK

20

#7: Fairness Model checking

Fair paths and traces

e Path sg — sy —s9...1s F-fair if

— there exists an F-fair execution sp — s; —25 55 . . .
— FairPaths(s) denotes the set of F-fair paths that startin s

— FairPaths(TS) = |J,.,; FairPathsr(s)

e Trace o is F-fair if there exists an F-fair execution p with trace(p) = o

— FairTracesz(s) = trace(FairPathsz(s))
— FairTracesx(TS) = trace(FairPathsz(TS))

these notions are only defined for infinite paths and traces; why?

© JPK 21

#7: Fairness Model checking

Fair satisfaction

e TS satisfies LT-property P:
TS E P ifandonlyif Traces(TS) C P
— TS satisfies the LT property P if all its observable behaviors are admissible
e TS fairly satisfies LT-property P wrt. fairness assumption F:
TS Ex P ifandonlyif FairTracesx(TS) C P

— if all paths in TS are F-fair, then TS = P ifand only if TS = P
— if some path in TS is not F-fair, then possibly TS |=# P but TS |~ P

© JPK 22

#7: Fairness

Model checking

Fairness for mutual exclusion

@%1, C2, y:OD

w1, ¢z, y=0))

TS [~ “every process enters its critical section infinitely often”

and TS [~ “every ... often”

but TS =4~ “every . .. often”

© JPK

23

#7: Fairness

Model checking

Overview Lecture #7

e The Importance of Fairness
e Fairness Constraints
e Fairness Assumptions

= Fairness and Safety Properties

© JPK

24

#7: Fairness Model checking

Realizable fairness

For TS with set of actions Act and fairness assumption F for Act:

F is realizable for TS if for any s € Reach(TS): FairPathsr(s) # @

every initial finite execution fragment of TS can be completed to a fair execution

© JPK 25

#7: Fairness Model checking
The suffix property
If infinite execution fragment p is fair
then all suffixes of p are fair.
If infinite execution fragment p is fair
then any finite execution fragment continued with p is fair.
s/ B1 s B2 Bn g — g, Qg a3
\O—> A I — ,@—\0—>81—>82—> ..
arbitrary staFﬁng fragment fair continuation p

© JPK

26

#7: Fairness

Model checking

Realizable fairness and safety

For TS and safety property P, (both over AP)
and F a realizable fairness assumption for TS:
TS = Py ifandonlyif TS E=r P

Safety properties are thus preserved by realizable fairness assumptions

© JPK

27

#7: Fairness Model checking

Non-realizable fairness may harm safety properties

© JPK 28

#7: Fairness Model checking

Summary of fairness

e Fairness constraints rule out unrealistic executions

— i.e., constraints on the actions that occur along infinite executions
— important for the verification of liveness properties

e Unconditional, strong, and weak fairness constraints

— unconditional =- strongfair = weak fair
e Fairness assumptions allow distinct constraints on distinct action sets

e (Realizable) fairness assumptions are irrelevant for safety properties

© JPK 29

