
Fairness in LTL
Lecture #15 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

December 10, 2008

c© JPK

#15: Fairness in LTL Model checking

What did we treat so far?

• LTL semantics: for words, states and transition systems

• LTL equivalence: idempotence, duality, absorption, and expansion

• Dual operators to until: weak until and release

• Expansion law as characteristic equation for until and weak until

• Positive normal form

– for weak until: exponential blow-up of formula
– for release: linear transformation

• LTL is a specification formalism for LT properties

what about fairness in LTL?

c© JPK 1

#15: Fairness in LTL Model checking

Overview Lecture #15

⇒ Repetition: action-based fairness

• State-based fairness in LTL

• Action-based versus state-based fairness

• LTL with fairness constraints

c© JPK 2

#15: Fairness in LTL Model checking

Process one starves

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

c© JPK 3

#15: Fairness in LTL Model checking

Fairness

• Starvation freedom is often considered under process fairness

⇒ there is a fair scheduling of the execution of processes

• Fairness is typically needed to prove liveness

– not for safety properties!
– to prove some form of progress, progress needs to be possible

• Fairness is concerned with a fair resolution of nondeterminism

– such that it is not biased to consistently ignore a possible option

• Problem: liveness properties constrain infinite behaviours

– but some traces—that are unfair—refute the liveness property

c© JPK 4

#15: Fairness in LTL Model checking

Summary of fairness

• Fairness constraints rule out unrealistic executions

– by putting constraints on the actions that occur along infinite executions

• Unconditional, strong, and weak fairness constraints

– unconditional ⇒ strong fair ⇒ weak fair
– weak fairness rules out the least number of runs; unconditional the most

• Fairness assumptions allow distinct constraints on distinct action sets

• (Realizable) fairness assumptions are irrelevant for safety properties

– important for the verification of liveness properties

c© JPK 5

#15: Fairness in LTL Model checking

Action-based fairness constraints

For set A of actions and infinite run ρ:

• Unconditional fairness

some action in A occurs infinitely often along ρ

• Strong fairness

if actions in A are infinitely often enabled (not necessarily always!)
then some action in A has to occur infinitely often in ρ

• Weak fairness

if actions in A are continuously enabled (no temporary disabling!)
then it has to occur infinitely often in ρ

c© JPK 6

#15: Fairness in LTL Model checking

Action-based fairness constraints

For TS = (S, Act,→, I, AP, L) without terminal states, A ⊆ Act,

and infinite execution fragment ρ = s0
α0−−→ s1

α1−−→ . . . of TS:

1. ρ is unconditionally A-fair whenever: ∀k � 0. ∃j � k. αj ∈ A| {z }
infinitely often A is taken

2. ρ is strongly A-fair whenever:

(∀k � 0. ∃j � k. Act(sj) ∩ A
= ∅)| {z }
infinitely often A is enabled

=⇒ (∀k � 0. ∃j � k. αj ∈ A)| {z }
infinitely often A is taken

3. ρ is weakly A-fair whenever:

(∃k � 0. ∀j � k. Act(sj) ∩ A
= ∅)| {z }
A is eventually always enabled

=⇒ (∀k � 0. ∃j � k. αj ∈ A)| {z }
infinitely often A is taken

c© JPK 7

#15: Fairness in LTL Model checking

Examples
〈n1, n2, 1〉

〈w1, n2, 1〉 〈n1, w2, 1〉

〈c1, n2, 0〉 〈w1, w2, 1〉 〈n1, c2, 0〉

〈c1, w2, 0〉 〈w1, c2, 0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

〈n1, n2, 1〉

〈w1, n2, 1〉 〈n1, w2, 1〉

〈c1, n2, 0〉 〈w1, w2, 1〉 〈n1, c2, 0〉

〈c1, w2, 0〉 〈w1, c2, 0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

• Run 〈n1, n2, 1〉 req1−−−−→〈w1, n2, 1〉 enter1−−−−−→〈c1, n2, 0〉 rel−−−→〈n1, n2, 1〉 req1−−−−→ . . .

– is not unconditionally A-fair for A = { enter2 }
– but strongly A-fair, as in no ρ-state, the action enter2 is enabled

• Run 〈n1, n2, 1〉 req2−−−−→〈n1, w2, 1〉 req1−−−−→〈w1, w2, 1〉 enter1−−−−−→〈c1, w2, 0〉 rel−−−→〈n1, w2, 1〉 . . .

– is not strongly A-fair: along ρ, enter2 is infinitely often enabled but never taken
– but weakly A-fair, since enter2 is always not enabled along ρ

c© JPK 8

#15: Fairness in LTL Model checking

Fairness assumptions

• A fairness assumption for Act is a triple

F = (Fucond ,Fstrong ,Fweak)

with Fucond ,Fstrong ,Fweak ∈ 2Act.

• Execution ρ is F -fair if:

– it is unconditionally A-fair for all A ∈ Fucond , and
– it is strongly A-fair for all A ∈ Fstrong , and
– it is weakly A-fair for all A ∈ Fweak

• F is realizable for TS if for any s ∈ Reach(TS): FairPathsF(s) �= ∅

fairness assumption (∅,F′, ∅) denotes strong fairness; (∅, ∅,F′) weak, etc.

c© JPK 9

#15: Fairness in LTL Model checking

Example: fairness assumption for mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

skip

skip skip

skip skip

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

F′ =

„
∅,

n
{ enter1 }, { enter2 }

o
| {z }

Fstrong

,
n
{ req1 }, { req2 }

o
| {z }

Fweak

«

in any F′-fair execution each process infinitely often requests access

c© JPK 10

#15: Fairness in LTL Model checking

Fair paths and traces

• Let fairness assumption F = (Fucond ,Fstrong ,Fweak)

• Path s0−→ s1−→ s2 . . . is F-fair if

– there exists an F -fair execution s0
α1−−→ s1

α2−−→ s2 . . .

– FairPathsF(s) denotes the set of F -fair paths that start in s

– FairPathsF(TS) =
S

s∈I FairPathsF(s)

• Trace σ is F-fair if there exists an F-fair execution ρ with trace(ρ) = σ

– FairTracesF(s) = trace(FairPathsF(s))

– FairTracesF(TS) = trace(FairPathsF(TS))

c© JPK 11

#15: Fairness in LTL Model checking

Fair satisfaction

• TS satisfies LT-property P :

TS |= P if and only if Traces(TS) ⊆ P

• TS fairly satisfies LT-property P wrt. fairness assumption F :

TS |=F P if and only if FairTracesF(TS) ⊆ P

– TS satisfies the LT property P if all its fair observable behaviors are admissible

c© JPK 12

#15: Fairness in LTL Model checking

Overview Lecture #15

• Repetition: action-based fairness

⇒ State-based fairness in LTL

• Action-based versus state-based fairness

• LTL with fairness constraints

c© JPK 13

#15: Fairness in LTL Model checking

LTL fairness constraints
Let Φ and Ψ be propositional logic formulas over AP.

1. An unconditional LTL fairness constraint is of the form:

ufair = ��Ψ

2. A strong LTL fairness condition is of the form:

sfair = ��Φ −→ ��Ψ

3. A weak LTL fairness constraint is of the form:

wfair = ��Φ −→ ��Ψ

Φ stands for “something is enabled”; Ψ for “something is taken”

c© JPK 14

#15: Fairness in LTL Model checking

LTL fairness assumption

• LTL fairness assumption = conjunction of LTL fairness constraints

– the fairness constraints are of any arbitrary type

• Strong fairness assumption: sfair =
V

0<i�k

“
��Φi −→ ��Ψi

”
– compare this to an action-based strong fairness constraint over A with |A| = k

• General format: fair = ufair ∧ sfair ∧ wfair

• Rules of thumb:

– strong (or unconditional) fairness assumptions are useful for solving contentions
– weak fairness suffices for resolving nondeterminism resulting from interleaving

c© JPK 15

#15: Fairness in LTL Model checking

Fair satisfaction

For state s in transition system TS (over AP) without terminal states, let

FairPathsfair(s) =
{

π ∈ Paths(s) | π |= fair
}

FairTracesfair(s) =
{

trace(π) | π ∈ FairPathsfair(s)
}

For LTL-formula ϕ, and LTL fairness assumption fair :

s |=fair ϕ if and only if ∀π ∈ FairPathsfair(s). π |= ϕ and

TS |=fair ϕ if and only if ∀s0 ∈ I. s0 |=fair ϕ

|=fair is the fair satisfaction relation for LTL; |= the standard one for LTL

c© JPK 16

#15: Fairness in LTL Model checking

Randomized arbiter

noncrit1

wait1

crit1

req1

enter1

rel

noncrit2

wait2

crit2

req2

enter2

rel

unlock

tail

lock enter2

rel

head

enter1

TS1 ‖ Arbiter ‖ TS2
|= �� crit1

But: TS1 ‖ Arbiter ‖ TS2 |=fair ��crit1 ∧ ��crit2 with fair = ��head ∧ ��tail

c© JPK 17

#15: Fairness in LTL Model checking

Semaphore-based mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

skip

skip skip

skip skip

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

on black board: some action- versus state-based fairness assumptions

c© JPK 18

#15: Fairness in LTL Model checking

State- versus action-based fairness

• From action-based to (state-based) LTL fairness assumptions:

– premise: deduce from state label, the possible enabled actions
– conclusion: deduce from state label, the just executed actions

• General scheme:

– copy each non-initial state s and keep track of action used to enter s

– copy 〈s, α〉 means s has been entered via action α

⇒ Any action-based fairness assumption can be transformed
into an equivalent LTL fairness assumption

– the reverse, however, does not hold

c© JPK 19

#15: Fairness in LTL Model checking

Turning action-based into state-based fairness

For TS = (S, Act,→, I, AP, L) let TS′ = (S′, Act∪{ begin },→′, I ′, AP′, L′) with:

• S′ = I × { begin } ∪ S × Act and I ′ = I × { begin }
• →′ is the smallest relation satisfying:

s α−→ s′

〈s, β〉 α−→′ 〈s′
, α〉 and

s0
α−→ s s0 ∈ I

〈s0, begin〉 α−→′ 〈s, α〉

• AP′ = AP ∪
n

enabled(α), taken(α) | α ∈ Act
o

• labeling function:

– L′(〈s0, begin〉) = L(s0) ∪
n

enabled(β) | β ∈ Act(s0)
o

– L′(〈s, α〉) = L(s) ∪
n

taken(α)
o

∪
n

enabled(β) | β ∈ Act(s)
o

it follows: TracesAP(TS) = TracesAP(TS′)

c© JPK 20

#15: Fairness in LTL Model checking

State- versus action-based fairness

• Strong A-fairness is described by the LTL fairness assumption:

sfairA = ��
∨

α∈A

enabled(α) → ��
∨

α∈A

taken(α)

• The fair traces of TS and its action-based variant TS′ are equal:
n

traceAP(π) | π ∈ Paths(TS), π is F -fair
o

=
n

traceAP(π′) | π′ ∈ Paths(TS′), π′ |= fair
o

• For every LT-property P (over AP): TS |=F P iff TS′ |=fair P

c© JPK 21

#15: Fairness in LTL Model checking

Example

c© JPK 22

#15: Fairness in LTL Model checking

Reducing |=fair to |=

For:

• transition system TS without terminal states

• LTL formula ϕ, and

• LTL fairness assumption fair

it holds:

TS |=fair ϕ if and only if TS |= (fair → ϕ)

verifying an LTL-formula under a fairness assumption can be done
using standard verification algorithms for LTL

c© JPK 23

