
Verifying ω-Regular Properties
Lecture #11 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

November 25, 2008

c© JPK

#11: Verifying ω-regular properties Model checking

Overview Lecture #11

⇒ Checking Regular Safety Properties

• Checking ω-Regular Properties

– persistence properties
– reduction to checking persistence properties
– checking persistence properties

• Nested depth-first search

• Summary of regular properties

c© JPK 1

#11: Verifying ω-regular properties Model checking

Regular safety properties

Safety property Psafe over AP is regular

if its set of bad prefixes is a regular language over 2AP

c© JPK 2

#11: Verifying ω-regular properties Model checking

Basic idea of the algorithm

TS 6|= Psafe if and only if Tracesfin(TS) ∩ BadPref(Psafe)
︸ ︷︷ ︸

Psafe

6= ∅

if and only if Tracesfin(TS) ∩ L(A) 6= ∅

if and only if TS ⊗A 6|= “always” ¬F
︸ ︷︷ ︸

invariant property

⇒ checking regular safety properties is reduced to invariant checking!

c© JPK 3

#11: Verifying ω-regular properties Model checking

Verifying regular safety properties

Let TS over AP and NFA A with alphabet 2AP as before, regular safety
property Psafe over AP such that L(A) is the set of bad prefixes of Psafe

The following statements are equivalent:

(a) TS |= Psafe

(b) Tracesfin(TS) ∩ L(A) = ∅

(c) TS ⊗A |= Pinv(A)

where Pinv(A) = “always” ¬F

c© JPK 4

#11: Verifying ω-regular properties Model checking

Overview Lecture #11

• Checking Regular Safety Properties

⇒ Checking ω-Regular Properties

– persistence properties
– reduction to checking persistence properties
– checking persistence properties

• Nested depth-first search

• Summary of regular properties

c© JPK 5

#11: Verifying ω-regular properties Model checking

ω-regular properties

LT property P over AP is ω-regular

if P is an ω-regular language over 2AP

c© JPK 6

#11: Verifying ω-regular properties Model checking

Basic idea of the algorithm

TS 6|= P if and only if Traces(TS) 6⊆ P

if and only if Traces(TS) ∩
(
2AP

)ω
\ P 6= ∅

if and only if Traces(TS) ∩ P 6= ∅

if and only if Traces(TS) ∩ Lω(A) 6= ∅

if and only if TS ⊗A 6|= “eventually for ever” ¬F
︸ ︷︷ ︸

persistence property

where A is an NBA accepting the complement property P =
“

2AP
”ω

\ P

c© JPK 7

#11: Verifying ω-regular properties Model checking

Persistence property

A persistence property over AP is an LT property Ppers ⊆
(
2AP

)ω

“eventually for ever Φ” for some propositional logic formula Φ over AP:

Ppers =
{

A0A1A2 . . . ∈
(
2AP)ω

| ∃i > 0. ∀j > i. Aj |= Φ
}

Φ is called a persistence (or state) condition of Ppers

“Φ is an invariant after a while”

c© JPK 8

#11: Verifying ω-regular properties Model checking

Example persistence property

q0 q1 q2
a ¬a

true a true

let { a } = AP, i.e., 2AP = {A, B} where A = {} and B = {a}

”eventually for ever a” equals (A + B)∗Bω = ({} + {a})∗{a}ω

c© JPK 9

#11: Verifying ω-regular properties Model checking

Recall synchronous product

For transition system TS = (S, Act,→, I, AP, L) without terminal states
and A = (Q, Σ, δ,Q0, F) a non-blocking NBA with Σ = 2AP, let:

TS ⊗A = (S′, Act,→ ′, I ′, AP′
, L′) where

• S′ = S × Q, AP′ = Q and L′(〈s, q〉) = { q }

• → ′ is the smallest relation defined by:
s

α−−→ t ∧ q
L(t)

−−−→ p

〈s, q〉 α−−→′ 〈t, p〉

• I ′ = { 〈s0, q〉 | s0 ∈ I ∧ ∃q0 ∈ Q0. q0
L(s0)−−−−→ q }

c© JPK 10

#11: Verifying ω-regular properties Model checking

Verifying ω-regular properties

Let:

• TS be a transition system without terminal states over AP

• P be an ω-regular property over AP, and

• A a non-blocking NBA such that Lω(A) = P .

The following statements are equivalent:

(a) TS |= P

(b) Traces(TS) ∩ Lω(A) = ∅

(c) TS ⊗A |= Ppers(A)

where Ppers(A) = “eventually for ever ¬F ”

⇒ checking ω-regular properties is reduced to persistence checking!

c© JPK 11

#11: Verifying ω-regular properties Model checking

Proof

c© JPK 12

#11: Verifying ω-regular properties Model checking

Infinitely often green?

{ green }{ red }

q0 q2

true

q1

¬green green

true¬green

{ q0 }

〈s0, q0〉

{ q1 }

〈s0, q1〉

{ q2 }

〈s0, q2〉

〈s1, q0〉

{ q0 } { q1 }

〈s1, q1〉

{ q2 }

〈s1, q2〉

c© JPK 13

#11: Verifying ω-regular properties Model checking

Infinitely often green?

s1

{ green }

s0

{ red }

〈s0, q0〉 { q0 } 〈s0, q1〉 { q1 } 〈s0, q2〉 { q2 }

〈s1, q0〉

{ q0 }

〈s1, q1〉

{ q1 }

〈s1, q2〉

{ q2 }

s2

∅

{ q0 }

〈s2, q0〉

{ q1 }

〈s2, q1〉

{ q2 }

〈s2, q2〉

c© JPK 14

#11: Verifying ω-regular properties Model checking

Persistence checking

• Aim: establish whether TS 6|= Ppers = “eventually for ever Φ”

• Let state s be reachable in TS and s 6|= Φ

– TS has an initial path fragment that ends in s

• If s is on a cycle

– this path fragment can be continued by an infinite path
– by traversing the cycle containing s infinitely often

⇒ TS may visit the ¬Φ-state s infinitely often and so: TS 6|= Ppers

• If no such s is found then: TS |= Ppers

c© JPK 15

#11: Verifying ω-regular properties Model checking

In picture

c© JPK 16

#11: Verifying ω-regular properties Model checking

Persistence checking and cycle detection

Let

• TS be a finite transition system without terminal states over AP

• Φ a propositional formula over AP, and

• Ppers the persistence property ”eventually for ever Φ”

TS 6|= Ppers

if and only if

∃s ∈ Reach(TS). s 6|= Φ ∧ s is on a cycle in G(TS)

c© JPK 17

#11: Verifying ω-regular properties Model checking

Infinitely often green?

{ green }{ red }

q0 q2

true

q1

¬green green

true¬green

{ q0 }

〈s0, q0〉

{ q1 }

〈s0, q1〉

{ q2 }

〈s0, q2〉

〈s1, q0〉

{ q0 } { q1 }

〈s1, q1〉

{ q2 }

〈s1, q2〉

c© JPK 18

#11: Verifying ω-regular properties Model checking

Infinitely often green?

s1

{ green }

s0

{ red }

〈s0, q0〉 { q0 } 〈s0, q1〉 { q1 } 〈s0, q2〉 { q2 }

〈s1, q0〉

{ q0 }

〈s1, q1〉

{ q1 }

〈s1, q2〉

{ q2 }

s2

∅

{ q0 }

〈s2, q0〉

{ q1 }

〈s2, q1〉

{ q2 }

〈s2, q2〉

c© JPK 19

#11: Verifying ω-regular properties Model checking

Overview Lecture #11

• Checking Regular Safety Properties

• Checking ω-Regular Properties

– persistence properties
– reduction to checking persistence properties
– checking persistence properties

⇒ Nested Depth-First Search

• Summary of Regular Properties

c© JPK 20

#11: Verifying ω-regular properties Model checking

Cycle detection

How to check for reachable cycles containing a ¬Φ-state?

• Alternative 1:

– compute the strongly connected components (SCCs) in G(TS)

– check whether one such SCC is reachable from an initial state
– . . . that contains a ¬Φ-state
– “eventually for ever Φ” is refuted if and only if such SCC is found

• Alternative 2:

– use a nested depth-first search
⇒ more adequate for an on-the-fly verification algorithm
⇒ easier for generating counterexamples

let’s have a closer look into this by first dealing with two-phase DFS

c© JPK 21

#11: Verifying ω-regular properties Model checking

A two-phase depth first-search

1. Determine all ¬Φ-states that are reachable from some initial state

this is performed by a standard depth-first search

2. For each reachable ¬Φ-state, check whether it belongs to a cycle

– start a depth-first search in s

– check for all states reachable from s whether there is a “backward” edge to s

• Time complexity: O(N ·(|Φ|+N+M))

– where N is the number of states and M the number of transitions
– fragments reachable via K ¬Φ-states are searched K times

c© JPK 22

#11: Verifying ω-regular properties Model checking

Two-phase depth first-search

Input: finite transition system TS without terminal states, and proposition Φ

Output: ”yes” if TS |= ”eventually for ever Φ”, otherwise ”no”.

set of states R := ∅; R¬Φ := ∅; (* set of reachable states resp. ¬Φ-states *)
stack of states U := ε; (* DFS-stack for first DFS, initial empty *)
set of states T := ∅; (* set of visited states for the cycle check *)
stack of states V := ε; (* DFS-stack for the cycle check *)

for all s ∈ I \ R do visit(s); od (* phase one *)
for all s ∈ R¬Φ do

T := ∅; V := ε; (* phase two *)
if cycle check(s) then return ”no” (* s belongs to a cycle *)

od
return ”yes” (* none of the ¬Φ-states belongs to a cycle *)

c© JPK 23

#11: Verifying ω-regular properties Model checking

Find ¬Φ-states

procedure visit (state s)
push(s, U); (* push s on the stack *)
R := R ∪ { s }; (* mark s as reachable *)
repeat

s′ := top(U);
if Post(s′) ⊆ R then

pop(U);
if s′ 6|= Φ then R¬Φ := R¬Φ ∪ { s′ }; fi

else
let s′′ ∈ Post(s′) \ R

push(s′′, U);
R := R ∪ { s′′ }; (* state s′′ is a new reachable state *)

fi
until (U = ε)

endproc

this is a standard DFS checking for ¬Φ-states

c© JPK 24

#11: Verifying ω-regular properties Model checking

Cycle detection

procedure boolean cycle check(state s)
boolean cycle found := false; (* no cycle found yet *)
push(s, V); T := T ∪ { s }; (* push s on the stack *)
repeat

s′ := top(V); (* take top element of V *)
if s ∈ Post(s′) then

cycle found := true; (* if s ∈ Post(s′), a cycle is found *)
push(s, V); (* push s on the stack *)

else
if Post(s′) \ T 6= ∅ then

let s′′ ∈ Post(s′) \ T ;
push(s′′, V); T := T ∪ { s′′ }; (* push an unvisited successor of s′ *)
else pop(V); (* unsuccessful cycle search for s′ *)

fi
fi

until ((V = ε) ∨ cycle found)
return cycle found

endproc

c© JPK 25

#11: Verifying ω-regular properties Model checking

Nested depth-first search

• Idea: perform the two depth-first searches in an interleaved way

– the outer DFS serves to encounter all reachable ¬Φ-states
– the inner DFS seeks for backward edges leading to a ¬Φ-state

• Nested DFS

– on full expansion of ¬Φ-state s in the outer DFS, start inner DFS
– in inner DFS, visit all states reachable from s not visited in the inner DFS yet
– no backward edge found to s? continue the outer DFS (look for next ¬Φ state)

• Counterexample generation: DFS stack concatenation

– stack U for the outer DFS = path fragment from s0 ∈ I to s (in reversed order)
– stack V for the inner DFS = a cycle from state s to s (in reversed order)

c© JPK 26

#11: Verifying ω-regular properties Model checking

The outer DFS (1)

Input: transition system TS without terminal states, and proposition Φ
Output: ”yes” if TS |= ”eventually for ever Φ”, otherwise ”no” plus counterexample

set of states R := ∅; (* set of visited states in the outer DFS *)
stack of states U := ε; (* stack for the outer DFS *)
set of states T := ∅; (* set of visited states in the inner DFS *)
stack of states V := ε; (* stack for the inner DFS *)
boolean cycle found := false;

while (I \ R 6= ∅ ∧ ¬cycle found) do
let s ∈ I \ R; (* explore the reachable *)
reachable cycle(s); (* fragment with outer DFS *)

od
if ¬cycle found then

return (”yes”) (* TS |= ”eventually for ever Φ” *)
else

return (”no”, reverse(V.U)) (* stack contents yield a counterexample *)
fi

c© JPK 27

#11: Verifying ω-regular properties Model checking

The outer DFS (2)
procedure reachable cycle (state s)

push(s, U); (* push s on the stack *)
R := R ∪ { s };
repeat

s′ := top(U);
if Post(s′) \ R 6= ∅ then

let s′′ ∈ Post(s′) \ R;
push(s′′, U); (* push the unvisited successor of s′ *)
R := R ∪ { s′′ }; (* and mark it reachable *)

else
pop(U); (* outer DFS finished for s′ *)
if s′ 6|= Φ then

cycle found := cycle check(s′); (* proceed with the inner *)
(* DFS in state s′ *)

fi
fi

until ((U = ε) ∨ cycle found) (* stop when stack for the outer *)
(* DFS is empty or cycle found *)

endproc

c© JPK 28

#11: Verifying ω-regular properties Model checking

Example

c© JPK 29

#11: Verifying ω-regular properties Model checking

The order of cycle detection

c© JPK 30

#11: Verifying ω-regular properties Model checking

Correctness of nested DFS

Let:

• TS be a finite transition system over AP without terminal states and

• Ppers a persistence property

The nested DFS algorithm yields ”no” if and only if TS 6|= Ppers

c© JPK 31

#11: Verifying ω-regular properties Model checking

Time complexity

The worst-case time complexity of nested DFS is in

O((N+M) + N ·|Φ |)

where N is # reachable states in TS, and M is # transitions in TS

c© JPK 32

#11: Verifying ω-regular properties Model checking

Overview Lecture #11

• Checking Regular Safety Properties

• Checking ω-Regular Properties

– persistence properties
– reduction to checking persistence properties
– checking persistence properties

• Nested Depth-First Search

⇒ Summary of Regular Properties

c© JPK 33

#11: Verifying ω-regular properties Model checking

Summary of regular properties (1)

• Languages recognized by NFA/DFA = regular languages

– serve to represent the bad prefixes of regular safety properties

• Checking a regular safety property = invariant checking on a product

– “never visit an accept state” in the NFA for the bad prefixes
– amounts to solving a (DFS) reachability problem

• ω-regular languages are languages of infinite words

– can be described by ω-regular expressions

• Languages recognized by NBA = ω-regular languages

– serve to represent ω-regular properties

c© JPK 34

#11: Verifying ω-regular properties Model checking

Summary of regular properties (2)

• DBA are less powerful than NBA

– fail, e.g., to represent the persistence property ”eventually for ever a”

• Generalized NBA require repeated visits for several acceptance sets

– the languages recognized by GNBA = ω-regular languages

• Checking an ω-regular property = checking persistency on a product

– “eventually for ever no accept state” in the NBA for the complement property

• Persistence checking is solvable in linear time by a nested DFS

• Nested DFS = a DFS for reachable ¬Φ-states + a DFS for cycle detection

c© JPK 35

